Advanced Search
Volume 38 Issue 5
Oct.  2020
Turn off MathJax
Article Contents

ZHAO Yan, GUO Pei, LU ZiYe, ZHENG RongCai, CHANG HaiLiang, WANG GuoZhi, WEI Yan, WEN HuaGuo. Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 966-979. doi: 10.14027/j.issn.1000-0550.2019.110
Citation: ZHAO Yan, GUO Pei, LU ZiYe, ZHENG RongCai, CHANG HaiLiang, WANG GuoZhi, WEI Yan, WEN HuaGuo. Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 966-979. doi: 10.14027/j.issn.1000-0550.2019.110

Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China

doi: 10.14027/j.issn.1000-0550.2019.110
Funds:

National Natural Science Foundation of China 41572097, 41472088

Research Fund for the Doctoral Program of Higher Education of China 20135122110004

  • Received Date: 2019-07-04
  • Rev Recd Date: 2020-12-08
  • Publish Date: 2020-10-28
  • The Lower Permian Fengcheng Formation in the Mahu Sag of the Junggar Basin was developed in a volcanic⁃induced alkaline saline lacustrine environment, with deposition of thick⁃bedded sodium carbonates and high⁃quality source rocks, as well as the borosilicate reedmergnerite, which is a rare mineral globally but is very rich in the Fengcheng Formation. Based on petrography, fluid inclusion and boron isotope studies, the aim of this study was to discover the origin of the reedmergnerite which, in the Fengcheng Formation, often replaces carbonate minerals, including shortite, eitelite, northupite, calcite, trona, and even barytocalcite. The homogenization temperature of the primary inclusions in the reedmergnerite ranged from 100 to 116°C. Previous synthetic experimental studies have found that the δ11B values of reedmergnerite are 0.33⁃2.13‰. It is proposed here that, due to the limitations of temperature and pressure in surface or shallow burial processes, the source of boron in reedmergnerite was deep hydrothermal fluid in the original sedimentary environment, mainly in deep diagenetic environments (>3000 m). Therefore, the enrichment of reedmergnerite in the Fengcheng Formation is interpreted as the result of intense magmatic hydrothermal activity and a long diagenetic history.
  • [1] 郑绵平,张永生,刘喜方,等. 中国盐湖科学技术研究的若干进展与展望[J]. 地质学报,2016,90(9):2123-2166.

    Zheng Mianping, Zhang Yongsheng, Liu Xifang, et al. Progress and prospects of salt lake research in China[J]. Acta Geologica Sinica, 2016, 90(9): 2123-2166.
    [2] Kistler R B, Helvaci C. Boron and borates[M]//Carr D D. Industrial minerals and rocks. 6th ed. Littleton: Society of Mining, Metallurgy and Exploration, Inc, 1994, 6: 171-186.
    [3] Warren J K. Evaporites: Sediments, resources and hydrocarbons[M]. Berlin, Heidelberg: Springer, 2006.
    [4] Arrett D E. Borates: Handbook of deposits, processing, properties, and use[M]. New York: Elsevier, 1998.
    [5] 曹剑,雷德文,李玉文,等. 古老碱湖优质烃源岩:准噶尔盆地下二叠统风城组[J]. 石油学报,2015,36(7):781-790.

    Cao Jian, Lei Dewen, Li Yuwen, et al. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 2015, 36(7): 781-790.
    [6] 孙玉善. 中国西部地区首次发现硅硼钠石[J]. 石油与天然气地质,1994,15(3):264-265.

    Sun Yushan. Reedmergneite was first discovered in western China[J]. Oil & Gas Geology, 1994, 15(3): 264-265.
    [7] Yu K H, Cao Y C, Qiu L W. Resource potentials of soda and boron in the Lower Permian Fengcheng Formation of the Mahu Sag in northwestern Junggar Basin, China[J]. Acta Geologica Sinica (English Edition), 2019, 93(2): 483-484.
    [8] 吴孔友,查明,王绪龙,等. 准噶尔盆地构造演化与动力学背景再认识[J]. 地球学报,2005,26(3):217-222.

    Wu Kongyou, Zha Ming, Wang Xulong, et al. Further researches on the tectonic evolution and dynamic setting of the Junggar Basin[J]. Acta Geoscientica Sinica, 2005, 26(3): 217-222.
    [9] 陈书平,张一伟,汤良杰. 准噶尔晚石炭世—二叠纪前陆盆地的演化[J]. 石油大学学报(自然科学版),2001,25(5):11-15,23.

    Chen Shuping, Zhang Yiwei, Tang Liangjie. Evolution of Junggar Late Carboniferous-Permian foreland basin[J]. Journal of the University of Petroleum, China, 2001, 25(5): 11-15, 23.
    [10] 冯建伟. 准噶尔盆地乌夏断裂带构造演化及控油作用研究[D]. 北京:中国石油大学,2008.

    Feng Jianwei. The tectonic evolution and it’s controlling on hydrocarbon in Wuxia fault belt of Junggar Basin[D]. Beijing: China University of Petroleum, 2008.
    [11] 孙玉善,白新民,桑洪,等. 沉积盆地火山岩油气生储系统分析:以新疆准噶尔盆地乌夏地区早二叠世风城组为例[J]. 地学前缘,2011,18(4):212-218.

    Sun Yushan, Bai Xinmin, Sang Hong, et al. The source and reservoir system analysis of volcanic rock in depositional basin: Taking Fengcheng Formation of Lower Permian in Wuxia Zhungeer, Xingjiang as an example[J]. Earth Science Frontiers, 2011, 18(4): 212-218.
    [12] 冯有良,张义杰,王瑞菊,等. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素[J]. 石油勘探与开发,2011,38(6):685-692.

    Feng Youliang, Zhang Yijie, Wang Ruiju, et al. Dolomites genesis and hydrocarbon enrichments of Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Petroleum Exploration and Development, 2011, 38(6): 685-692.
    [13] 匡立春,唐勇,雷德文,等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发,2012,39(6):657-667.

