Advanced Search
Volume 39 Issue 4
Aug.  2021
Turn off MathJax
Article Contents

LI Hao, ZHANG Meng, ZHANG XiongHua, GUO RuiLu, GAO Lu. Identification of Lower⁃Middle Devonian Turbidite Succession from Dacaotan Area, Xinjiang, NW China, and Its Sedimentary Tectonic Setting[J]. Acta Sedimentologica Sinica, 2021, 39(4): 919-931. doi: 10.14027/j.issn.1000-0550.2020.032
Citation: LI Hao, ZHANG Meng, ZHANG XiongHua, GUO RuiLu, GAO Lu. Identification of Lower⁃Middle Devonian Turbidite Succession from Dacaotan Area, Xinjiang, NW China, and Its Sedimentary Tectonic Setting[J]. Acta Sedimentologica Sinica, 2021, 39(4): 919-931. doi: 10.14027/j.issn.1000-0550.2020.032

Identification of Lower⁃Middle Devonian Turbidite Succession from Dacaotan Area, Xinjiang, NW China, and Its Sedimentary Tectonic Setting

doi: 10.14027/j.issn.1000-0550.2020.032
Funds:

Basic Geology Survey Project of China Geological Survey DD20179607

  • Received Date: 2020-01-06
  • Publish Date: 2021-08-10
  • A basic rock “window” is exposed in the Dacaotan area located at the southern margin of the Tuha Basin, Xinjiang, northwestern China. It was previously identified as the Dananhu Formations, which comprise abundant volcanic and volcaniclastic rocks. Here, well⁃exposed Lower to Middle Devonian flysch of great thickness was reported initially on both sides of the Dacaotan ophiolite. The petrographic characteristics of the flysch are distinguished from the stratotypic Dananhu Formations by the lack of lava and carbonate rock. The flysch on the northern side of the Dacaotan ophiolites is divided into three members, whereas only two members of the flysch are exposed on the southern side as a result of regional tectonic reworking. Typical turbidite characteristics and a stratigraphically increasing trend of hydrodynamic force are evident in the grain size data from sandstone samples from the flysches. Nine lithofacies and a further three sedimentary environment types were identified, within which three sedimentary subenvironmental types were identified in an inner fan and middle fan, judging from the petrographic assemblages, sedimentary structures and grain size characteristics. Two progradational successions, including an outer⁃to middle⁃fan from the flysch on the southern side and outer⁃to middle⁃to inner⁃fan from the flysch on the northern side are represented by the stratigraphic sequences of sedimentary environmental types. Therefore a sedimentary setting of these turbidites, which are located in the forearc basin of the Dananhu arc, was suggested from the combination of stratigraphic succession, clastic components and regional tectonic regime.
  • [1] 新疆地质矿产局第一区调大队. 大草滩幅K-46-15 1/20万区域地质调查报告[R]. 乌鲁木齐:新疆地质矿产局第一区调大队,1994.

    The First Regional Geological Survey Brigade of Xinjiang Institution of Geology and Mineral Resources. Dacaotan unit K-46-15 1/200000 geological map and regional geological survey report [R]. Urumqi: The first regional geological survey brigade of Xinjiang Institution of geology and mineral resources, 1994.
    [2] 新疆维吾尔自治区地质调查院. 新疆东天山五堡幅K46C002002 1/25万域地质调查报告[R]. 乌鲁木齐:新疆维吾尔自治区地质调查院,2003.

    Xinjiang Institution Geological Survey. Xinjiang East Tianshan Wupu unit K46C002002 1/250000 geological map and regional geological survey report [R]. Urumqi: Xinjiang Institution Geological Survey, 2003.
    [3] 邓小华,王京彬,王玉往,等. 东天山卡拉塔格红石铜矿地质特征及矿床成因初步探讨[J]. 矿产勘查,2014,5(2):159-168.

    Deng Xiaohua, Wang Jingbin, Wang Yuwang, et al. Geological characteristics of the Hongshi Cu-Au deposit, eastern Tianshan, Xinjiang and discussion of the deposit genesis[J]. Mineral Exploration, 2014, 5(2): 159-168.
    [4] 毛启贵,王京彬,方同辉,等. 东天山卡拉塔格矿带红海VMS型矿床S、Pb同位素地球化学研究[J]. 矿床地质,2015,34(4):730-744.

    Mao Qigui, Wang Jingbin, Fang Tonghui, et al. Lead and sulfur isotope studies of sulfides from Honghai VMS-type deposit in Kalatage ore belt of eastern Tianshan Mountains[J]. Mineral Deposits, 2015, 34(4): 730-744.
    [5] 黄健瀚,陈华勇,韩金生,等. 新疆东天山卡拉塔格红海VMS铜锌矿床蚀变与矿化时空分布特征[J]. 地球化学,2016,45(6):582-600.

    Huang Jianhan, Chen Huayong, Han Jinsheng, et al. Spacial and temporal characteristics of mineralization and alteration zonation of the Honghai VMS Cu-Zn deposit in the Kalatag District, East Tianshan, NW China[J]. Geochimica, 2016, 45(6): 582-600.
    [6] Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 102-117.
    [7] 陈哲夫,徐新,梁云海. 新疆构造手风琴式开合演化的基本特点[J]. 中国区域地质,1993(1):45-58.

