Advanced Search
Volume 39 Issue 3
Jun.  2021
Turn off MathJax
Article Contents

HE JiaWei, XIE Yuan, LIU JianQing, HE Li. Mechanism of organic matter enrichment of fine-grained sedimentary rocks in the Southwest margin of Upper Yangtze: A case study of the Niuzhai section, Yanjin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 656-671. doi: 10.14027/j.issn.1000-0550.2020.038
Citation: HE JiaWei, XIE Yuan, LIU JianQing, HE Li. Mechanism of organic matter enrichment of fine-grained sedimentary rocks in the Southwest margin of Upper Yangtze: A case study of the Niuzhai section, Yanjin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 656-671. doi: 10.14027/j.issn.1000-0550.2020.038

Mechanism of organic matter enrichment of fine-grained sedimentary rocks in the Southwest margin of Upper Yangtze: A case study of the Niuzhai section, Yanjin

doi: 10.14027/j.issn.1000-0550.2020.038
Funds:

China Geological Survey Project 12120114071401, 121201010000150005

  • Received Date: 2020-03-26
  • Rev Recd Date: 2020-05-22
  • Publish Date: 2021-06-10
  • Based on the differences in the behavioral characteristics of chemical elements, the content or ratio of TOC, major elements and trace elements was used to discriminate the formation of fine-grained sedimentary rocks of the Early Silurian Longmaxi Formation in Niuzhai section of Yanjin, at the southwestern margin of the Sichuan Basin. Paleoproductivity, redox conditions, input of terrestrial supply and the degree of basin water retention, and other environmental characteristics are compared. Paleoenvironmental parameters of the Longmaxi Formation in the South Sichuan Subsidence Center (Changning section) and Nanchuan Underwater Uplift Area (Nanchuan section) are compared. Differences in organic matter enrichment of fine-grained sedimentary rocks in the stranded basin of the Yangtze Sea in the Early Silurian. The results show that the Early Silurian fine-grained sedimentary rocks in the Niuzhai area of Yanjin are mainly black carbonaceous shales, gray shales and black mudstones, and the organic-rich materials are mainly concentrated in the lower section of the Longmaxi Formation, with an average TOC content of 2.73%. Babio shows that the Longmaxi Formation in this area had higher productivity in the early stage. Ni/Co, V/(V+Ni), U/Th, and V/Cr ratios revealed that the Longmaxi Formation gradually transitioned from a hypoxic environment at the bottom to an oxidizing environment at the top; TiO2, Al2O3 and Zr indicate that the supply of terrigenous debris in the lower segment of the Longmaxi Formation increased significantly; the Mo/TOC value and the U-Mo covariance model map indicate that the southwestern margin of the Sichuan Basin was in a moderately stagnant environment during the Early Silurian. Compared with the Changning and Nanchuan profiles, it is found that TOC in the southwestern margin of the basin has a significant positive correlation with redox conditions; it has a weak positive correlation with the retention of the basin water body; it has a weak positive correlation with the injection of terrigenous debris and primary productivity There is no obvious correlation, indicating that the anoxic reduction sedimentary environment is the main factor affecting the organic matter enrichment of the black shale of the Longmaxi Formation in this area.
  • [1] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
    [2] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [3] 陈尚斌,朱炎铭,王红岩,等. 中国页岩气研究现状与发展趋势[J]. 石油学报,2010,31(4):689-694.

    Chen Shangbin, Zhu Yanming, Wang Hongyan, et al. Research status and trends of shale gas in China[J]. Acta Petrolei Sinica, 2010, 31(4): 689-694.
    [4] 张大伟. 加速我国页岩气资源调查和勘探开发战略构想[J]. 石油与天然气地质,2010,31(2):135-139,150.