    Kuang Lichun, Tang Yong, Lei Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667.
    [14] 鲁新川,张顺存,史基安. 准噶尔盆地西北缘乌尔禾—风城地区二叠系风城组白云岩地球化学特征及成因分析[J]. 兰州大学学报(自然科学版),2012,48(6):8-14,20.

    Lu Xinchuan, Zhang Shuncun, Shi Ji’an. Dolomite genesis and geochemical characteristics of Permian Fengcheng Formation in Wuerhe-Fengcheng area, northwestern Junggar Basin[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(6): 8-14, 20.
    [15] 朱世发,朱筱敏,陶文芳,等. 准噶尔盆地乌夏地区二叠系风城组云质岩类成因研究[J]. 高校地质学报,2013,19(1):38-45.

    Zhu Shifa, Zhu Xiaomin, Tao Wenfang, et al. Origin of dolomitic reservoir rock in the Permian Fengcheng Formation in Wu-Xia area of the Junggar Basin[J]. Geological Journal of China Universities, 2013, 19(1): 38-45.
    [16] 王俊怀,刘英辉,万策,等. 准噶尔盆地乌—夏地区二叠系风城组云质岩特征及成因[J]. 古地理学报,2014,16(2):157-168.

    Wang Junhuai, Liu Yinghui, Wan Ce, et al. Characteristics and origin of dolomitic tuff in the Permian Fengcheng Formation in Wu-Xia area of Junggar Basin[J]. Journal of Palaeogeography, 2014, 16(2): 157-168.
    [17] 常海亮,郑荣才,郭春利,等. 准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征[J]. 地质论评,2016,62(3):550-568.

    Chang Hailiang, Zheng Rongcai, Guo Chunli, et al. Characteristics of rare earth elements of exhalative rock in Fengcheng Formation, northwestern margin of Jungger Basin[J]. Geological Review, 2016, 62(3): 550-568.
    [18] Goldstein H R. Systematics of fluid inclusions in diagenetic minerals[J]. SEPM short course, 1994, 31: 199.
    [19] Goldstein R H. Fluid inclusions in sedimentary and diagenetic systems[J]. Lithos, 2001, 55(1/2/3/4): 159-193.
    [20] Goldstein R H. Fluid inclusion geothermometry in sedimentary systems: From paleoclimate to hydrothermal[M]//Harris N, Peters K E. Analyzing the Thermal History of Sedimentary Basins. Tulsa: Society for Sedimentary Geology, 2012.
    [21] 肖军,贺茂勇,肖应凯,等. 硼同位素地球化学应用研究进展[J]. 海洋地质前沿,2012,28(9):20-33.

    Xiao Jun, He Maoyong, Xiao Yingkai, et al. Progress of geochemical application of boron isotope[J]. Marine Geology Frontiers, 2012, 28(9): 20-33.
    [22] Vengosh A, Starinsky A, Kolodny Y, et al. Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel[J]. Geochimica et Cosmochimica Acta, 1991, 55(6): 1689-1695.
    [23] Hogan J F, Blum J D. Boron and lithium isotopes as groundwater tracers: A study at the Fresh Kills Landfill, Staten Island, New York, USA[J]. Applied Geochemistry, 2003, 18(4): 615-627.
    [24] 刘丛强. 流体—岩石反应体系中的硼同位素地球化学[J]. 地球化学,1996,25(1):93-100.

    Liu Congqiang. Application of Boron isotope geochemistry to water-rock interaction system[J]. Geochimica, 1996, 25(1): 93-100.
    [25] You C F, Spivack A J, Gieskes J M, et al. Experimental study of boron geochemistry: Implications for fluid processes in subduction zones[J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2435-2442.
    [26] Boschi C, Dini A, Früh-Green G L, et al. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30 N): Insights from B and Sr isotope data[J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1801-1823.
    [27] 池国祥,卢焕章. 流体包裹体组合对测温数据有效性的制约及数据表达方法[J]. 岩石学报,2008,24(9):1945-1953.

    Chi Guoxiang, Lu Huanzhang. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept[J]. Acta Petrologica Sinica, 2008, 24(9): 1945-1953.
    [28] Davis D W, Lowenstein T K, Spencer R J. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O[J]. Geochimica et Cosmochimica Acta, 1990, 54(3): 591-601.
    [29] Chi G X, Haid T, Quirt D, et al. Petrography, fluid inclusion analysis, and geochronology of the end uranium deposit, Kiggavik, Nunavut, Canada[J]. Mineralium Deposita, 2017, 52(2): 211-232.
    [30] 程家龙,赵永鑫,柳丰华. 硼同位素在矿床学中的应用研究[J]. 地质找矿论丛,2010,25(1):65-71.

