Advanced Search
Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents

CHEN BinTao, YU XingHe, WANG Lei, SHI ZhongSheng, MA Lun, XUE Luo, SHI JiangLong, BAI Jie, ZHAO YanJun. Features and Controlling Factors of River Pattern Transition in Fluvial Deposition and its Significance for Petroleum Geology: An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan[J]. Acta Sedimentologica Sinica, 2021, 39(2): 424-433. doi: 10.14027/j.issn.1000-0550.2020.036
Citation: CHEN BinTao, YU XingHe, WANG Lei, SHI ZhongSheng, MA Lun, XUE Luo, SHI JiangLong, BAI Jie, ZHAO YanJun. Features and Controlling Factors of River Pattern Transition in Fluvial Deposition and its Significance for Petroleum Geology: An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan[J]. Acta Sedimentologica Sinica, 2021, 39(2): 424-433. doi: 10.14027/j.issn.1000-0550.2020.036

Features and Controlling Factors of River Pattern Transition in Fluvial Deposition and its Significance for Petroleum Geology: An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan

doi: 10.14027/j.issn.1000-0550.2020.036
Funds:

National Natural Science Foundation of China 41472091, 41872116

  • Received Date: 2019-03-28
  • Publish Date: 2021-04-23
  • Fluvial sandstone is an important type of reservoir in continental petroliferous basins. The time⁃space transition of river type is direct evidence of basin evolution studies and also the core content for accurate evaluation and prediction of oil and gas reservoirs. It has become one focus of sedimentation research in recent years. Taking the Jimidi Formation in the Ruman depression of the Melut Basin as an example, sequence division, lithofacies type and lithofacies association analysis, high⁃resolution reservoir inversion, and plane sandbody distribution analysis were carried out. The results show that (1) Three medium⁃term base⁃level cycles developed in the fluvial interval of the Jimidi Formation in the depression period, and five types of lithofacies assemblage were identified: vertical accretion, lateral accretion, filling, abandoned⁃filling, and overflow type. (2) The study revealed that the Jimidi Formation has a meandering⁃braided⁃meandering⁃river transition feature from bottom to top, and the main controlling factors for this were the paleogeomorphologic background created by tectonic activity and a general trend of long⁃term base level rise. (3) The new understanding of river⁃type transition has effectively guided the discovery of isolated, relatively low⁃porosity zones continuously distributed in the meandering⁃river type in the study area, and promoted the deployment and exploration breakthrough of a first⁃risk exploration well for a lithological reservoir in the Jimidi Formation, Melut Basin.
  • [1] 于兴河,李顺利,谭程鹏,等. 粗粒沉积及其储层表征的发展历程与热点问题探讨[J]. 古地理学报,2018,20(5):713-736.

    Yu Xinghe, Li Shunli, Tan Chengpeng, et al. Coarse-grained deposits and their reservoir characterizations: A look back to see forward and hot issues[J]. Journal of Palaeogeography, 2018, 20(5): 713-736.
    [2] 郑荣才,李国辉,常海亮,等. 四川盆地东部上三叠统须家河组层序―岩相古地理特征[J]. 中国地质,2015,42(4):1024-1036.

    Zheng Rongcai, Li Guohui, Chang Hailiang, et al. Sedimentary sequence and paleogeographic characteristics of the Upper Triassic Xujiahe Formation in eastern Sichuan Basin[J]. Geology in China, 2015, 42(4): 1024-1036.
    [3] 吴胜和,纪友亮,岳大力,等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报,2013,19(1):12-22.

    Wu Shenghe, Ji Youliang, Yue Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22.
    [4] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报,2017,35(5):926-944.

    Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5): 926-944.
    [5] 朱筱敏,钟大康,袁选俊,等. 中国含油气盆地沉积地质学进展[J]. 石油勘探与开发,2016,43(5):820-829.

    Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, et al. Development of sedimentary geology of petroliferous basins in China[J]. Petroleum Exploration and Development, 2016, 43(5): 820-829.
    [6] Miall A D. The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology[M]. Berlin: Springer, 1996: 66-85.
    [7] 李阳. 河流相储层沉积学表征[J]. 沉积学报,2007,25(1):48-52.