    Chen Zhefu, Xu Xin, Liang Yunhai. The basic features of the accordion-style opening-closing evolution of structures in Xinjiang[J]. Regional Geology of China, 1993(1): 45-58.
    [8] Allen M B, Windley B F, Zhang C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics, 1993, 220(1/2/3/4): 89-115.
    [9] Kheraskova T N, Volozh Y A, Didenko A N, et al. The vendian-early Paleozoic history of the continental margin of eastern paleogondwana, paleoasian ocean, and central Asian foldbelt[J]. Russian Journal of Earth Sciences, 2003, 5(3): 165-184.
    [10] 李锦轶,王克卓,孙桂华,等. 东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录[J]. 岩石学报,2006,22(5):1087-1102.

    Li Jinyi, Wang Kezhuo, Sun Guihua, et al. Paleozoic active margin slices in the southern Turfan-Hami Basin: Geological records of subduction of the Paleo-Asian Ocean plate in central Asian regions[J]. Acta Petrologica Sinica, 2006, 22(5): 1087-1102.
    [11] 李玮,陈隽璐,董云鹏,等. 早古生代古亚洲洋俯冲记录:来自东天山卡拉塔格高镁安山岩的年代学、地球化学证据[J]. 岩石学报,2015,32(2):505-521.

    Li Wei, Chen Junlu, Dong Yunpeng, et al. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological and geochemical evidence from the Kalatag high-Mg andesites, East Tianshan[J]. Acta Petrologica Sinica, 2015, 32(2): 505-521.
    [12] Deepthi K, Natesan U, Muthulakshmi A L, et al. Grain size analysis for elucidation of depositional environment of Kalpakkam, India[J]. Environmental Processes, 2018, 5(1): 183-199.
    [13] Zhang Y Y, Sun M, Yuan C, et al. Alternating trench advance and retreat: Insights from Paleozoic magmatism in the eastern Tianshan, central Asian Orogenic belt[J]. Tectonics, 2018, 37(7): 2142-2164.
    [14] Sun Y, Wang J B, Wang Y W, et al. Ages and origins of granitoids from the Kalatag Cu cluster in Eastern Tianshan, NW China: Constraints on Ordovician–Devonian arc evolution and porphyry Cu fertility in the southern Central Asian Orogenic Belt[J]. Lithos, 2019, 330-331: 55-73.
    [15] 舍建忠,杨万志,屈迅,等. 东天山大草滩北镁铁超镁铁岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 矿物岩石地球化学通报,2017,36(1):82-91.

    She Jianzhong, Yang Wanzhi, Qu Xun, et al. Geochemistry and zircon U-Pb dating of the Dacaotanbei mafic-ultramafic complex, eastern Tianshan and its geological significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(1): 82-91.
    [16] 顾连兴,胡受奚,于春水,等. 东天山博格达造山带石炭纪火山岩及其形成地质环境[J]. 岩石学报,2000,16(3):305-316.

    Gu Lianxing, Hu Shouxi, Yu Chunshui, et al. Carboniferous volcanites in the Bogda orogenic belt of eastern Tianshan: Their tectonic implications[J]. Acta Petrologica Sinica, 2000, 16(3): 305-316.
    [17] Xie W, Luo Z Y, Xu Y G, et al. Petrogenesis and geochemistry of the Late Carboniferous rear-arc (or back-arc) pillow basaltic lava in the Bogda Mountains, Chinese North Tianshan[J]. Lithos, 2016, 244: 30-42.
    [18] Xie W, Xu Y G, Luo Z Y, et al. Petrogenesis and geodynamic implications of the Late Carboniferous felsic volcanics in the Bogda belt, Chinese northern Tianshan[J]. Gondwana Research, 2016, 39: 165-179.
    [19] Zhang Y Y, Yuan C, Long X P, et al. Carboniferous bimodal volcanic rocks in the eastern Tianshan, NW China: Evidence for arc rifting[J]. Gondwana Research, 2017, 43: 92-106.
    [20] 张雄华,黄兴,陈继平,等. 东天山觉罗塔格地区石炭纪火山—沉积岩地层序列及地质时代[J]. 地球科学:中国地质大学学报,2012,37(6):1305-1314.

    Zhang Xionghua, Huang Xing, Chen Jiping, et al. Stratigraphical sequence of Carboniferous marine volcanic-deposit rock and its geological age in Jueluotage area, eastern Tianshan[J]. Earth Science:Journal of China University of Geosciences, 2012, 37(6): 1305-1314.
    [21] 李文铅,马华东,王冉,等. 东天山康古尔塔格蛇绿岩SHRIMP年龄、Nd-Sr同位素特征及构造意义[J]. 岩石学报,2008,24(4):773-780.

    Li Wenqian, Ma Huadong, Wang Ran, et al. SHRIMP dating and Nd-Sr isotopic tracing of Kangguertage ophiolite in eastern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2008, 24(4): 773-780.
    [22] 蒋宇翔,李文亮,王哲,等. 哈密苦水蛇绿混杂岩带岩石化学、年代学特征及地质意义[J]. 矿产勘查,2019,10(3):445-452.