    Cheng Jialong, Zhao Yongxin, Liu Fenghua. Study on boron isotope and application to study on mineral deposit[J]. Contributions to Geology and Mineral Resources Research, 2010, 25(1): 65-71.
    [31] Smith G I, Haines D V. Character and distribution of nonclastic minerals in the Searles Lake evaporite deposit, California[M]. US Government Printing Office, 1964.
    [32] Eugster H P, Smith G I. Mineral equilibria in the Searles Lake evaporites, California[J]. Journal of Petrology, 1965, 6(3): 473-522.
    [33] Surdam R C. Zeolites in closed hydrologic systems[C]//Mumpton F A. Mineralogy and Geology of Natural Zeolites. Washington, D.C.: Mineralogical Society of America, 1977, 4: 65-91.
    [34] Helvaci C. A review of the mineralogy of the Turkish borate deposits[J]. 1978.
    [35] Countryman R L. The subsurface geology, structure, and mineralogy of the Billie borate deposit, Death Valley, California: Unpub[D]. M. Sc. thesis, Los Angeles, Univ. California, 1979.
    [36] Barker J M, Lefond S J. Some additional borates and zeolites from the Mesa del Alamo borate district, north-central Sonora[J]. Mexico: Borate Deposits, Northern Sonora, Mexico, 1979, 59(3): 523-548.
    [37] Alonso R N, Helvacı C, Sureda R J, et al. A new Tertiary borax deposit in the Andes[J]. Mineralium Deposita, 1988, 23(4): 299-305.
    [38] Smith G I, Medrano M D. Continental borate deposits of Cenozoic age[J]. Reviews in Mineralogy, 1996, 33: 223-284.
    [39] Barker C E, Barker J M. Re-evaluation of the origin and diagenesis of borate deposits, death valley region, California[C]//Barker J M, Lefond S J. Borates: economic geology and production. Proceedings of a symposium held at the fall meeting of SME-AIME. New York, NY, USA: SME-AIME, 1985: 101-135.
    [40] Alonso R. Evaporitas neógenas de los Andes Centrales[C] //Genesis de formaciones evaporiticas. Modelos andinos e ibericos. 1991: 267-329.
    [41] Helvaci C. Stratigraphy, mineralogy, and genesis of the Bigadiç borate deposits, western Turkey[J]. Economic Geology, 1995, 90(5): 1237-1260.
    [42] Helvaci C, Orti F. Sedimentology and diagenesis of Miocene colemanite-ulexite deposits (western Anatolia, Turkey)[J]. Journal of Sedimentary Research, 1998, 68(5): 1021-1033.
    [43] Tanner L H. Borate formation in a perennial lacustrine setting: Miocene–Pliocene furnace creek formation, Death Valley, California, USA[J]. Sedimentary Geology, 2002, 148(1/2): 259-273.
    [44] Yang J H, Yi C L, Du Y S, et al. Geochemical significance of the Paleogene soda-deposits bearing strata in Biyang Depression, Henan province[J]. Science China Earth Sciences, 2015, 58(1): 129-137.
    [45] Renaut R W, Owen R B, Jones B, et al. Impact of lake‐level changes on the formation of thermogene travertine in continental rifts: Evidence from Lake Bogoria, Kenya Rift Valley[J]. Sedimentology, 2013, 60(2): 428-468.
    [46] 蒋宜勤,文华国,祁利祺,等. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物和成因分析[J]. 矿物岩石,2012,32(2):105-114.

    Jiang Yiqin, Wen Huaguo, Qi Liqi, et al. Salt minerals and their genesis of the Permian Fengcheng Formation in Urho area, Junggar Basin[J]. Journal of Mineralogy and Petrology, 2012, 32(2): 105-114.
    [47] 张元元,李威,唐文斌. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境[J]. 新疆石油地质,2018,39(1):48-54.

    Zhang Yuanyuan, Li Wei, Tang Wenbin. Tectonic setting and environment of alkaline lacustrine source rocks in the Lower Permian Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 48-54.
    [48] 李玉堂,袁标,刘成林,等. 国内水硅硼钠石的首次发现[J]. 岩石矿物学杂志,1990,9(2):170-174.

    Li Yutang, Yuan Biao, Liu Chenglin, et al. A study megaphenocrysts of ferrifayalite from the biotite monzonitic granite in Jixi, Anhui[J]. Acta Petrologica et Mineralogica, 1990, 9(2): 170-174.
    [49] 单福龙,陈文西,王丛山. 第三纪火山沉积硼矿与火山岩关系研究[J]. 科技资讯,2015,13(7):71,73.

    Shan Fulong, Chen Wenxi, Wang Congshan. Relationship between Tertiary volcano sedimentary boron deposit and volcanic rocks in the study[J]. Science & Technology Information, 2015, 13(7): 71, 73.
    [50] 王丛山,陈文西,张旭,等. 火山—沉积型硼矿成矿条件及找矿依据的研究[J]. 科技资讯,2015,13(4):54-55.

    Wang Congshan, Chen Wenxi, Zhang Xu, et al. Study on metallogenic conditions and prospecting basis of volcano-sedimentary boron deposit[J]. Science & Technology Information, 2015, 13(4): 54-55.
    [51] Hay R L, Guldman S G. Diagenetic alteration of silicic ash in Searles Lake, California[J]. Clays and Clay Minerals, 1987, 35(6): 449-457.
    [52] García-Veigas J, Helvacı C. Mineralogy and sedimentology of the Miocene Göcenoluk borate deposit, Kırka district, western Anatolia, Turkey[J]. Sedimentary Geology, 2013, 290: 85-96.
    [53] Helvacı C, Stamatakis M G, Zagouroglou C, et al. Borate minerals and related authigenic silicates in northeastern Mediterranean Late Miocene continental Basins[J]. Exploration and Mining Geology, 1993, 2(2): 171-178.
    [54] Savage D, Benbow S, Watson C, et al. Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California[J]. Applied Clay Science, 2010, 47(1/2): 72-81.
    [55] Clark J R, Appleman D E. Crystal structure refinement of reedmergnerite, the boron analog of albite[J]. Science, 1960, 132(3442): 1837-1838.
    [56] Milton C, Chao E C T, Axelrod J M, et al. Reedmergnerite, NaBSi3O8, the boron analogue of albite, from the Green River Formation, Utah[J]. American Mineralogist, 1960, 45(1/2): 188-199.
    [57] Wunder B, Stefanski J, Wirth R, et al. Al-B substitution in the system albite (NaAlSi3O8)-reedmergnerite (NaBSi3O8)[J]. European Journal of Mineralogy, 2013, 25(4): 499-508.
    [58] Eugster H P, McIver N L. Boron analogues of alkali feldspars and related silicates[J]. Geological Society of America Bulletin, 1959, 76: 1598-1599.
    [59] Kimata M. Synthesis and properties of reedmergnerite[J]. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 1977, 72(4): 162-172.
    [60] 周中毅,潘长春,范善发,等. 准噶尔盆地的地温特征及其找油意义[J]. 新疆石油地质,1989,10(3):67-74.

    Zhou Zhongyi, Pan Changchun, Fan Shanfa, et al. Geothermal characteristics of the Junggar Basin and its significance to oil searching[J]. Xinjiang Petroleum Geology, 1989, 10(3): 67-74.
    [61] Jagniecki E A, Jenkins D M, Lowenstein T K, et al. Experimental study of shortite (Na2Ca2(CO3)3) formation and application to the burial history of the Wilkins Peak member, Green River Basin, Wyoming, USA[J]. Geochimica et Cosmochimica Acta, 2013, 115: 31-45.
    [62] 文华国. 酒泉盆地青西凹陷湖相“白烟型”热水沉积岩地质地球化学特征及成因[D]. 成都:成都理工大学,2008.