    Zhang Dawei. Strategic concepts of accelerating the survey, exploration and exploitation of shale gas resources in China[J]. Oil & Gas Geology, 2010, 31(2): 135-139, 150.
    [5] 张金川,徐波,聂海宽,等. 中国页岩气资源勘探潜力[J]. 天然气工业,2008,28(6):136-140.

    Zhang Jinchuan, Xu Bo, Nie Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140.
    [6] 黄金亮,邹才能,李建忠,等. 川南志留系龙马溪组页岩气形成条件与有利区分析[J]. 煤炭学报,2012,37(5):782-787.

    Huang Jinliang, Zou Caineng, Li Jianzhong, et al. Shale gas accumulation conditions and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin, China[J]. Journal of China Coal Society, 2012, 37(5): 782-787.
    [7] 陈尚斌,朱炎铭,王红岩,等. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义[J]. 石油学报,2011,32(5):775-782.

    Chen Shangbin, Zhu Yanming, Wang Hongyan, et al. Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(5): 775-782.
    [8] 刘树根,马文辛,Luba J,等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报,2011,27(8):2239-2252.

    Liu Shugen, Ma Wenxin, Luba J, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252.
    [9] 王秀平,牟传龙,葛祥英,等. 四川盆地南部及其周缘龙马溪组黏土矿物研究[J]. 天然气地球科学,2014,25(11):1781-1794.

    Wang Xiuping, Mou Chuanlong, Ge Xiangying, et al. Study on clay minerals in the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2014, 25(11): 1781-1794.
    [10] 孙川翔,聂海宽,刘光祥,等. 石英矿物类型及其对页岩气富集开采的控制:以四川盆地及其周缘五峰组—龙马溪组为例[J]. 地球科学,2019,44(11):3692-3704.

    Sun Chuanxiang, Nie Haikuan, Liu Guangxiang, et al. Quartz type and its control on shale gas enrichment and production: A case study of the Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science, 2019, 44(11): 3692-3704.
    [11] 蒋裕强,董大忠,漆麟,等. 页岩气储层的基本特征及其评价[J]. 天然气工业,2010,30(10):7-12.

    Jiang Yuqiang, Dong Dazhong, Qi Lin, et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry, 2010, 30(10): 7-12.
    [12] 赵佩,李贤庆,田兴旺,等. 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学,2014,25(6):947-956.

    Zhao Pei, Li Xianqing, Tian Xingwang, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Geoscience, 2014, 25(6): 947-956.
    [13] 何佳伟,谢渊,侯明才,等. 大巴山前缘田坝剖面五峰组—龙马溪组页岩储层特征[J]. 成都理工大学学报(自然科学版),2018,45(3):356-366.

    He Jiawei, Xie Yuan, Hou Mingcai, et al. Reservoir characteristics of the Wufeng-Longmaxi Formations shale in the Tianba profile of Wuxi, Daba Mountain, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2018, 45(3): 356-366.
    [14] 梁峰,张琴,熊小林,等. 四川盆地及周缘五峰组—龙马溪组富有机质页岩沉积演化模式[J]. 沉积学报,2019,37(4):847-857.

    Liang Feng, Zhang Qin, Xiong Xiaolin, et al. Sedimentary evolution model of Upper Ordovician Wufeng-Lower Silurian Longmaxi organic-rich shale in the Sichuan Basin and its surrounding area[J]. Acta Sedimentologica Sinica, 2019, 37(4): 847-857.
    [15] 聂海宽,张金川. 页岩气聚集条件及含气量计算:以四川盆地及其周缘下古生界为例[J]. 地质学报,2012,86(2):349-361.

    Nie Haikuan, Zhang Jinchuan. Shale gas accumulation conditions and gas content calculation: A case study of Sichuan Basin and its periphery in the Lower Paleozoic[J]. Acta Geologica Sinica, 2012, 86(2): 349-361.
    [16] 杨平,汪正江,余谦,等. 滇东北木杆向斜奥陶系五峰组—志留系龙马溪组页岩气资源潜力评价[J]. 石油实验地质,2019,41(5):638-647.