    Li Yang. Characterization of sedimentology in fluvial facies reservoir[J]. Acta Sedimentologica Sinica, 2007, 25(1): 48-52.
    [8] 裘亦楠. 河流沉积学中的河型分类[J]. 石油勘探与开发,1985(2):72-74.

    Qiu Yi’nan. River type classification in fluvial sedimentology[J]. Petroleum Expoloration and Development, 1985(2): 72-74.
    [9] 胡光义,范廷恩,梁旭,等. 河流相储层复合砂体构型概念体系、表征方法及其在渤海油田开发中的应用探索[J]. 中国海上油气,2018,30(1):89-98.

    Hu Guangyi, Fan Tingen, Liang Xu, et al. Concept system and characterization method of compound sandbody architecture in fluvial reservoir and its application exploration in development of Bohai oilfield[J]. China Offshore Oil and Gas, 2018, 30(1): 89-98.
    [10] 陈彬滔,于兴河,王天奇,等. 砂质辫状河岩相与构型特征:以山西大同盆地中侏罗统云冈组露头为例[J]. 石油与天然气地质,2015,36(1):111-117.

    Chen Bintao, Yu Xinghe, Wang Tianqi, et al. Lithofacies and architectural characteristics of sandy braided river deposits: A case from outcrops of the Middle Jurassic Yungang Formation in the Datong Basin, Shanxi province[J]. Oil & Gas Geology, 2015, 36(1): 111-117.
    [11] 张昌民,尹太举,赵磊,等. 辫状河储层内部建筑结构分析[J]. 地质科技情报,2013,32(4):7-13.

    Zhang Changmin, Yin Taiju, Zhao Lei, et al. Reservoir architectural analysis of braided channel[J]. Geological Science and Technology Information, 2013, 32(4): 7-13.
    [12] 李易隆,贾爱林,冀光,等. 鄂尔多斯盆地中—东部下石盒子组八段辫状河储层构型[J]. 石油学报,2018,39(9):1037-1050.

    Li Yilong, Jia Ailin, Ji Guang, et al. Reservoir architecture of braided river in Member 8 of Xiashihezi Formation, central-eastern Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(9): 1037-1050.
    [13] 任晓旭,侯加根,刘钰铭,等. 砂质辫状河不同级次构型表征及其界面控制下的岩性分布模式:以山西大同盆地侏罗系辫状河露头为例[J]. 石油科学通报,2018,3(3):245-261.

    Ren Xiaoxu, Hou Jiagen, Liu Yuming, et al. Architectural characterization and a distribution model of lithology near the boundary surfaces of different orders in a sandy braided river-a case study from the Jurassic sandy braided-river outcrops in the Datong Basin, Shanxi province[J]. Petroleum Science Bulletin, 2018, 3(3): 245-261.
    [14] 于兴河. 油田开发中后期储层面临的问题与基于沉积成因的地质表征方法[J]. 地学前缘,2012,19(2):1-14.

    Yu Xinghe. Existing problems and sedimentogenesis-based methods of reservoir characterization during the middle and later periods of oilfield development[J]. Earth Science Frontiers, 2012, 19(2): 1-14.
    [15] 胡光义,范廷恩,陈飞,等. 复合砂体构型理论及其生产应用[J]. 石油与天然气地质,2018,39(1):1-10.

    Hu Guangyi, Fan Tingen, Chen Fei, et al. Theory of composite sand body architecture and its application to oilfield development[J]. Oil & Gas Geology, 2018, 39(1): 1-10.
    [16] 王敏,穆龙新,赵国良,等. 多信息关联的辫状河储层夹层预测方法研究:以南苏丹P油田Fal块为例[J]. 地学前缘,2018,25(2):92-98.

    Wang Min, Mu Longxin, Zhao Guoliang, et al. Multi-information association for interlayer prediction in braided river reservoir: Taking Fal Structure of P field, South Sudan as an example[J]. Earth Science Frontiers, 2018, 25(2): 92-98.
    [17] 黄文松,陈和平,李胜利,等. 基于水平井信息的辫状河岩相单元与砂体定量研究:以委内瑞拉奥里诺科重油带MPE3区块为例[J]. 石油与天然气地质,2018,39(2):409-418.