    Wen Huaguo. Geological and geochemical characteristics and genesis of the lacustrine “white smoke type” hydrothermal sedimentary rocks in the Qingxi Sag, Jiuquan Basin[D]. Chengdu: Chengdu University of Technology, 2008.
    [63] 郭建钢,赵小莉,刘巍,等. 乌尔禾地区风城组白云岩储集层成因及分布[J]. 新疆石油地质,2009,30(6):699-701.

    Guo Jiangang, Zhao Xiaoli, Liu Wei, et al. Origin and distribution of dolomite reservoir of Permian Fengcheng Formation in Wuerhe area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2009, 30(6): 699-701.
    [64] Yu K H, Cao Y C, Qiu L W, et al. Geochemical characteristics and origin of sodium carbonates in a closed Alkaline Basin: The Lower Permian Fengcheng Formation in the Mahu Sag, northwestern Junggar Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 506-531.
    [65] Yu K H, Cao Y C, Qiu L W, et al. The hydrocarbon generation potential and migration in an alkaline Evaporite Basin: The Early Permian Fengcheng Formation in the Junggar Basin, northwestern China[J]. Marine and Petroleum Geology, 2018, 98: 12-32.
    [66] Ortí F, Rosell L, García-Veigas J, et al. Sulfate–borate association (Glauberite–probertite) in the Emet Basin: Implications for evaporite sedimentology (Middle Miocene, Turkey)[J]. Journal of Sedimentary Research, 2016, 86(5): 448-475.
    [67] Spivack A J, Edmond J M. Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta, 1987, 51(5): 1033-1043.
    [68] Brumsack H J, Zuleger E. Boron and boron isotopes in pore waters from ODP Leg 127, Sea of Japan[J]. Earth and Planetary Science Letters, 1992, 113(3): 427-433.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(2)

Article Metrics

Article views(771) PDF downloads(121) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-07-04
  • Revised:  2020-12-08
  • Published:  2020-10-28

Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China

doi: 10.14027/j.issn.1000-0550.2019.110
Funds:

National Natural Science Foundation of China 41572097, 41472088

Research Fund for the Doctoral Program of Higher Education of China 20135122110004

Abstract: The Lower Permian Fengcheng Formation in the Mahu Sag of the Junggar Basin was developed in a volcanic⁃induced alkaline saline lacustrine environment, with deposition of thick⁃bedded sodium carbonates and high⁃quality source rocks, as well as the borosilicate reedmergnerite, which is a rare mineral globally but is very rich in the Fengcheng Formation. Based on petrography, fluid inclusion and boron isotope studies, the aim of this study was to discover the origin of the reedmergnerite which, in the Fengcheng Formation, often replaces carbonate minerals, including shortite, eitelite, northupite, calcite, trona, and even barytocalcite. The homogenization temperature of the primary inclusions in the reedmergnerite ranged from 100 to 116°C. Previous synthetic experimental studies have found that the δ11B values of reedmergnerite are 0.33⁃2.13‰. It is proposed here that, due to the limitations of temperature and pressure in surface or shallow burial processes, the source of boron in reedmergnerite was deep hydrothermal fluid in the original sedimentary environment, mainly in deep diagenetic environments (>3000 m). Therefore, the enrichment of reedmergnerite in the Fengcheng Formation is interpreted as the result of intense magmatic hydrothermal activity and a long diagenetic history.

ZHAO Yan, GUO Pei, LU ZiYe, ZHENG RongCai, CHANG HaiLiang, WANG GuoZhi, WEI Yan, WEN HuaGuo. Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 966-979. doi: 10.14027/j.issn.1000-0550.2019.110
Citation: ZHAO Yan, GUO Pei, LU ZiYe, ZHENG RongCai, CHANG HaiLiang, WANG GuoZhi, WEI Yan, WEN HuaGuo. Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 966-979. doi: 10.14027/j.issn.1000-0550.2019.110
  • 硼及其化合物几乎是所有工业部门不可或缺的原材料之一。据统计,世界上一半以上的硼矿储量来源于火山—沉积型硼矿[1],该类型硼矿主要发育于渐新世以来的陆相蒸发环境中,以中新世硼酸盐发育最为普遍和重要。现在被熟知的硼酸盐矿物有150种,具有重要开采价值的硼酸盐主要有四类:钙硼酸盐(inyoite, meyerhofferite,colemanite and priceite),钠钙硼酸盐(ulexite和probertite),钠硼酸盐(borax和kernite),以及镁钙硼酸盐(hydroboracite)[2]。沉积硼酸盐在蒸发岩沉积学中越来越重要[3],这不仅是由于大量的矿物形成的群体[4],还有原始降水和成岩反应模式的变化以及它们与普通蒸发岩形成的复杂关系。

    我国准噶尔盆地玛湖凹陷风城组沉积于火山—碱湖蒸发环境中,发育厚层碱盐和优质烃源岩,是玛湖凹陷百里油区的重要源岩基础[5]。值得注意的是,该套地层亦发育丰富的含硼矿物,但与世界上新生代碱湖沉积物不同,风城组富集大量硅硼酸盐,包括硅硼钠石(reedmergnerite),水硅硼钠石(searlesite),硅硼钠钡石等。硼硅酸盐虽普遍报道于古老碱湖和现代碱湖沉积物中,如美国始新世绿河组、Searles湖全新世地层,但仅仅作为极少数矿物出现。而风城组的硼硅酸盐,在某些层段密集出现,含量高者形成主要造岩矿物(rock⁃forming mineral),这可能是我国最古老的赋存在火山—碱湖环境中的富硼矿床[67]。准噶尔盆地碱湖发育的硅硼酸盐矿物,其富集程度在世界上独一无二,其控制因素值得深入研究。

    本文对玛湖凹陷乌尔禾地区下二叠统风城组富硼层段进行取样分析,在岩石学、矿物学观察的基础上,对硅硼钠石进行了流体包裹体和硼同位素研究,探究硅硼钠石矿物的流体来源和性质。