    Jiang Yuxiang, Li Wenliang, Wang Zhe, et al. Geochemical characteristics and age characteristics and geological significance of ophiolite in the Kushui ophiolite mélange belt, Hami area[J]. Mineral Exploration, 2019, 10(3): 445-452.
    [23] Chen Z Y, Xiao W J, Windley B F, et al. Composition, provenance, and tectonic setting of the southern Kangurtag accretionary complex in the eastern Tianshan, NW China: Implications for the Late Paleozoic evolution of the North Tianshan Ocean[J]. Tectonics, 2019, 38(8): 2779-2802.
    [24] 王国灿,张孟,冯家龙,等. 东天山新元古代—古生代大地构造格架与演化新认识[J]. 地质力学学报,2019,25(5):798-819.

    Wang Guocan, Zhang Meng, Feng Jialong, et al. New understanding of the tectonic framework and evolution during the Neoproterozoic-Paleozoic era in the east Tianshan mountains[J]. Journal of Geomechanics, 2019, 25(5): 798-819.
    [25] 蔡土赐,朱庆亮,孙巧缡,等. 全国地层多重划分对比研究:新疆维吾尔自治区岩石地层[M]. 武汉:中国地质大学出版社,1999:1-430.

    Cai Tuci, Zhu Qingliang, Sun Qiaoli, et al. Stratigraphy (Lithostratic) of Xinjiang Uygur Autonomous Region[M]. Wuhan: China University of Geosciences Press, 1999: 1-430.
    [26] 孟勇,张欣,王凯,等. 新疆哈密东部早泥盆世生物地层研究[J]. 地层学杂志,2013,37(4):505-512.

    Meng Yong, Zhang Xin, Wang Kai, et al. Biostratigraphic study on the Early Devonian in eastern Hami, Xinjiang[J]. Journal of Stratigraphy, 2013, 37(4): 505-512.
    [27] 张孟,郑飞,南玲玲,等. 新疆哈密地区早泥盆世珊瑚动物群及其地质意义[J]. 地质通报,2018,37(10):1789-1797.

    Zhang Meng, Zheng Fei, Lingling Nan, et al. Early Devonian coral fauna from Hami area of Xinjiang and their geological significance[J]. Geological Bulletin of China, 2018, 37(10): 1789-1797.
    [28] 王涛,沈吉. 长江三角洲北翼如东县兵房钻孔粒度特征与沉积环境:缅怀恩师施雅风院士[J]. 第四纪研究,2012,32(1):132-141.

    Wang Tao, Shen Ji. The grain size characteristics and deposit environments of BF10 core in the north wing of Changjiang delta: In memory of my teacher Shi Yafeng[J]. Quaternary Sciences, 2012, 32(1): 132-141.
    [29] Mutti E, Lucchi F R. Turbidites of the northern Apennines: Introduction to facies analysis[J]. International Geology Review, 1978, 20(2): 125-166.
    [30] Pickering K, Stow D, Watson M, et al. Deep-water facies, processes and models: A review and classification scheme for modern and ancient sediments[J]. Earth-Science Reviews, 1986, 23(2): 75-174.
    [31] Dickinson W R. Interpreting detrital modes of graywacke and arkose[J]. Journal of Sedimentary Petrology, 1970, 40: 695-707.
    [32] Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182.
    [33] Yan Z, Wang Z Q, Wang T, et al. Provenance and tectonic setting of clastic deposits in the Devonian Xicheng Basin, Qinling orogen, central China[J]. Journal of Sedimentary Research, 2006, 76(3/4): 557-574.
    [34] Wang J G, Hu X M, Garzanti E, et al. The birth of the Xigaze forearc basin in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 465: 38-47.
    [35] 闫臻,王宗起,闫全人,等. 造山带汇聚板块边缘沉积盆地的鉴别与恢复[J]. 岩石学报,2018,34(7):1943-1958.

    Yan Zhen, Wang Zongqi, Yan Quanren, et al. Identification and reconstruction of tectonic archetype of the sedimentary basin within the orogenic belt developed along convergent margin[J]. Acta Petrologica Sinica, 2018, 34(7): 1943-1958.
    [36] Ingersoll R V. Tectonics of sedimentary basins[J]. Geological Society of America Bulletin, 1988, 100(11): 1704-1719.
    [37] An W, Hu X, Garzanti E, et al. Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite[J]. Geological Society of America Bulletin, 2014, 126(11/12): 1595-1613.
    [38] Huang C Y, Yuan P B, Song S R, et al. Tectonics of short-lived intra-arc basins in the arc-continent collision terrane of the Coastal Range, eastern Taiwan[J]. Tectonics, 1995, 14(1): 19-38.
    [39] Busby C, Adams B F, Mattinson J, et al. View of an intact oceanic arc, from surficial to mesozonal levels: Cretaceous Alisitos arc, Baja California[J]. Journal of Volcanology and Geothermal Research, 2006, 149(1/2): 1-46.
    [40] Carey S, Sigurdsson H. A model of volcanogenic sedimentation in marginal basins[J]. Geological Society, London, Special Publications, 1984, 16(1): 37-58.
    [41] Hara H, Tokiwa T, Kurihara T, et al. Permian-Triassic back-arc basin development in response to Paleo-Tethys subduction, Sa Kaeo-Chanthaburi area in southeastern Thailand[J]. Gondwana Research, 2018, 64: 50-66.
    [42] Martínez F, Arriagada C, Peña M, et al. Tectonic styles and crustal shortening of the Central Andes “Pampean” flat-slab segment in northern Chile (27-29°S)[J]. Tectonophysics, 2016, 667: 144-162.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(3)