    Huang Wensong, Chen Heping, Li Shengli, et al. Quantification of braided-river lithofacies units and sandbody based on horizontal well data: A case of MPE3 block in Orinoco heavy-oil zone, Venezuela[J]. Oil & Gas Geology, 2018, 39(2): 409-418.
    [18] 杨丽莎,陈彬滔,李顺利,等. 基于成因类型的砂质辫状河泥岩分布模式:以山西大同侏罗系砂质辫状河露头为例[J]. 天然气地球科学,2013,24(1):93-98.

    Yang Lisha, Chen Bintao, Li Shunli, et al. Pattern of genesis-based mudstone distribution for sandy braided river: A case study of sandy braided-river outcrop, Datong, Shanxi province, China[J]. Natural Gas Geoscience, 2013, 24(1): 93-98.
    [19] 谭程鹏,于兴河,李胜利,等. 辫状河—曲流河转换模式探讨:以准噶尔盆地南缘头屯河组露头为例[J]. 沉积学报,2014,32(3):450-458.

    Tan Chengpeng, Yu Xinghe, Li Shengli, et al. Discussion on the model of braided river transform to meandering river: As an example of Toutunhe Formation in southern Junggar Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3): 450-458.
    [20] 李胜利,于兴河,姜涛,等. 河流辫―曲转换特点与废弃河道模式[J]. 沉积学报,2017,35(1):1-9.

    Li Shengli, Yu Xinghe, Jiang Tao, et al. Meander-braided transition features and abandoned channel patterns in fluvial environment[J]. Acta Sedimentologica Sinica, 2017, 35(1): 1-9.
    [21] 唐武,王英民,赵志刚,等. 河型转化研究进展综述[J]. 地质论评,2016,62(1):138-152.

    Tang Wu, Wang Yingmin, Zhao Zhigang, et al. A review of fluvial pattern transformation[J]. Geological Review, 2016, 62(1): 138-152.
    [22] Blum M D, Marriott S B, Leclair S F. Fluvial sedimentology VII[M]. Malden: Blackwell, 2005: 399-424.
    [23] 邓运华. 论河流与油气的共生关系[J]. 石油学报,2010,31(1):12-17.

    Deng Yunhua. Analysis on correlation of river and petroleum[J]. Acta Petrolei Sinica, 2010, 31(1): 12-17.
    [24] 郭智,贾爱林,何东博,等. 鄂尔多斯盆地苏里格气田辫状河体系带特征[J]. 石油与天然气地质,2016,37(2):197-204.

    Guo Zhi, Jia Ailin, He Dongbo, et al. Characteristics of braided river sedimentary system zones in Sulige gasfield, Ordos Basin[J]. Oil & Gas Geology, 2016, 37(2): 197-204.
    [25] 陈彬滔,史忠生,马凤良,等. 南苏丹Melut盆地Ruman凹陷白垩系层序地层级次与砂质滩坝的沉积响应[J]. 古地理学报,2018,20(6):1013-1022.

    Chen Bintao, Shi Zhongsheng, Ma Fengliang, et al. Cretaceous sequence stratigraphic hierachies and the sedimentary response of sandy beach-bar in Ruman Sag, Melut Basin, South Sudan[J]. Journal of Palaeogeography, 2018, 20(6): 1013-1022.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(1)

Article Metrics

Article views(1115) PDF downloads(162) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-03-28
  • Published:  2021-04-23

Features and Controlling Factors of River Pattern Transition in Fluvial Deposition and its Significance for Petroleum Geology: An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan

doi: 10.14027/j.issn.1000-0550.2020.036
Funds:

National Natural Science Foundation of China 41472091, 41872116

Abstract: Fluvial sandstone is an important type of reservoir in continental petroliferous basins. The time⁃space transition of river type is direct evidence of basin evolution studies and also the core content for accurate evaluation and prediction of oil and gas reservoirs. It has become one focus of sedimentation research in recent years. Taking the Jimidi Formation in the Ruman depression of the Melut Basin as an example, sequence division, lithofacies type and lithofacies association analysis, high⁃resolution reservoir inversion, and plane sandbody distribution analysis were carried out. The results show that (1) Three medium⁃term base⁃level cycles developed in the fluvial interval of the Jimidi Formation in the depression period, and five types of lithofacies assemblage were identified: vertical accretion, lateral accretion, filling, abandoned⁃filling, and overflow type. (2) The study revealed that the Jimidi Formation has a meandering⁃braided⁃meandering⁃river transition feature from bottom to top, and the main controlling factors for this were the paleogeomorphologic background created by tectonic activity and a general trend of long⁃term base level rise. (3) The new understanding of river⁃type transition has effectively guided the discovery of isolated, relatively low⁃porosity zones continuously distributed in the meandering⁃river type in the study area, and promoted the deployment and exploration breakthrough of a first⁃risk exploration well for a lithological reservoir in the Jimidi Formation, Melut Basin.