  • 准噶尔盆地在晚石炭—早二叠世处于前陆盆地早期构造演化阶段[89]。盆地西北缘受到挤压,内部上地幔物质上拱,岩浆喷发,形成一系列逆冲推覆构造。由于区内构造运动频繁,研究区域内发育较多断裂带,形成时间早,延伸长,断距大且贯穿整个二叠系,同时伴生一系列小的次生断层(图1b),这些断裂带发育的地方是盐类矿物主要富集区。地壳深部的洋壳俯冲,消减运动,一直持续到了中晚二叠世,岩浆活动才逐渐停止[10]

    Figure 1.  Tectonic and geographical map of Junggar Basin (modified from Feng[10] and Sun et al.[11] )

    乌尔禾地区处于前陆盆地西北缘的北部(图1a),该处风城组厚达800~1 800 m,整体上西南厚,东北薄,是重要的生烃层系也是目前致密储集层研究的热点[816]。风城组自下而上可划分为三段:风一段(P1 f 1)岩性主要为深灰色—灰色含白云质凝灰岩与含白云质、含盐质的泥岩互层;风二段(P1 f 2),碱矿发育,岩性为暗色含白云质泥岩夹薄层含白云质粉砂岩,硅硼钠石呈条带状,透镜状,斑点状产出,局部形成硅硼钠石盐岩;风三段(P1 f 3)上下部岩性差异较大,下部主要为深灰色泥质、粉砂质白云岩,上部以灰色含白云质粉砂岩和砂岩组合。此段中硅硼钠石相对较少,仅见于中下半部盐脉中。玛湖凹陷风城组硼硅酸盐在空间分布上具有一定的规律性,垂向上,从风城组一段至三段,呈现出先升高后降低的趋势,风城组二段的底部最为发育。横向展布上,硅硼酸盐矿物的分布明显受研究区域内乌南活动断裂带的控制。乌南断裂带为一条近北东—南西走向、倾向北西的断裂,属乌尔禾断褶带的一部分,在风城组沉积中期之前活动较强[17]图1c)。

  • 由于风城组在研究区域内未见野外露头,本次研究对象为钻井岩芯。主要对区域内风城011井、风城1井、风南1井等十余口井进行样品采集及精细描述。本次研究共采集岩芯样品100余件,制作标准薄片99块,包裹体薄片66块,沿着盐类矿物发育的纵切面的方向进行切片。

  • 包裹体薄片岩石学特征观察在成都理工大学油气藏国家重点实验室完成。显微荧光观察主要识别样品中出现的烃类包裹体,使用的荧光显微镜为徕卡DM4500P双目道荧光显微镜,紫外激发光为多色激发,激发波长为330~380 nm。

    包裹体显微测温工作在成都理工大学油气藏国家重点实验室完成,测试所用的仪器为Linkam THMS600型地质用冷热台,测温的范围为-196 ℃~600 ℃,使用标准样品进行仪器矫正(纯水标样,冰点温度0 ℃;盐度为23.2%的NaCl⁃H2O溶液标样,水石盐消失温度为-21.1 ℃;纯度达99%的铟片标样,熔点为156.1 ℃),矫正精度为±0.1 ℃。实验过程中,均一温度升温和循环的间隔为1 ℃,因此均一温度的分辨率为1 ℃;冰点温度的升温和循环间隔为0.1 ℃,因此冰点温度的精度为0.1 ℃。流体包裹体数据的可靠性,主要依据流体包裹体组合(FIA)的原则来进行约束,以保证数据的有效性。Goldstein[18]提出了“流体包裹体组合(FIA)”的概念,一个FIA被表述为“岩石学上最细致划分的、相关联的一组包裹体”,FIA强调的是同时捕获的一组包裹体。样品中流体包裹体组合的确定是判断流体包裹体形成环境和约束流体包裹体显微数据的基础[1920]。通过包裹体岩相学的观察,对硅硼钠石矿物生长环带中检测到气液比相对一致的富液相两相盐水包裹体进行显微测温,严格的按照流体包裹体组合(FIA)的定义来对数据进行约束,具生长环带产出的原生流体包裹体反映了原始成岩流体的性质。

  • 硼是元素周期表的第五元素,也是唯一缺电子的非金属元素。因此,硼对氧有很高的亲和力,在硼酸盐的化合物中形成强共价硼氧键。硼也是唯一一个含两种丰富同位素—11B,10B的轻元素,其丰度分别是19.9%和80.1%。硼也是易溶元素,在水环境中比较活泼,具有强烈的流体活性。在地质过程中11B比10B活性更高,更容易进入流体相和蒸发相中。在地学上的研究常以δ 11B/10-3表示不同地质体的同位素的组成,11B的变化范围为-70%~75%[2123]。在自然界中的硼同位素分馏较大,不同的地质体具不同的δ 11B特征。硼同位素比其他稳定的和放射性的同位素更具有优越性,可作为研究热液过程的灵敏示踪剂[2426]。通过岩石学的观察,选择具不同产状的4个硅硼酸盐样品进行硼同位素的测定。硼酸盐样品用微钻取自新鲜钻井岩芯,经显微镜下挑选和去杂质处理,之后在玛瑙研钵中研磨,过200 目的筛子,用透明样品瓶密封送样。分析测试由澳实分析检测有限公司完成,用Neptune MC⁃ICP⁃SFMS进行同位素测试,RSD<(0.2%~1%),满足研究需要。

  • 硅硼钠石岩芯观察,无色透明,玻璃光泽,硬度大于5,与稀盐酸不反应。显观镜下硅硼钠石无色透明,干涉色为一级灰白至黄色,粒径0.75~3.5 mm,晶体常呈楔状、板状,具穿插双晶,既可以呈分散状也可以形成聚集的团簇状和细脉状,具条带状和斑点状构造。单个矿物晶体中常具X形或Y形生长带,X或Y形生长带中具尘状包裹物(图2f)。

    Figure 2.  Occurrence and mineralogical characteristics of reedmergnerite in the Fengcheng Formation, Mahu Sag