    Yang Ping, Wang Zhengjiang, Yu Qian, et al. Evaluation of shale gas potential in Ordovician Wufeng-Silurian Longmaxi Formations, Mugan syncline, northeastern Yunnan[J]. Petroleum Geology & Experiment, 2019, 41(5): 638-647.
    [17] 陆扬博,马义权,王雨轩,等. 上扬子地区五峰组—龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学,2017,42(7):1169-1184.

    Lu Yangbo, Ma Yiquan, Wang Yuxuan, et al. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze area[J]. Earth Science, 2017, 42(7): 1169-1184.
    [18] Li Y F, Zhang T W, Ellis G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 252-264.
    [19] 何龙,王云鹏,陈多福,等. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学,2019,30(2):203-218.

    He Long, Wang Yunpeng, Chen Duofu, et al. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formations in Nanchuan area, Chongqing[J]. Natural Gas Geoscience, 2019, 30(2): 203-218.
    [20] 严德天,王清晨,陈代钊,等. 扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素[J]. 地质学报,2008,82(3):321-327.

    Yan Detian, Wang Qingchen, Chen Daizhao, et al. Sedimentary environment and development controls of the hydrocarbon sources beds: The Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze area[J]. Acta Geologica Sinica, 2008, 82(3): 321-327.
    [21] 李双建,肖开华,沃玉进,等. 中上扬子地区上奥陶统一下志留统烃源岩发育的古环境恢复[J]. 岩石矿物学杂志,2009,28(5):450-458.

    Li Shuangjian, Xiao Kaihua, Yujin Wo, et al. Palaeo-environment restoration of Upper Ordovician-Lower Silurian hydrocarbon source rock in Middle-Upper Yangtze area[J]. Acta Petrologica et Mineralogica, 2009, 28(5): 450-458.
    [22] 何利,宋春彦,刘建清. 川南马边地区五峰—龙马溪组页岩地球化学特征及有机质富集机理[J]. 东北石油大学学报,2018,42(4):52-65.

    He Li, Song Chunyan, Liu Jianqing. Shale geochemical characteristics and enrichment mechanism of organic matter of Wufeng-Longmaxi Formation in the Mabian area of southeast Sichuan Basin[J]. Journal of Northeast Petroleum University, 2018, 42(4): 52-65.
    [23] 何佳伟. 上扬子西南缘雷波地区O-S过渡时期细粒沉积岩特征及页岩气前景研究[D]. 成都:成都理工大学,2018.

    He Jiawei. Characteristics of fine-grained sedimentary rocks and prospects of Shale gas during the O-S transitional period in the Leibo area of the southwestern Upper Yangtze[D]. Chengdu: ChengduUniversity of Technology, 2018.
    [24] 王玉满,董大忠,李建忠,等. 川南下志留统龙马溪组页岩气储层特征[J]. 石油学报,2012,33(4):551-561.

    Wang Yuman, Dong Dazhong, Li Jianzhong, et al. Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Acta Petrolei Sinica, 2012, 33(4): 551-561.
    [25] 王玉满,董大忠,杨桦,等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学(D辑):地球科学,2014,44(6):1348-1356.

    Wang Yuman, Dong Dazhong, Yang Hua, et al. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi shale, southern Sichuan, China[J]. Science China (Seri. D): Earth Sciences, 2014, 44(6): 1348-1356.
    [26] 王玉满,黄金亮,王淑芳,等. 四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J]. 天然气地球科学,2016,27(3):423-432.

    Wang Yuman, Huang Jinliang, Wang Shufang, et al. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(3): 423-432.
    [27] 林俊峰,胡海燕,黎祺. 川东焦石坝地区页岩气特征及其意义[J]. 地球科学,2017,42(7):1124-1133.