CHEN BinTao, YU XingHe, WANG Lei, SHI ZhongSheng, MA Lun, XUE Luo, SHI JiangLong, BAI Jie, ZHAO YanJun. Features and Controlling Factors of River Pattern Transition in Fluvial Deposition and its Significance for Petroleum Geology: An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan[J]. Acta Sedimentologica Sinica, 2021, 39(2): 424-433. doi: 10.14027/j.issn.1000-0550.2020.036
Citation: CHEN BinTao, YU XingHe, WANG Lei, SHI ZhongSheng, MA Lun, XUE Luo, SHI JiangLong, BAI Jie, ZHAO YanJun. Features and Controlling Factors of River Pattern Transition in Fluvial Deposition and its Significance for Petroleum Geology: An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan[J]. Acta Sedimentologica Sinica, 2021, 39(2): 424-433. doi: 10.14027/j.issn.1000-0550.2020.036
  • 河流相沉积中蕴藏着丰富的矿产资源,曲流河和辫状河砂体是国内外众多含油气盆地的重要储层类型[13]。长期以来,国内外学者针对不同河型分别进行研究,建立了曲流河、辫状河等不同河型的经典沉积模式[48],探讨了基于密井网或露头资料的河流相储层构型特征[913],成为油气勘探过程中沉积相图编制和储层预测的重要依据[1418]。近年来,国内外地质学家逐渐认识到河型存在时空转换[1922],并且具有重要的油气勘探开发意义[2324]。就油气勘探而言,河型时空转换的新认识可能拓展勘探领域,同一研究区,下部层段可能为连片分布的辫状河砂体,以构造油藏为主,但上部层段可能因河型转换演变为条带状分布的曲流河砂体,具备岩性油藏勘探潜力。就油气开发而言,河型时空转换可能造成同一区块不同小层的砂体展布和隔夹层分布不同,影响开发部署方案。

    Melut盆地坳陷期Jimidi组发育厚约200 m的河流相沉积,沉积序列清晰,测井、录井、岩芯、三维地震等资料品质良好,为河型转换研究奠定了基础。以层序划分和岩相类型、岩相组合分析为基础,结合高分辨率储层反演和沉积环境分析结果,揭示研究区河型转换的规律并明确其主控因素,编制工业化图件并应用于勘探实践。

  • Melut盆地是中非剪切带走滑背景下形成的中—新生代裂谷盆地(图1a),该盆地位于南苏丹境内,面积约3.3×104 km2,具四坳两隆构造格局(图1b)。Melut盆地的主要勘探发现集中于北部坳陷,目前已发现原油储量约62亿桶,是一个典型的富油坳陷[25]。Melut盆地的构造演化经历了早白垩世、晚白垩世、古近纪三幕裂陷作用,以及新近系以来的坳陷阶段(图1c)。研究目的层段新近系Jimidi组为坳陷期沉积,整体表现为厚层含砾中粗砂岩夹薄层棕红色泥岩,在盆地大部分地区,总体表现为一套典型的河流相沉积。

    Figure 1.  Location and stratigraphic diagram of Ruman area, Melut Basin, South Sudan

  • 基于Melut盆地的构造演化特征以及Ruman地区Jimidi组岩石组合类型、测井与录井响应特征、地震反射特征等综合分析,对Ruman地区Jimidi组进行了基准面旋回分析和层序划分。