    通过大量岩芯及薄片观察,硅硼钠石主要发育于黑色—灰色白云石化凝灰岩中,产出形式可总结成以下四种:

    (1) 呈条带状和透镜状夹于灰黑色—灰色白云石化凝灰岩中,有时也呈条带夹于含云泥岩中(图2a)。条带宽1~20 mm。显微镜下硅硼钠石晶体主要呈细脉产出(图2b),硅硼钠石和白云石关系密切(图2c)。

    (2) 硅硼钠石呈斑点状分布在浅棕色凝灰岩中(图2d),自形程度较高的硅硼钠石晶体均匀的镶嵌在白云石化凝灰岩中(图2e,f)。

    (3) 局部高度富集形成硅硼钠石盐岩(图2g,j),镜下观察晶体具两种不同的特征:一种自形程度较高,发育有丰富的粒间溶孔(图2h,i);另一种,硅硼钠石聚集成团簇状,并与碳酸盐矿物共存(图2k,l)。

    (4) 充填裂缝或者粒间孔隙。

  • 研究区内,和硅硼钠石共存的矿物主要为碳酸盐矿物。通过研究晶体自形程度、晶体间接触关系、消光性质(图3),同时结合背散射图像(图4),发现研究区内主要以硅硼钠石交代碳酸盐矿物为主。主要包括:1)碳钠钙石(图3a~c、图4b);2)碳钠镁石,硅硼钠石中常含大量不规则的碳钠钙石和碳钠镁石的残留物(图3d,e、图4a,c);3)方解石,硅硼钠石中具方解石残留(图3f);4)氯碳钠镁石,硅硼钠石同时穿插碳钠钙石和氯碳钠镁石晶体(图3g~i);5)天然碱,硅硼钠石主要分布于天然碱的晶体接触处(图3j~k);6)白云石—铁白云石,硅硼钠石部分样品中可交代白云石—铁白云石团块(图3l)。

    Figure 3.  The relationships between reedmergnerite and carbonate in the Fengcheng Formation, Mahu Sag

    Figure 4.  Backscatter image of reedmergnerite replacing other carbonate minerals

  • 根据室温下流体包裹体内的相态组合和显微荧光特征,本文将研究区内流体包裹体分为五类:1)无可见气泡的单液相的盐水包裹体(Liquid⁃only inclusi sions,L⁃O);2)气液比小于50%的两相(气相+液相)盐水包裹体(Liquid⁃dominated biphase⁃inclusisions,L⁃D);3)荧光下发蓝色光的单液相的油包裹体;4)荧光下发蓝光的气液比小于50%的气液两相油包裹体;5)荧光下发黄光的油包裹体。

    流体包裹体的产状主要包括4类。

    (1) 生长环带中的包裹体(Growth zone,GZ),呈生长环带产出的包裹体往往表现着矿物的生长特征(图5a,b)这些包裹体被认为是可靠的原生包裹体,在同一个生长环带内的流体包裹体同属于一个FIA[18]

    Figure 5.  Distribution of fluid inclusions in reedmergnerite

    (2) 团簇状分布的包裹体(图5c),他们通常是聚集在一个相对小的区域内,团簇状分布的包裹体可能是原生,也可能是次生。当他们是原生的包裹体时则同属于同一个FIA,在本文研究中,团簇状分布的包裹体被当作次生包裹体来处理[27]

    (3) 随机分布(Random population,RP)的包裹体,这类包裹体随机、无特定方向的分布在一个相对较大的区域里(图5d),这类包裹体成因未知,既可能是原生也可能是次生(呈密集的微裂隙重叠在一起)[18]。在任何的情况下,此类包裹体都不属于同一个FIA。

    (4) 长愈合裂纹(Long trail,LT)中的包裹体,长愈合裂纹指的是切穿了矿物边界的愈合裂纹(图5e,f),呈愈合裂纹产出的包裹体被认为是典型的次生包裹体[18],产出于同一个愈合裂纹中的包裹体属于一个FIA。

  • 通过系统的流体包裹体岩相学的分析,研究区域的包裹体主要呈以下五种组合形式:1)硅硼钠石矿物生长环带中检测到气液比相对一致的富液相两相盐水包裹体(图5b);2)切割硅硼钠石的长愈合裂纹中检测到富液相两相盐水包裹体(图5f);3)切割硅硼钠石的长愈合裂纹检测到发绿色荧光的富液相两相油包裹体(图6a,b);4)多条切割硅硼钠石的长愈合裂纹中检测到发黄色荧光和发蓝色荧光的富液相两相油包裹体(图6c,d);5)切割硅硼钠石的长愈合裂纹中检测到,发黄色荧光的富液相两相油包裹体和富液相的两相盐水包裹体(图6e,f)。

    Figure 6.  Fluid characteristics of the fluid inclusion in reedmergnerite

  • 本次研究主要是针对硅硼钠石矿物生长环带中检测到气液比相对一致的富液相两相盐水包裹体(L⁃D)和切割硅硼钠石的长愈合裂纹中检测到发黄色荧光的富液相两相油包裹体和富液相的两相盐水包裹体(L⁃D)进行显微测温。

    生长环带中检测到气液比相对一致的L⁃D共15个,组成3个FIA,3个FIA显示出一致性的测温数据(表1),15个L⁃D均一温度(Th)范围100 ℃~116 ℃(图7)。在进行冰点温度的测试中,将温度降到-185 ℃,未将其冻结,并且在回温的过程中也未将其冻结,所以无法测出其冰点温度,证明其含有较高的二价阳离子,盐度相对较高[2829]

    井位 深度/m 产状 流体包裹体组合 包裹体类型 大小(μ小) 均一温度/℃ 冰点温度/℃
    富液相气 20 112 未冻结
    风南2井 4 100.58 生长带 FIA⁃1 液两相盐 10 100 未冻结
    水包裹体 15 111 未冻结
    5 112 未冻结
    富液相气 4 100 未冻结
    风南2井 4 100.58 生长带 FIA⁃2 液两相盐 4 111 未冻结
    水包裹体 5 112 未冻结
    4 100 未冻结
    4 111 未冻结
    6 104 未冻结
    富液相气 5 103 未冻结
    风南2井 4 100.58 生长带 FIA⁃3 液两相盐 7 109 未冻结
    水包裹体 5 110 未冻结
    7 116 未冻结
    6 112 未冻结