Article Metrics

Article views(347) PDF downloads(84) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-01-06
  • Published:  2021-08-10

Identification of Lower⁃Middle Devonian Turbidite Succession from Dacaotan Area, Xinjiang, NW China, and Its Sedimentary Tectonic Setting

doi: 10.14027/j.issn.1000-0550.2020.032
Funds:

Basic Geology Survey Project of China Geological Survey DD20179607

Abstract: A basic rock “window” is exposed in the Dacaotan area located at the southern margin of the Tuha Basin, Xinjiang, northwestern China. It was previously identified as the Dananhu Formations, which comprise abundant volcanic and volcaniclastic rocks. Here, well⁃exposed Lower to Middle Devonian flysch of great thickness was reported initially on both sides of the Dacaotan ophiolite. The petrographic characteristics of the flysch are distinguished from the stratotypic Dananhu Formations by the lack of lava and carbonate rock. The flysch on the northern side of the Dacaotan ophiolites is divided into three members, whereas only two members of the flysch are exposed on the southern side as a result of regional tectonic reworking. Typical turbidite characteristics and a stratigraphically increasing trend of hydrodynamic force are evident in the grain size data from sandstone samples from the flysches. Nine lithofacies and a further three sedimentary environment types were identified, within which three sedimentary subenvironmental types were identified in an inner fan and middle fan, judging from the petrographic assemblages, sedimentary structures and grain size characteristics. Two progradational successions, including an outer⁃to middle⁃fan from the flysch on the southern side and outer⁃to middle⁃to inner⁃fan from the flysch on the northern side are represented by the stratigraphic sequences of sedimentary environmental types. Therefore a sedimentary setting of these turbidites, which are located in the forearc basin of the Dananhu arc, was suggested from the combination of stratigraphic succession, clastic components and regional tectonic regime.

LI Hao, ZHANG Meng, ZHANG XiongHua, GUO RuiLu, GAO Lu. Identification of Lower⁃Middle Devonian Turbidite Succession from Dacaotan Area, Xinjiang, NW China, and Its Sedimentary Tectonic Setting[J]. Acta Sedimentologica Sinica, 2021, 39(4): 919-931. doi: 10.14027/j.issn.1000-0550.2020.032
Citation: LI Hao, ZHANG Meng, ZHANG XiongHua, GUO RuiLu, GAO Lu. Identification of Lower⁃Middle Devonian Turbidite Succession from Dacaotan Area, Xinjiang, NW China, and Its Sedimentary Tectonic Setting[J]. Acta Sedimentologica Sinica, 2021, 39(4): 919-931. doi: 10.14027/j.issn.1000-0550.2020.032
  • 大草滩地区位于吐哈盆地南缘,为中新生代盆地中的一个古生代基岩“天窗”。1∶20万大草滩幅[1]和1∶25万五堡幅[2]都将该地区古生代地层划归为下泥盆统大南湖组,认为其是一套火山岩—火山碎屑沉积岩。近年来,随着铜金等金属矿床的勘探开发,位于大南湖岛弧带中的卡拉塔格—大草滩地区再次成为了研究热点[36]。前人的研究主要集中在该地区的岩浆事件、大地构造环境及相关的成矿地质背景方面[712]。这些研究多从岩浆活动判断该区为具有重要成矿背景的岛弧带,而对其中的地层序列、沉积环境及沉积盆地分析涉足甚少。

    本研究在大草滩蛇绿岩南北两侧发现两套碎屑岩沉积,两者岩性基本一致,皆以缺乏火山岩夹层为特征。本文通过岩性组合、沉积构造及砂岩粒度分析等方法对两者进行沉积相分析,判断其沉积环境演化序列,结合区域构造背景,对沉积盆地属性进行了恢复。

  • 研究区位于哈密市西南约80 km处,地处吐哈盆地南缘,属大南湖—头苏泉岛弧带,以奥陶纪—泥盆纪具岛弧特征的岩浆岩出露为主要特征[1314],近年来在大草滩一带曾有晚志留世—早泥盆世SSZ型蛇绿岩的报道[15]

    该带北部的博格达—哈尔里克山一带广泛发育石炭纪双峰式火山岩[1619],南部的觉罗塔格构造带内石炭系火山岩—沉积岩广泛发育[20],多条奥陶纪—石炭纪的蛇绿岩或混杂岩以构造岩片的形式楔入其中[2123],至中天山地块则大规模出露前寒武纪基底(图1)。

    Figure 1.  Simplified regional geological map of the study area(modified from Wang et al.[24]

    研究区广泛出露的下泥盆统大南湖组总体上以一套海相火山碎屑岩、火山碎屑沉积岩为主夹中基性火山熔岩和碳酸盐岩[25],灰岩层中的腕足类或珊瑚化石指示其时代为早泥盆世[2627]或早泥盆世—中泥盆世早期(项目内部资料,另文发表)。本次研究所发现的这套复理石沉积分布于大草滩蛇绿岩带两侧(图2a),与区域上的大南湖组处于同一地层分区;南北两侧的砂岩样品中最年轻的碎屑锆石U⁃Pb年龄分别为390 Ma和417 Ma(项目内部资料,另文发表),故其时代与大南湖组相仿,但在岩性组合及地层序列上具有显著的差异,推测两者为同期异相关系。