    Lin Junfeng, Hu Haiyan, Li Qi. Geochemical characteristics and implications of shale gas in Jiaoshiba, eastern Sichuan, China[J]. Earth Science, 2017, 42(7): 1124-1133.
    [28] 戴方尧,郝芳,胡海燕,等. 川东焦石坝五峰—龙马溪组页岩气赋存机理及其主控因素[J]. 地球科学,2017,42(7):1185-1194.

    Dai Fangyao, Hao Fang, Hu Haiyan, et al. Occurrence mechanism and key controlling factors of Wufeng-Longmaxi shale gas, eastern Sichuan Basin[J]. Earth Science, 2017, 42(7): 1185-1194.
    [29] Melchin M J, Mitchell C E, Holmden C, et al. Environmental changes in the Late Ordovician-Early Silurian: Review and new insights from black shales and nitrogen isotopes[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1635-1670.
    [30] 陈洪德,郭彤楼,侯明才,等. 中上扬子叠合盆地沉积充填过程与物质分布规律[M]. 北京:科学出版社,2012.

    Chen Hongde, Guo Tonglou, Hou Mingcai, et al. Sedimentary filling process and material distribution in the middle Upper Yangtze superimposed basin[M]. Beijing:Science Press,2012.
    [31] 郭英海,李壮福,李大华,等. 四川地区早志留世岩相古地理[J]. 古地理学报,2004,6(1):20-29.

    Guo Yinghai, Li Zhuangfu, Li Dahua, et al. Lithofacies palaeogeography of the Early Silurian in Sichuan area[J]. Journal of Palaeogeography, 2004, 6(1): 20-29.
    [32] 万方,许效松. 川滇黔桂地区志留纪构造—岩相古地理[J]. 古地理学报,2003,5(2):180-186.

    Wan Fang, Xu Xiaosong. Tectonic-lithofacies palaeogeography of the Silurian in Sichuan-Yunnan-Guizhou-Guangxi region[J]. Journal of Palaeogeography, 2003, 5(2): 180-186.
    [33] 戎嘉余,黄冰. 华南奥陶纪末生物大灭绝的肇端标志:腕足动物稀少贝组合(Manosia Assemblage)及其穿时分布[J]. 地质学报,2019,93(3):509-527.

    Rong Jiayu, Huang Bing. An indicator of the onset of the End Ordovician mass extinction in South China: the Manosia brachiopod assemblage and its diachronous distribution[J]. Acta Geologica Sinica, 2019, 93(3): 509-527.
    [34] Zou C N, Qiu Z, Poulton S W, et al. Ocean euxinia and climate change double whammy drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6).
    [35] 王志峰,张元福,梁雪莉,等. 四川盆地五峰组—龙马溪组不同水动力成因页岩岩相特征[J]. 石油学报,2014,35(4):623-632.

    Wang Zhifeng, Zhang Yuanfu, Liang Xueli, et al. Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2014, 35(4): 623-632.
    [36] 牟传龙,周恳恳,梁薇,等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报,2011,85(4):526-532.

    Mu Chuanlong, Zhou Kenken, Liang Wei, et al. Early paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4): 526-532.
    [37] 陈旭,樊隽轩,张元动,等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志,2015,39(4):351-358.

    Chen Xu, Fan Junxuan, Zhang Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform[J]. Journal of Stratigraphy, 2015, 39(4): 351-358.
    [38] 郑益军. 四川盆地东南缘五峰—龙马溪组页岩地球化学、物性特征及其影响因素[D]. 广州:中国科学院广州地球化学研究所,2017.

    Zhang Yijun. Geochemical, petrophysical properties and its effecting factors of the Wufeng-Longmaxi shale in southeastern margins of the Sichuan Basin[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017.
    [39] 李艳芳. 上扬子地区晚奥陶世—早志留世页岩地球化学特征、有机质富集及古环境意义[D]. 兰州:兰州大学,2017.