    Table 1.  Results of homogenization temperature of the fluid inclusion in reedmergnerite

    Figure 7.  Homogenization temperature histogram of reedmergnerite primary fluid inclusions

    切割硅硼钠石的长愈合裂纹中检测到的发黄色荧光的富液相两相油包裹体和L⁃D。油包裹体的均一温度较低,共19个,均一温度范围为36 ℃~75 ℃,平均值51 ℃,冰点温度无法进行测量。次生的L⁃D共23个,组成5个FIA,5个FIA均一温度具一致性,均一温度范围90 ℃~108 ℃,冰点温度-14.9 ℃~-8.7 ℃,平均值为-11.1 ℃。

  • 玛湖凹陷风城组硼浓度为典型的火山—沉积型硼矿型,沉积构造背景与西土耳其Beypazar 碱矿相似,赋存于火山喷发强烈的碱性盐湖中[7]。经过岩石学、矿物学以及扫描电镜的分析确定后,选取了4件具不同产状的硅硼钠石样品进行了硼同位素的测定(表2)。本次研究针对具不同产状的硅硼钠石进行硼同位素的测定,结果显示,硅硼钠石样品的δ 11B,介于0.33‰~2.13‰,平均值为1.08‰,对硅硼钠石δ 11B特征分析,特征完全不同于海相蒸发碳酸盐,流体来源更加倾向于岩浆以及深部热液(图8)。

    井号 深度/m 产状 岩性 δ 11B/‰
    风南1井 4 359.50 高度富集 硅硼钠石 0.33
    风南2井 4 041.30 条带状 硅硼钠石 0.43
    风南1井 4 237.70 条带状 硅硼钠石 1.42
    风南1井 4 327.40 条带状 硅硼钠石 2.13

    Table 2.  Boron isotopes of different reedmergnerite samples, Fengcheng Formation, Mahu Sag

    Figure 8.  Distribution of δ 11B of different geological bodies and reedmergnerite in the Fengcheng Formation (modified from Cheng et al.[30] and Warren[3])

  • 碱性湖泊,pH值通常在9到12之间, H C O 3 - + C O 3 - 相比Mg2++Ca2+更加富集,盐度高者又称苏打湖(Soda lake)。一般来说,碱湖是陆地盆地内、干旱或半干旱地区蒸发作用下形成或目前正在形成的,部分卤水由地表溪流和热泉提供,周围有丰富的富含钠的火山物质和岩浆岩。尽管世界各地的干旱地区都存在现代碱性湖泊,但主要的碳酸钠盐湖分布在东非大裂谷系。热液活动和泉水在微生物有机质的早期成熟和蒸发岩矿物的形成中起着重要作用。

    在盐湖的扩张期间积累的油页岩与天然碱交替出现。此外,包括自生硅酸盐在内的非蒸发岩矿物也在火山碎屑岩地形的碱性湖泊中形成,已知有二十多种含钠蒸发岩矿物,包括碳酸盐、氯化物、硫酸盐、硼酸盐和硼硅酸盐[3132]。人们不仅仅关注碱湖中发育的碳酸盐矿床,同时碱湖中的发育的硼酸盐矿床也渐渐的成为了焦点。现在在美国的西部、南美洲和土耳其西部的碱湖(或盐湖)沉积物中都发现了商业级的硼酸盐矿物,如硬硼酸钙石,硼钠钙石,硼砂,八面硼砂,斜方硼砂[3337]。现代和古代的硼酸盐沉积矿床一般位于火山热液流补给的地层中[3843],一些学者对硼酸盐矿物进行岩石学观察,发现矿物具独特的条带状沉积建造,结合硼酸盐矿物沉积时期火山活动强烈,构造活动频繁的地质背景,综合考虑硼的来源,认为硼酸盐矿物形成于高温环境,流体来源于深部热液,硼酸盐矿物是热液作用下的产物[4450]

  • 关于硅硼钠石(Reedmergnerite)和水硅硼钠石(Searlesite)的成因国内外研究均较少。Hay et al.[51]对加利福尼亚州Searles湖KM⁃3钻井进行取芯研究,测定岩芯沸石、长石的结构和种类,发现当硅灰层与高盐碱性孔隙流体接触后,首先转变为钙十字沸石和麦钾沸石,然后转变为钾长石和水硅硼钠石。García⁃Veigas et al. [52]在对土耳其Beypazar 碱矿的研究中,发现硅硼钠石与方沸石共生,一般充填空隙或胶结凝灰物质;水硅硼钠石,在凝灰岩中呈辐射纤维状晶体,交代白云岩和天然碱。以及在对地中海东北部中新世盆地硼酸盐矿物的研究中,发现与硼酸盐互层的凝灰质岩层中富含自生的硅酸盐矿物(沸石,钾长石等),自生的硅酸盐矿物与硼酸盐矿物存在转化关系[53]。他们认为硅硼钠石是碱湖沉积物中的一种成岩硅酸盐矿物,是火山碎屑与碱性水体反应而成[5154]

  • 硅硼钠石普遍认为是钠长石的B类似物[5558]。Eugster et al.[58]在300 ℃~500 ℃和2×108 Pa(气压)条件下合成了硅硼钠石。Kimata[59]利用Na2CO3,H3BO4, 和SiO2凝胶进行硅硼钠石合成实验,在270 ℃~450 ℃和100~430 kg/cm3条件下成功合成了硅硼钠石,并发现多余Na2CO3的存在有利于硅硼钠石的结晶,得出 C O 3 2 - 或者CO2是硅硼钠石的矿化剂(Mineralizer);且硅硼钠石形成对温度和压力要求较高,近地表不可能形成,温度和压力是控制硅硼钠石形成的关键性因素[57,59]