    Figure 2.  Distribution, stratigraphic succession and sedimentary facies classification of Lower to Middle Devonian turbidites from the Dacaotan area

    为清晰了解大草滩地区复理石沉积序列,本次研究在蛇绿岩南北两侧(后文以南北区分)各实测1∶2 000精度的地层剖面一条(图2a)。在剖面上采集相关岩石样品,并对保存良好的沉积构造照相,以作为沉积相划分的重要依据。

  • 该复理石层系以断夹块形式分布在大草滩蛇绿岩两侧,北侧复理石断块规模较大,地层序列出露相对南侧齐全。该断块靠近蛇绿岩的一侧见基性岩岩片斜冲至复理石之上,导致序列下未见底,上部被晚泥盆世康古尔塔格组以角度不整合覆盖。根据岩性可以分为三段:

    第一段厚479 m,岩性以灰色—灰褐色岩屑砂岩和灰黄色—砖红色泥质粉砂岩、泥岩为主,夹少量含砾岩屑砂岩。砂岩中发育递变层理、平行层理、砂纹层理、滑塌构造,局部可见不完整的鲍马序列发育。

    第二段厚991 m,以巨大透镜状砾质砂岩—细砾岩的广泛发育为特征,砾石岩性以安山岩、英安岩为主,含少量玄武岩。该段由多个沉积旋回组成,单个旋回下部为灰色复成分细砾岩、砾质长石岩屑砂岩、含砾砂岩,多呈横向连续分布、长轴长3~40 m、厚1~5 m的巨大透镜体产出,发育递变层理、平行层理和底冲刷面,砾石砾径具有向上变粗的趋势;上部为灰色岩屑砂岩、粉砂岩及粉砂质泥岩,砂岩中多发育递变层理、平行层理或砂纹层理。

    第三段厚138 m,岩性以透镜状的细—中砾岩、含砾砂岩、岩屑砂岩、粉砂岩和泥岩为主。该段的砾岩透镜体横向分布不连续,规模和其中的砾石砾径皆大于第二段。

    蛇绿岩南侧地层受构造改造作用强烈,复理石断块规模较小,单个断块内地层序列出露不完整。选取一序列保存最完整的断夹块恢复其地层序列,发现其可划分为上下两个岩性段。下段以泥质粉砂岩、泥岩夹少量岩屑砂岩为主;上段岩屑砂岩增多,发育较多砾岩、砾质砂岩或中—粗砂岩透镜体,整体上为一向上变粗的沉积序列。

  • 根据统计和计算所得的粒度参数(表1),并绘制了这套浊积砂岩的C⁃M图(图3)。可见蛇绿岩两侧的样品散点基本都分布在浊流区,分布区域呈平行于C=M基线的带状,沉积物最大粒径与粒度中值变化范围较大。整体上表现为跳跃和悬浮搬运,符合重力流特征。

    样品编号 平均粒径/Mz 标准偏差/σ 分选程度 偏度/Sk 偏度程度 峰度/Kg 尖锐程度
    北⁃17⁃1 3.71 0.57 较好 0.15 正偏 0.97 中等尖锐
    北⁃24⁃2 3.26 1.43 较差 0.31 极正偏 2.21 很尖锐
    北⁃28⁃1 3.19 1.35 较差 0.33 极正偏 2.11 很尖锐
    北⁃30⁃1 3.88 0.55 较好 0.11 正偏 0.96 中等尖锐
    北⁃34⁃1 3.93 0.53 较好 0.1 正偏 0.98 中等尖锐
    北⁃48⁃1 2.28 1.66 较差 0.49 极正偏 2.09 很尖锐
    北⁃55⁃1 2.93 1.55 较差 0.24 正偏 1.87 很尖锐
    北⁃67⁃1 3.54 0.81 较好 0.13 正偏 0.84 平坦
    北⁃69⁃2 3.23 1.38 较差 0.35 极正偏 2.26 很尖锐
    北⁃73⁃2 2.95 1.41 较差 0.39 极正偏 2.44 很尖锐
    南⁃23⁃1 4.64 0.7 较好 0.26 正偏 1.06 中等尖锐
    南⁃45⁃1 4.45 0.71 较好 0.26 正偏 1.15 尖锐
    南⁃78⁃1 3.52 0.67 较好 0.14 正偏 0.95 中等尖锐
    南⁃80⁃1 3.65 0.69 较好 0.15 正偏 0.99 中等尖锐
    南⁃81⁃2 3.97 1.03 较差 0.31 极正偏 2.64 很尖锐
    南⁃86⁃1 2.96 0.83 较好 0.27 正偏 1.02 中等尖锐
    南⁃87⁃4 4.57 0.78 较好 0.21 正偏 1.07 中等尖锐
    南⁃88⁃2 3.7 1.1 较差 0.4 极正偏 2.56 很尖锐
    南⁃91⁃1 2.97 1.44 较差 0.34 极正偏 2.3 很尖锐
    南⁃92⁃1 3.11 1.42 较差 0.3 极正偏 2.21 很尖锐

    Table 1.  Particle size parameters of the Lower to Middle Devonian turbidites from Dacaotan area