    Li Yanfang. Geochemical characteristics and Organic matter accumulation of Late Ordovician-Early Silurian shale in the Upper Yangtze Platform, and implications for paleoenvironment[D]. Lanzhou: Lanzhou University, 2017.
    [40] Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878.
    [41] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford, UK: Blackwell, 1985.
    [42] Wedepohl K H. Environmental influences on the chemical composition of shales and clays[J]. Physics and Chemistry of the Earth, 1971, 8: 307-333.
    [43] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [44] 严德天,汪建国,王卓卓. 扬子地区上奥陶—下志留统生物钡特征及其古生产力意义[J]. 西安石油大学学报(自然科学版),2009,24(4):16-19.

    Yan Detian, Wang Jianguo, Wang Zhuozhuo. Biogenetic barium distribution from the Upper Ordovician to Lower Silurian in the Yangtze area and its significance to paleoproductivity[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2009, 24(4): 16-19.
    [45] Rimmer S M, Thompson J A, Goodnight S A, et al. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: Geochemical and petrographic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215(1/2): 125-154.
    [46] Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750.
    [47] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis LImestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
    [48] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
    [49] Wignall P B. Black shales[M]. Oxford, UK: Oxford Press, 1994.
    [50] 腾格尔,刘文汇,徐永昌,等. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展,2005,20(2):193-200.

    Tenger, Liu Wenhui, Xu Yongchang, et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J]. Advances in Earth Science, 2005, 20(2): 193-200.
    [51] 常华进,储雪蕾,冯连君,等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91-99.

    Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.
    [52] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based on molybdenum–uranium covariation—Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325: 46-58.
    [53] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016.
    [54] Demaison G J, Moore G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin, 1980, 64(8): 1179-1209.
    [55] Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
    [56] Mort H, Jacquat O, Adatte T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: Enhanced productivity and/or better preservation?[J]. Cretaceous Research, 2007, 28(4): 597-612.
    [57] 陈践发,张水昌,鲍志东,等. 海相优质烃源岩发育的主要影响因素及沉积环境[J]. 海相油气地质,2006,11(3):49-54.

    Chen Jianfa, Zhang Shuichang, Bao Zhidong, et al. Main sedimentary environments and influencing factors for development of marine organic-rich source rocks[J]. Marine Origin Petroleum Geology, 2006, 11(3): 49-54.
    [58] Canfield D E. Factors influencing organic carbon preservation in marine sediments[J]. Chemical Geology, 1994, 114(3/4): 315-329.
    [59] 郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发,2014,41(1):28-36.

    Guo Tonglou, Zhang Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(3)

Article Metrics

Article views(389) PDF downloads(108) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-03-26
  • Revised:  2020-05-22
  • Published:  2021-06-10

Mechanism of organic matter enrichment of fine-grained sedimentary rocks in the Southwest margin of Upper Yangtze: A case study of the Niuzhai section, Yanjin

doi: 10.14027/j.issn.1000-0550.2020.038
Funds:

China Geological Survey Project 12120114071401, 121201010000150005

Abstract: Based on the differences in the behavioral characteristics of chemical elements, the content or ratio of TOC, major elements and trace elements was used to discriminate the formation of fine-grained sedimentary rocks of the Early Silurian Longmaxi Formation in Niuzhai section of Yanjin, at the southwestern margin of the Sichuan Basin. Paleoproductivity, redox conditions, input of terrestrial supply and the degree of basin water retention, and other environmental characteristics are compared. Paleoenvironmental parameters of the Longmaxi Formation in the South Sichuan Subsidence Center (Changning section) and Nanchuan Underwater Uplift Area (Nanchuan section) are compared. Differences in organic matter enrichment of fine-grained sedimentary rocks in the stranded basin of the Yangtze Sea in the Early Silurian. The results show that the Early Silurian fine-grained sedimentary rocks in the Niuzhai area of Yanjin are mainly black carbonaceous shales, gray shales and black mudstones, and the organic-rich materials are mainly concentrated in the lower section of the Longmaxi Formation, with an average TOC content of 2.73%. Babio shows that the Longmaxi Formation in this area had higher productivity in the early stage. Ni/Co, V/(V+Ni), U/Th, and V/Cr ratios revealed that the Longmaxi Formation gradually transitioned from a hypoxic environment at the bottom to an oxidizing environment at the top; TiO2, Al2O3 and Zr indicate that the supply of terrigenous debris in the lower segment of the Longmaxi Formation increased significantly; the Mo/TOC value and the U-Mo covariance model map indicate that the southwestern margin of the Sichuan Basin was in a moderately stagnant environment during the Early Silurian. Compared with the Changning and Nanchuan profiles, it is found that TOC in the southwestern margin of the basin has a significant positive correlation with redox conditions; it has a weak positive correlation with the retention of the basin water body; it has a weak positive correlation with the injection of terrigenous debris and primary productivity There is no obvious correlation, indicating that the anoxic reduction sedimentary environment is the main factor affecting the organic matter enrichment of the black shale of the Longmaxi Formation in this area.

HE JiaWei, XIE Yuan, LIU JianQing, HE Li. Mechanism of organic matter enrichment of fine-grained sedimentary rocks in the Southwest margin of Upper Yangtze: A case study of the Niuzhai section, Yanjin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 656-671. doi: 10.14027/j.issn.1000-0550.2020.038
Citation: HE JiaWei, XIE Yuan, LIU JianQing, HE Li. Mechanism of organic matter enrichment of fine-grained sedimentary rocks in the Southwest margin of Upper Yangtze: A case study of the Niuzhai section, Yanjin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 656-671. doi: 10.14027/j.issn.1000-0550.2020.038
  • 细粒沉积岩是指由粒径小于62 μm细粒沉积物固结而成的沉积岩,这些细粒沉积物主要包括黏土类矿物、粉砂质、碳酸盐矿物和有机质等[1-2]。在我国细粒沉积岩主要分布于四川盆地、塔里木盆地和华北地区古生界的相关地层中[3],随着非常规油气藏理论的不断完善,分布广、厚度大的细粒沉积岩进入了人们的视线[4]。位于上扬子板块的四川盆地内外发育多套细粒沉积岩,以五峰组—龙马溪组为代表的细粒沉积岩的研究,取得了巨大的成功,该套细粒沉积岩以页岩为主,地域分布稳定、沉积岩层厚度大、有机质含量高、脆性矿物发育,具有较大的页岩气资源潜力[5-6],而以该套富有机质细粒沉积岩为代表的非常规油气作为国家的重要资源储备物资,对于非常规油气沉积学而言以往的研究主要集中岩石学(如:石英含量、黏土成分等)[7-10]、储层地质学(如:孔隙度、成熟度、渗透率等)[11-13]和展布特征[14]以及产量[15-16]等方面,而对其形成环境和富集模式的研究则略显不足,严重阻碍了非常规油气沉积学的进展。陆扬博等[17]对上扬子五峰组—龙马溪组的地质事件进行了论述并指出火山喷发是五峰组—龙马溪组甜点段形成的一个重要原因,Li et al.[18]对川南地区的四条剖面进行了详细的研究,并指出海平面变化控制下的沉积环境是该套细粒沉积岩有机质富集的主要原因,何龙等[19]则通过地球化学手段对南川地区的五峰组—龙马溪组的形成环境进行了探讨并指出沉积环境是该地区有机质富集的主控因素,严德天等[20] 、李双建等[21]在对这套细粒沉积岩研究后认为较高的古生产力是造成有机质富集的根本原因;何利等[22]在对川南马边地区的五峰组—龙马溪组进行研究时,指出有机质的富集除了受控于氧化还原环境的改变还受控于较高的生产力,可见不同研究者对五峰组—龙马溪组有机质的富集模式不尽相同,并且,五峰组沉积厚度较薄,以往学者们常把五峰组和龙马溪组2套细粒沉积岩当做整体进行研究,忽视了在O-S过渡时期赫南特阶沉积的碳酸盐岩对这两套细粒沉积岩在沉积环境乃至富集模式的影响,也有研究者认为四川盆地观音桥组发育并不完全,特别是盆地西南缘代表冰期沉积的该套碳酸盐岩出现缺失[22-23],故在探讨不同地区细粒沉积岩的有机质富集模式时,不能将两者混为一谈。此外,对于这两套细粒沉积岩有机质富集模式的探讨多集中在盆地内部的川南和川东两个沉降中心[24-28],但对于靠近古隆起的盆缘细粒沉积岩中所蕴含的环境信息和页岩气等信息的挖掘还远不能与盆地腹部相同地层媲美,这严重制约了人们对早志留世非常规沉积学的客观评价,忽略了富有机质细粒沉积岩的沉积环境、富集模式在非常规沉积学中的重要地位,对非常规油气沉积学的认识和勘探造成了严重的失衡。基于此,本文在四川盆地西南缘盐津牛寨剖面系统采集了能揭示龙马溪组沉积环境和页岩气地质特征的系列样品,并与处于盆地腹部川南沉降中心长宁剖面和非沉降中心南川剖面的龙马溪组进行有机碳、岩石学特征和地球化学特征对比分析,以此阐述盆地西南缘早志留世细粒沉积岩的古环境特征与有机质富集模式,丰富了四川盆地边缘地区非常规油气沉积学的研究内容,为进一步拓展四川盆地边缘非常规资源勘探提供依据。