  • 发育于生长带中L⁃D,组成的3个FIA均一温度范围100 ℃~116 ℃,说明硅硼钠石在形成时的温度至少大于100 ℃。湖泊原始沉积阶段,无法达到这个温度,故推测硅硼钠石是在后期埋藏过程中形成的。周中毅等[60]通过镜质体反射率、磷灰石裂变径迹法以及流体包裹体的分析等方法对二叠—三叠纪进行古地温特征的研究,其古地温梯度为5~3 ℃/100m。推测硅硼酸盐的埋藏深度至少3 000 m。

  • 准噶尔盆地风城组与硅硼钠石共存的矿物主要是Na的碳酸盐矿物(天然碱,苏打石,碳钠钙石,碳钠镁石,氯碳钠镁石)产状上他们具有共同的特征-具条带状分布。进行岩石学观察,发现硅硼酸盐易与Na碳酸盐矿物(碳钠钙石、碳钠镁石、氯碳钠镁石)发生交代作用,常具交代残余结构。推测硅硼酸盐的母岩矿物可能来源于Na碳酸盐矿物,且硅硼酸盐矿物多富集在深灰色—灰色含云质凝灰岩中,硅硼酸盐中硅可能由暗色凝灰岩进行提供。风城组硅硼钠石与碳酸盐共生,与美国怀俄明州和犹他州始新统绿河组中硅硼钠石的情况一致。上述碳酸盐矿物成因不同,形成时间不一:天然碱以草状、放射状晶体为主,与现代碱湖中天然碱结构一致,被解释沉积于原始湖泊中;碳钠钙石为成岩作用产物,形成于52 ℃温度,深度约1 000 m的成岩环境中[61];氯碳钠镁石交代碳钠钙石后,硅硼钠石交代天然碱、碳钠钙石和氯碳钠镁石,说明硅硼钠石交代上述碳酸盐矿物的深度大于1 000 m。

  • 综合分析认为风城组硼酸盐矿物的形成有来源于深部热液的参与。证据如下:1)碱湖一直被认为是封闭的水文体系[51],前人研究成果已证明该部分位于相对封闭的深湖沉积环境[6265];2)从稀土元素地球化学特征来看,风城组沉积期流体来源于俯冲带、地壳及幔源流体的共同参与,外源流体的混入极少[17];3)硅硼钠石主要发育于乌南断裂带附近以及斜坡区,风城组沉积时期,乌夏地区构造运动以及火山活动强烈,深部热液可借助断裂带进行流体运移,以此来释放来源于深部的大量能量;4)岩芯上硅硼钠石具流动变形构造(条带状,透镜状),可以认为硅硼钠石是多级发育的,符合热液流体具脉动性的特点,且硼在系统中是移动的[51,66];5)在对不同产状的硅硼钠石矿物进行硼同位素的测定时,他们的测试结果比较相近,说明不同产状的硅硼钠石矿物,具有共同的流体来源。δ 11B(‰)的范围为0.33‰~2.13‰,推测流体可能来源于岩浆以及深部热液。6)根据海底热液及一些大陆热泉的地球化学研究,各地质作用形成的热液流体硼的含量与盐度呈明显的正相关,在高盐度的热液中硼的含量会明显增高[6768],在对硅硼钠石中原生流体包裹体冰点温度的测试中,反应硅硼钠石成岩流体的盐度相对较高。

  • 通过上述分析结果,可以得出:1)硅硼钠石不同于一般的碱湖盐类矿物,其形成需要较高的温度和压力,近地表和浅埋藏环境无法形成,这也是现代及全新世碱湖地层中无硅硼钠石的原因;2)硅硼钠石的形成与碱湖密切相关,硅硼钠石的形成的地层水中除需要Na和B元素外,还需要一定量的SiO2,而在高pH环境中SiO2的溶解度较大;3)硅硼钠石的B主要来源于原始湖泊中的热液,而后期埋藏过程中沿断裂输入的热液可能贡献较少,因为硅硼钠石主要分布于玛湖凹陷湖盆中心及斜坡沉积物中,湖泊边缘沉积物无硅硼钠石发现,而乌尔禾地区整体位于玛南断裂带上,若后期热液输入大量B元素,则整个湖盆沉积物中应均含有硅硼钠石。

    本文针对准噶尔盆地玛湖凹陷风城组发育的碱湖硅硼酸盐矿物建立了火山—碱湖—硅硼酸盐新模式(图9)。火山—碱湖—硼酸盐模式,分四个阶段进行:第一阶段,碱湖在正常沉积的过程中,来源于深部的流体,随着构造运动的抬升,沿着断裂带进入湖盆,促进碱湖的形成,原始沉积的过程中沉积草状的苏打石,同时也保存了富硼的流体;第二阶段,在埋藏过程中,沉积物尚未被压实,碳钠钙石形成,挤压原始纹层;第三个阶段,沉积固结时,富NaCl流体与碳钠钙石发生交代作用,形成氯碳钠镁石;第四个阶段,埋藏深度不断加深,当地层温度大于100 ℃后,富硼的流体与碳酸盐矿物发生交代作用,形成硅硼钠石,故在岩石学观察中发现硅硼钠石交代任何含钠的碳酸盐矿物的现象。

    Figure 9.  Diagenesis model of reedmergnerite in the Fengcheng Formation, Mahu Sag

  • (1) 准噶尔盆地玛湖凹陷风城组沉积于火山—碱湖蒸发环境,硼硅酸盐矿物发育,与世界上新生代重要的沉积型硼矿发育的环境一致,反映了硼元素的来源与火山、热液活动有关。

    (2) 风城组硅硼钠石发育于玛湖凹陷中心及斜坡部位,主要通过交代碳酸盐矿物而形成,包括碳钠钙石、碳钠镁石、氯碳钠镁石、苏打石、方解石及其他少见的碳酸盐矿物等。

    (3) 风城组硅硼钠石晶体中原生盐水包裹体发育,形成温度为100 ℃~116 ℃,形成深度在3 000 m左右,对应于干酪根成熟阶段。

    (4) 准噶尔盆地玛湖凹陷风城组富集硅硼钠石的主要原因与其强烈的火山—热液活动及漫长的成岩时间有关。

Reference (68)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return