    Figure 3.  C⁃M figure for turbidites from Dacaotan area

    概率累计曲线能有效的区别沉积环境[28]。大草滩地区浊积岩的概率累计曲线存在二段式和三段式两种。其中,二段式主要分布于蛇绿岩两侧浊积岩序列的第一段(图4b),仅由跳跃总体和悬浮总体组成,跳跃总体含量等于或略高于悬浮总体(50%~70%),线段斜率略大于悬浮总体,说明其分选稍好,两者结点多在2.5~4 ϕ之间。结合以上参数特征,推断两侧序列的第一段沉积环境稳定,水动力强度中等。

    Figure 4.  Probability accumulation curves of turbidites from Dacaotan area

    三段式集中分布于两侧浊积岩序列的第二段(图4a),滚动总体含量多不超过10%,线段多较平缓,个别较陡,与跳跃总体截点位于1~2.5 ϕ之间;跳跃总体含量占50%~55%,线段斜率多在55°左右,具水道浊积岩特征,少数在45°左右;悬浮总体占总体的35%~50%,线段斜率在30°~45°之间,表明分选较差,与跳跃总体的截点多在2.5~4 ϕ之间。结合以上参数特征,推断两侧序列的第二段为水动力条件较强的沉积环境。

    粒度频率曲线可以直观的表现出碎屑物粒度的分布情况。大草滩地区浊积岩样品的粒度频率曲线皆存在不对称的单峰(图5a,d)、双峰(5b,e)与多峰形态(图5c,f),主峰多在2~4 ϕ之间,样品的粒度范围整体较广,都在0.25~7 ϕ之间。北侧序列第二段砂岩中粒度较粗的组分明显多于第一段和南侧砂岩,反映碎屑物沉积更接近源区,与野外识别结果相符。频率曲线的多峰性反映出大草滩浊积岩具有多物源区的特征。

    Figure 5.  Frequency distribution curves of turbidites from Dacaotan area

  • 根据岩性组合和沉积构造特征,结合粒度分析数据,参考Mutti et al.[29]以及Pickering et al.[30]提出的经典浊积岩岩相的划分方案,共在两套复理石中识别出9种岩相(表2)。根据岩相组合特征,共在序列中识别出内扇—中扇—外扇3种沉积环境,在内扇和中扇环境中又分别识别出3种沉积亚环境(表3)。现将沉积环境/亚环境的特征描述如下:

    岩相 描述 单层厚度 环境解释
    A相 A1 复成分细—中砾岩,基质含量高,砾石分选磨圆皆差,发育泥砾, 多呈长轴长20 m以上的巨大透镜体产出,横向上多单独出现 块状 砂砾质浊流扇根主水道下部高能沉积
    A2 复成分细砾岩、砾质砂岩、含砾粗粒砂岩,分选一般,磨圆较差,不发育层理, 多呈长轴长10~40 m,横向连续排列的透镜状产出 块状 砂砾质浊流分支水道内高能沉积
    A3 以砾质砂岩、含砾粗砂岩为主,往往不发育层理,局部可见不明显的递变层理或平行层理, 多呈横向连续排列、长轴长3~15 m的透镜状产出 厚层状至块状 砂砾质浊流次级水道、分支水道内或主水道上部的高能沉积
    B相 细—粗粒岩屑长石杂砂岩、岩屑砂岩、泥质粉砂岩、粉砂质泥岩,发育递变层理、平行层理 中—厚层状至块状 砂砾质浊流水道上部或 砂质浊流水道内中—高能沉积
    C相 细—粗粒长石岩屑砂岩夹泥质粉砂岩,或与其互层,砂泥比往往在1.5以上, 发育递变层理、平行层理、低角度交错层理 中层状 水道边缘、水道间漫滩或 无水道浊流中—高能沉积
    D相 粉砂质泥岩、泥岩夹细粒岩屑砂岩、粉砂岩,或两者互层,砂泥比往往在0.2~1之间。 砂岩中多发育平行层理、波纹层理,泥岩中发育水平层理或均质层理 中—薄层状 水道间漫滩—外扇中—低能沉积
    E相 粉—细砂岩与粉砂质泥岩不规则互层,砂泥比多大于1,发育波纹层理或微型斜层理, 偶见递变层理 中—薄层状 无水道浊流低能沉积
    F相 粗粒岩屑长石杂砂岩、粉砂质泥岩夹泥质灰岩,发育变形层理、滑塌构造 中—薄层状 重力滑塌混杂堆积
    G相 泥岩夹少量泥质粉砂岩、泥质灰岩,发育水平层理或不发育层理 中—薄层状 细碎屑悬浮沉积,远洋碳酸盐沉积