  • 研究区位于四川盆地外缘西南部,隶属于上扬子板块西南缘,其构造演化过程与上扬子板块息息相关,自震旦纪以来受多期构造作用的影响形成了现今的盆地格局(图1)。在奥陶世末期—志留世早期,由于华夏板块向扬子板块的强烈挤压作用,造成了川中—黔中—雪峰山三大古隆起的格局,在古陆隆升强制推进作用下形成了“三面环隆”的古地理格局,与此同时,发生了全球性的海侵事件,海平面迅速上升,形成了自川南至川东北为水体深度逐渐加深的扬子陆棚海环境[31-34],并在川南、鄂西—渝东、川北—川东北3个深水陆棚相沉积区内[35-36],形成了岩层厚度大、分布广、有机质高的富含笔石化石的龙马溪组细粒岩。

    Figure 1.  Paleogeographic map and research section histogram of Sichuan Basin and its surrounding area from Late Ordovician to Early Silurian

  • 盐津牛寨剖面位于云南省盐津县牛寨乡,地层出露良好,地层总厚190.06 m,自下而上依次为上奥陶统五峰组、下志留统龙马溪组和中二叠统梁山组,各组之间均为平行不整合接触(图1)。五峰组主要为碳质页岩夹硅质页岩、生屑灰岩;龙马溪组主体为灰黑色—黑色碳质细粒沉积岩,总厚181.59 m,下部以黑色碳质页岩为主,发育水平层理富含笔石化石;上部以灰黑色碳质页岩为主夹薄层状泥岩,对比陈旭等[37]的笔石带划分标准,研究区龙马溪组笔石相带完整指示研究区早志留世鲁丹阶至埃隆阶沉积序列完整,具有良好的区域可对比性,梁山组则以微晶灰岩为主夹少许劣质薄煤层。