    Jimidi组底部为一区域大型角度不整合面(图23):即新近系Jimidi组与下伏古近系Lau⁃Adar组之间呈角度不整合接触关系,该不整合形成于距今约23 Ma,对应于古近纪与新近纪之间的断—坳转换面,地震剖面上见明显地层倾角变化,不整合面之上发育下切谷,岩性上表现为厚层河道砂岩与下伏泥岩突变接触,为三级层序界面。在Jimidi组内部,首先根据粒度韵律、泥岩颜色及砂体厚度进行自旋回(短期基准面旋回)划分,受河道迁移摆动、下切侵蚀早期沉积物的影响,短期基准面旋回以上升半旋回为主,下降半旋回保存程度不好。依据短期基准面旋回叠加样式和转换面标志,Jimidi组可划分出3个中期基准面旋回(由下至上依次命名为J⁃III、J⁃II、J⁃I),1个长期基准面旋回(图23)。

    Figure 2.  Base⁃level cycle division and correlation of Jimidi Formation in Ruman area, Melut Basin

    Figure 3.  Well⁃seismic sequence framework of Jimidi Formation in Ruman area, Melut Basin

  • 基于Jimidi组5口探井的岩芯和井壁取芯观察结果,识别出7种典型的岩相类型,综合岩芯和测井数据,总结出5类典型的岩相组合(图4)。垂向加积型岩相组合类型(M→Sp→Sh,图4a)的岩性以中粗砂岩为主,具向上变粗韵律,近漏斗形测井相,底部冲刷现象不明显。侧向加积型岩相组合类型(St→Sp→M→Sp→M,图4b)的岩性以中砂岩为主,具向上变细韵律,钟形测井相,其典型特征在于板状交错层理中砂岩相之间常见薄层块状泥岩相。充填型岩相组合类型(Gm→St→Sh→M,图4c)的岩性以中粗砂岩为主,具略微向上变细韵律,近箱形测井相,底部冲刷现象明显。充填—废弃型岩相组合类型(Gm→St→Fl→M,图4d)整体呈正韵律,小型钟形测井相,下部为活动河道期充填的砂质沉积物,上部为废弃河道期充填的细粒沉积物。漫溢型岩相组合类型(Sr→Fl→Sr→Fl,图4e)表现为砂泥互层,指状测井相,反映水流间歇活动的漫溢沉积特征。

    Figure 4.  Typical lithofacies association of sandy braided river deposition for Jimidi Formation, Ruman area, Melut Basin

  • 综合测井/录井相、地震反射特征、钻井岩芯观察、岩相类型与岩相组合等分析结果,Melut盆地Jimidi组虽总体为河流相沉积,但可识别出两类河型,分别为辫状河和曲流河。

    辫状河沉积表现为中厚层中粗砂岩夹薄层泥岩(泥岩颜色为棕红色—杂色),多期冲刷,冲刷面见定向排列砾石,单层砂体厚度约为5~12 m,主要岩相类型为槽状和下截型板状交错层理中粗砂岩,正粒序和弱反粒序均发育;测井响应为高幅锯齿箱形或漏斗形,地震剖面上多表现为U型下切,河道具有宽度大、下切深度中等、近似对称的特点,河道内部充填以垂向加积为主(图5)。J⁃II中期基准面旋回沉积时期古地貌虽坡降相对陡,但地形总体平缓。

    Figure 5.  Types and typical features of sedimentary facies for Jimidi Formation in Ruman area, Melut Basin

    曲流河沉积表现为中厚层中细砂与厚层泥岩互层(泥岩颜色以灰绿色泥岩为主,局部见棕色),冲刷面上见泥砾,单层砂体厚度约为5~10 m,主要岩相类型为槽状和下切型板块交错层理中细砂岩,以正粒序为主;测井响应为高幅锯齿钟形,地震剖面上表现为W型下切,宽深比小于辫状河,河道不对称,河道内部充填以侧向加积为主。古地貌虽坡降相对缓,但地形起伏,其中J⁃III中期基准面旋回沉积时期受下伏区域不整合面和河道下切作用的影响,沟谷特征明显,控制了曲流状河道砂体的分布。