    Table 2.  Classification of turbidite facies in Dachaotan area

    沉积环境 沉积亚环境 描述 环境解释
    内扇沉积 主水道沉积 以A1相为主,含有少量A3相或B相,底部常发育侵蚀面, A3相或B相往往覆于砾岩之上 扇根主水道中颗粒流,在远端能量降低后, 未经分选的颗粒形成的混杂快速堆积
    次级水道沉积 以A3相和B相为主,A3相发育在底部,发育底冲刷面, 其上为B相中—厚层状砂岩,顶部往往发育C相 扇根次级水道中粒度稍细的颗粒流在水道内形成 的快速堆积,水道侧向迁移后在边缘形成C相
    高阶地沉积 以E相为主,往往发育在B相或C相之上, 局部见发育扭曲层理的F相 扇根水道两侧阶地上水动力相对较弱环境下的 低密度浊流沉积
    中扇沉积 分支水道 沉积 发育A2、A3、B相,A2、A3相底部常发育侵蚀面,B相多覆于A相上部,或与A3相互层产出。横向延续性良好 扇中同时发育的一系列分支水道中的颗粒流, 在水道内形成的快速堆积
    分支水道 漫滩沉积 以C相和D相为主,发育少量B相。横向延伸较稳定, 少量B相多呈小型透镜体产出 扇中分支水道两侧漫滩上的低密度浊流沉积, 偶尔发生的小规模的细碎屑流沉积
    外缘垛体 沉积 以C相和E相为主,含有少量F相,少数被G相覆盖, 沉积物粒度较细,发育水平层理、扭曲层理、滑塌构造 扇中远端舌状体附近的的无水道低密度浊流沉积
    外扇沉积 以D相为主,往往被G相覆盖,泥岩颜色较深,横向延伸稳定 外扇弱水动力环境下的低密度浊流—远洋悬浮沉积

    Table 3.  Classification of sedimentary environment and sedimentary subenvironment (lithofacies association) of turbidites in Dacaotan area

  • 浊积扇内扇沉积主要由主水道沉积、次级水道沉积和高阶地沉积三部分组成。由于内扇沉积自身较难保存,加之后期强烈的构造作用,该沉积环境仅见于北侧序列的第三段。

  • 该亚环境仅见于北侧序列第三段底部,浊积岩相以A1相为主,伴有少量A3相或B相。底部发育明显的侵蚀面,切割中扇沉积(图6a)。A1相为块状无层序构造的复成分细—中砾岩,横向上延伸极不稳定,呈长轴长20 m以上、厚度5~10 m的巨大透镜体产出。砾岩中砾石砾径多为0.5~5 cm,成分复杂,分选磨圆皆差,含较多红褐色—浅灰绿色、形状不规则的砂岩砾或泥砾(图6b,c);基质含量较高,达50%以上,为典型的扇根主水道内颗粒流在能量降低后形成的混杂快速堆积。A3相或B相常覆于A1相之上(图6d),为含砾砂岩、中—粗粒岩屑砂岩,发育不明显的递变层理、平行层理,代表主水道上部沉积产物。

    Figure 6.  Representative field outcrops of the inner fan of turbidites in Dacaotan area

  • 该亚环境主要见于北侧序列第三段中部。浊积岩相主要为A3相和B相,顶部往往发育C相。A3相为厚层砾质砂岩、含砾砂岩,局部可见不明显的递变层理,底部可见明显侵蚀面(图6e);B相往往覆于A3相之上,为中层—块状岩屑砂岩,发育不明显的递变层理或平行层理;C相往往覆于B相之上,为中—厚层状细—中砂岩夹粉砂岩、泥岩,发育平行层理。与主水道沉积相比,次级水道沉积横向延展同样不稳定,但其中的碎屑颗粒普遍较细,且层理发育。

  • 高阶地沉积主要见于北侧序列第三段的底部,浊积岩相以E相为主,伴有少量的B相或C相。E相岩性主要为粉—细砂岩与泥岩互层(图6h),发育砂纹层理(图6f,g)或水平层理,B相或C相可能由次级水道侧向迁移和侧向加积形成,以层厚偏大、粒度偏粗和发育平行层理区别于E相。

  • 中扇沉积是浊积扇沉积的主体部位,其由分支水道沉积、分支水道漫滩沉积和外缘垛体沉积三种沉积亚环境构成。

  • 该亚环境主要分布于南侧序列上段和北侧序列第二段底部和中上部,浊积岩相以A2相、A3相为主,伴有少量的B相,往往被C相或D相覆盖。A2相多分布于该微相的底部,呈长轴10~40 m,厚2~5 m的巨大透镜体产出(图7a),岩性以复成分细砾岩(图7b)和砾质砂岩为主,不发育层理,底部见明显的冲刷面(图7c);A3相粒度细于A2相,岩性以含砾砂岩为主,发育不明显的递变层理(图7e),呈规模稍小的透镜体产出(图7d),或覆于A2相之上(图7a);B相常分布于A相之上,或与A3相互层(图7f),个别也作为规模较小的透镜体发育在A相两侧,岩性以中—粗粒岩屑砂岩为主。

    Figure 7.  Representative field outcrops for the middle fan of turbidites in Dacaotan area

  • 该亚环境主要分布在北侧序列第二段的下部和顶部,浊积岩岩相以C相和D相为主,含有少量的B相,上往往被水道沉积覆盖(图7g)。C相为长石岩屑细—中砂岩夹粉砂岩、泥岩(图7h),或与泥岩互层,砂岩多呈中层状,少数呈薄层状,发育平行层理、砂纹层理(图7i)或不明显的递变层理,泥岩中水平层理或均质层理发育,鲍马序列常见Tae或Tbe;D相为细粒长石岩屑砂岩、粉砂岩与泥岩互层,粉—细砂岩呈薄层状,发育平行层理(图7k)或砂纹层理,泥岩中水平层理或均质层理发育,鲍马序列常见Tbde、Tce或Tcde;少量B相为中—粗粒岩屑砂岩,多呈透镜状产出,发育递变层理、平行层理,与上覆泥岩构成Tabd(图7j)或Tabe型鲍马序列,为漫滩上偶发的小规模分支水道形成。

  • 外缘垛体沉积主要见于北侧序列的第一段和第二段下部以及南侧序列的中上部,是一种无水道的浊流沉积,是中扇靠近外扇的部分。浊积岩相主要为E相,含有少量的C相和F相,其上往往被G相覆盖。E相的砂泥比较D相明显偏高,砂岩为细—中粒长石岩屑砂岩,局部发育递变层理,粉砂岩和泥岩中发育小型斜层理和水平层理(图7n);F相以变形层理(图7l)、滑塌构造(图7m)的发育为典型特征,岩性以细—粗粒岩屑砂岩和粉砂质泥岩为主,为滑塌作用的沉积物。G相以粉砂质泥岩和泥岩为主,发育水平层理、均质层理,为浊流悬浮沉积的产物。

  • 该环境广泛分布于蛇绿岩两侧浊积岩序列的下部,横向延伸稳定。浊积岩相以D相为主(图8a),被G相覆盖,外扇沉积是浊积扇沉积中粒度最细的部分,岩性以泥岩、粉砂质泥岩为主,夹薄层状粉—细砂岩,局部见截面呈长条状的泥质灰岩透镜体(图8b,c),发育小型斜层理、水平层理(图8b)、均质层理(图8c)等。泥岩颜色以深红褐色—深灰色,与中扇D相泥岩相比颜色较深,总体沉积于水动能较弱的环境。

    Figure 8.  Representative field outcrops for the outer fan of turbidites in Dacaotan area

  • 大草滩蛇绿岩北侧的浊积岩序列下与玄武岩岩片呈断层接触,自下而上呈现出由外扇—中扇—内扇的沉积序列(图2b),为一典型的进积序列,可代表水深逐渐变浅的盆地填充过程。受强烈的构造改造作用,南侧的浊积岩多以大小不一的岩片形式存在,故整个序列出露不完整。选取一层厚较大的岩片,发现其下段以外扇沉积和外缘垛体沉积为主,上段开始出现分支水道沉积(图2c),同样为一典型的进积序列。

  • 大草滩地区浊积岩的镜下照片显示,其颗粒组分普遍具有低石英、正长石,高斜长石和岩屑的特征(图9a,b),所有样品中皆含较丰富的凝灰质组分,个别样品中还有少量的辉石颗粒(图9c),砾质砂岩中见安山岩砾石和英安岩砾石(9d)。

    Figure 9.  Photomicrographs of turbidites in Dacaotan area

    根据Dickson[31]对于杂砂岩物源与沉积背景关系的理论,推断其碎屑物质可能来源于活跃的岛弧系统或活动大陆边缘系统。从两侧序列中各选取5个岩屑砂岩样品投点到Dickson et al.[32]三角图解中(图10),投影集中落在了切割岛弧和过渡岛弧区,表明该套地层具有典型岛弧物源区的特征。

    Figure 10.  Triangle diagram for turbidites in Dacaotan area(modified from Dickinson et al.[32]

    受俯冲板片后撤的影响,岛弧沉积系统可分为弧前、弧间和弧后三类沉积盆地。其中,弧前盆地内多发育向上粒度变粗水深变浅的沉积序列[3335],其空间上介于岛弧火山岩至增生楔蛇绿混杂岩之间[36],可见其不整合覆于蛇绿岩之上[37]或陆壳基底之上[31];弧间盆地附近火山活动剧烈,火山熔岩、火山喷发角砾、火山碎屑裙和浊流沉积大量填充于盆地内,整体为粒度向上变粗的沉积序列[3839];弧后盆地受伸展作用影响,往往发育水深逐渐增大、火山碎屑物质减少的沉积序列[4042],其底部往往发育伸展背景火山岩不整合覆于陆壳基底之上[41]。此外,由于盆地发育时间与岛弧活动时间的差异,以及火山活动与俯冲深度的关系,火山熔岩往往出现在弧间盆地或弧后盆地内,而弧前盆地中往往没有这些记录[35]

    大草滩蛇绿岩南北两侧的泥盆纪浊积岩皆存在显著的向上变粗的沉积序列,这种沉积序列在弧前盆地和填充的弧间盆地中皆可发育,但其不含火山岩夹层、毗邻蛇绿岩的特征仅可见于弧前盆地沉积中。综上所述,笔者认为,大草滩地区的泥盆纪浊积岩为俯冲背景下弧前盆地中少有的,保存较为完好的地质记录,其物源主要由早期喷发的火山岩提供,火山喷发形成的正地貌为大规模重力流(浊流)的形成提供了良好的地形条件。

  • (1) 通过对大草滩地区早—中泥盆世浊积岩岩性组合、粒度特征、沉积构造和垂向上的分布规律的研究,共识别出A(A1, A2, A3)⁃G⁃9种不同的浊积岩相,不同的浊积岩相组合对应着不同的沉积环境,分别为:外扇沉积,中扇沉积(分支水道沉积、分支水道漫滩沉积、外缘剁体)和内扇沉积(主水道沉积、次级水道沉积、高阶地沉积)。

    (2) 沉积序列与沉积相分析表明,北侧的浊积岩发育完整的外扇—中扇—内扇的进积序列,而南侧浊积岩发育外扇—中扇的进积序列。沉积序列受沉积盆地构造属性的影响,具有独特的沉积特征,结合浊积岩的岩性组合、空间分布,推断其在早—中泥盆世处于弧前盆地的构造背景中。

Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return