  • Melut盆地Jimidi组可划分为三个中期基准面旋回。J⁃III中期基准面旋回的主要岩相类型为槽状和下切型板状交错层理中细砂岩,岩相组合类型以侧向加积型和充填—废弃型为主,单砂体具有典型的二元结构,平面砂体呈弯曲长条状展布,河道曲率大,厚层砂体(边滩)多呈透镜状分布于河道边部。J⁃II中期基准面旋回的主要岩相类型为槽状和下截型板状交错层理中粗砂岩,岩相组合类型以充填型和垂向加积型为主,单砂体多呈箱形,内部常发于多期冲刷面,平面砂体形态复杂,具网状和树枝状特征,厚层心滩砂体多发育于河道中部。J⁃I中期基准面旋回的主要岩相类型为下切型板状交错层理中粗砂岩,岩相组合类型以充填—废弃型为主,单砂体具有典型的二元结构,平面砂体呈弯曲长条状展布,但河道曲率大于J⁃III中期基准面旋回沉积期,边滩规模略小,呈点状或新月状分布(图67)。总体而言,从J⁃III中期基准面旋回到J⁃I中期基准面旋回,具有从曲流河到辫状河再到曲流河的“曲—辫—曲”河型垂向演化特征。

    Figure 6.  (a) Sandstone correlation profile, and (b) reservoir inversion profile of Jimidi Formation in Ruman area, Melut Basin

    Figure 7.  Sandstone thickness maps for different mid⁃term base level cycles of Jimidi Formation in Ruman area, Melut Basin

  • 构造作用导致地形坡度变化,造就特定的古地貌背景,是河型演化的最重要控制因素。Melut盆地在古近纪与新近纪过渡期遭受构造隆升,形成了Jimidi组底大型构造不整合。受差异隆升、剥蚀以及河流下切作用的影响,此时期发育大量沟谷体系(表1图8),平面呈弯曲状,此类沟谷体系控制着J⁃III中期基准面旋回曲流状砂体的分布。随着沟谷体系填平补齐,J⁃II中期基准面旋回时期地貌总体平坦,但地形坡度较大,西北部物源区持续隆升、物源供给强,研究区以发育辫状河型为特征。J⁃I中期基准面旋回时期,地形坡度减小,转而发育曲流河型。

    河型 控制因素
    构造作用 基准面变化 沉积物供给 气候条件
    J⁃I曲流河 构造平缓、 坡度减小 (★★) 基准面上升半旋回中部,可容纳空间小 (★★★) 物源区隆升幅度减小,沉积物供给量减小 (★★) 温暖潮湿,植被发育,河岸抗冲刷能力强,河道稳定型增强 (★)
    J⁃II辫状河 西北部物源区持续隆升,地形坡度较大 (★★) 基准面上升半旋回中部,可容纳空间中等 (★★★) 物源区持续隆升,沉积物供给充足 (★★) 干旱炎热,植被稀少,河岸抗冲刷能力弱,频繁迁移改道 (★)
    J⁃III曲流河 差异隆升与剥蚀,形成大量曲流状沟谷体系 (★★★) 基准面上升半旋回下部,可容纳空间小 (★) 物源区大幅隆升, 沉积物供给充足 (★) 干旱炎热 (★)

    Table 1.  Controlling factor analysis for river pattern evolution

    Figure 8.  Controlling factors for river pattern evolution of Jimidi Formation in Ruman area, Melut Basin

  • Jimidi组沉积时期对应于长期基准面上升半旋回(图8),由J⁃III中期基准面旋回至J⁃I中期基准面旋回,可容纳空间逐步增大,河流侧向迁移能力增强,决定了河流逐步向曲流河型过渡的总体趋势。但是受前述构造作用所形成的曲流状沟谷体系的影响,J⁃III沉积时期虽可容纳空间小,但仍主要发育沟谷控制的曲流河型。待J⁃II沉积时期沟谷填平补齐之后,主要受基准面变化的影响,转换为辫状河型。J⁃I中期基准面处于长期基准面上升半旋回末期,可容纳空间最大,河流侧向迁移能力最强,为典型的受长期基准面旋回变化控制的曲流河型。

  • 沉积物供给属于河型转换的内在影响因素,主要表现在供给量是否充沛以及物源距离。J⁃III至J⁃I沉积时期,研究区距物源区距离变化不大,均为约35 km;但是物源供给量却存在巨大差异。J⁃III和J⁃II沉积时期,西北部物源区仍属于高隆地貌,地形坡度大,气候干燥炎热,植被稀少,风化作用强,物源供给量大。J⁃I沉积时期,地形坡度减小,物源供给量减小,河型转换为以曲流河型为主。

  • 气候条件属于河型转换的宏观控制因素,泥岩颜色指数和孢粉分析结果显示,J⁃III和J⁃II沉积时期为干旱炎热气候条件,孢粉组合以被子植物孢粉为主,包括花粉合沟型孢属、山榄粉属、山龙眼粉属、疣面单缝孢属,此时期植被稀少,河岸抗冲刷能力弱,河道不稳定,频繁迁移改道,更易发育不稳定河型。J⁃I沉积时期转为温暖潮湿气候条件,孢粉组合以蕨类植物孢粉为主,包括三角孢属、光面单缝孢属、水龙骨单缝孢属,河岸抗冲刷能力强,河道稳定型增强,更易发育稳定的曲流河型。此外,气候条件还间接影响物源供给和湖平面变化,从而控制河型演化。

    J⁃III到J⁃I中期基准面旋回所具有“曲—辫—曲”河型垂向演化特征受控于构造作用、基准面变化、沉积物供给、气候条件四大因素。其中构造作用是核心控制因素,不仅直接控制着J⁃III曲流河型的发育,还控制着地形坡度,影响着从J⁃II到J⁃I的辫—曲河型转换。基准面变化是重要控制因素,决定了河型演化的总体趋势。沉积物供给和气候条件分别属于内在因素和宏观因素。四种因素叠加作用,造就了Jimidi组别具特色的“曲—辫—曲”河型垂向演化特征。

  • Ruman地区Jimidi组“曲—辫—曲”河型垂向演化造成不同层段的储层物性、连通性、油藏类型存在差异,拓展了勘探领域,从以往单纯的构造油藏勘探延伸至构造—岩性油藏勘探。

    J⁃III中期基准面旋回以沟谷地貌控制下的曲流河砂体为特征,单砂体厚度5~10 m,孔隙度18%~24%,砂体横向连通性一般,存在近连续分布的北西—南东向河漫滩相对低孔封隔带。J⁃II中期基准面旋回转换为辫状河型,单砂体厚度5~12 m,孔隙度22%~28%,多套厚层砂体横向连通,不存在连续分布的北西—南东向河漫滩封隔带。J⁃I中期基准面旋回再次转换为曲流河型,单砂体厚度5~8 m,孔隙度18%~22%,砂体呈条带状展布,发育多套北西—南东向河漫滩相对低孔封隔带(图9)。

    Figure 9.  Oil accumulation profile of Jimidi Formation in Ruman area, Melut Basin

    已知油藏解剖及稠油油藏成藏规律调研结果显示,稠油油藏多以构造—岩性油藏为主,相对低孔封隔带控制构造—岩性圈闭的边界,高孔砂岩控制稠油油藏富集。以Ruman地区Jimidi组“曲—辫—曲”河型垂向转换和高孔砂岩(孔隙度≥18%)控制稠油油藏分布的地质认识为指导,基于砂体展布与顶面构造的叠加分析结果,论证认为J⁃III和J⁃I中期基准面旋回为构造背景与河漫滩相对低孔封隔带综合控制的构造—岩性油藏,J⁃II中期基准面旋回因不发育北西—南东走向的相对低孔封隔带,单纯发育构造油藏。依据该思路在构造下倾方向部署了RL⁃1井,在J⁃III和J⁃I中期基准面旋回的构造圈闭溢出点之外获工业油流,J⁃II中期基准面旋回无发现(图9),验证了部署思路的正确性并说明了河型转换分析在油气勘探部署中的重要性。

  • (1) 湖盆坳陷期Jimidi组发育垂向加积型、侧向加积型、充填型、充填—废弃型、漫溢型等5类典型岩相组合,可识别出辫状河和曲流河两类河型。

    (2) Jimidi组由下至上具有从曲流河到辫状河再到曲流河的“曲—辫—曲”河型垂向演化特征,其主控因素为构造作用所造就的古地貌背景和整体基准面上升的大趋势。

    (3) “曲—辫—曲”河型转换造成不同层段的储层物性、连通性、油藏类型存在差异,拓展了勘探领域,从以往单纯的构造油藏勘探延伸至构造—岩性油藏勘探,并获得勘探突破。

Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return