  • 为了探讨上扬子局限海盆内的环境差异及其对有机质富集的影响程度,本文对盐津牛寨剖面志留系龙马溪组细粒沉积岩进行了系统采样,并根据邻区有机质特征和沉积环境的研究结果[22],对龙马溪组下部进行了加密采样,选取了具有代表意义的样品19件,按照TOC=2.00%为界限,将牛寨剖面龙马溪组划分为上下两段,其中下段采样10件、上段采样9件(图1),并将这19件样品送至国土资源部西南矿产资源监督检测中心进行岩矿分析和总有机碳(TOC)、主量元素以及微量元素的测试。其中岩石矿物相分析采用ZJ207 bruker D8 advance 型X射线衍射仪(XRD)执行SY/T 5163—2010行业标准进行检测,应用High Score 软件进行数据分析;主量元素采用X射线荧光光谱仪(XRF)进行检测,分析误差<1%,采用粉末压片法制备样品,先碎岩,然后称取经过高温烘干后的4.5 g样品倒入模具中,在35 t的压力下压制10 s进行制样,然后将样片取下,编号待测;TOC在总有机碳分析仪采用燃烧法进行测试;微量元素采ELEMENT XR等离子体质谱(ICP-MS)仪执行GB/T 14506.30—2010国标进项测定,首先将样品碎至200目以下,并采用加热法除去有机质的影响,然后称取0.10 g样品至于特定容器中并向容器内加入HNO3+HF+HClO4进行密封高温(140 ℃~150 ℃)24 h溶样,接着将密封容器敞开放置于加热板上高温加热除去溶样酸,最后向容器内加入HNO3复溶直至溶液完全澄清并将澄清溶液转移至容量瓶中定容,编号待测。

  • 整体而言盐津牛寨剖面中石英含量在之间17.00%~53.00%,平均为33.11%;长石含量为2.00%~18.00%,平均为6.05%;碳酸盐矿物类型以方解石为主,平均含量可达11.58%;黏土矿物存在的主要类型为伊利石,其平均含量可达29.00%;含少量石膏和黄铁矿。垂向变化特征(图2):龙马溪组从底到顶石英含量逐渐减少,而以绿泥石为代表的黏土矿物呈现逐渐增加的趋势,两者呈现负相关关系,碳酸盐矿物则呈现先减少后增加的两段式特征。

    Figure 2.  Vertical evolution of parameters of Longmaxi Formation in Niuzhai section of Yanjin, southwest margin of Sichuan Basin

    盐津牛寨剖面位于上扬子西南缘,并以长宁剖面和南川剖面为对比剖面,结合岩性特征及矿物在垂向上的变化,对在不同沉积环境下龙马溪组细粒沉积岩主要矿物特征进行分析。据石英+长石+黄铁矿、碳酸盐岩和黏土矿物三角图显示(图3),三个地区的细粒沉积岩在矿物组成上具有明显的差异性,从分布模式上来看盆地西南缘矿物分布呈现陆缘斜坡式的分散状态,长宁地区呈现两点式而南川地区呈现集中式,从矿物成分上来看从川西南至川东北黏土矿物含量逐渐趋于稳定,以石英和长石为代表的陆源碎屑位置其含量总体呈现降低的特点。总体而言,盆地西南缘由于更靠近西边的隆起古陆,故其物质特点呈现杂乱式,在长宁和南川地区其沉积物经过海水的搬运和分选作用,物质成分趋于一致,呈现较为集中的特点,但南川地区较长宁地区而言,由于自川南至川东北为水体深度逐渐加深,导致物源的搬运过程中需要更长的时间和距离,在搬运过程中,黏土矿物发生络合作用和物理吸附作用并进行沉积,因此其黏土矿物含量明显低于川南沉降中心。

    Figure 3.  Mineral composition triangle plots of fine⁃grained sedimentary rock samples of Longmaxi Formation in different regions of Upper Yangtze

  • 总有机碳含量(TOC)是衡量细粒沉积岩作为烃源岩的重要指标,国内现多以TOC含量>2.00%作为有效烃源岩的下限值。盐津牛寨剖面TOC含量分布在0.33%~5.87%之间,平均为2.08%,其中龙马溪组下段10件样品TOC含量介于0.87%~5.87%,平均为3.22%,远高于龙马溪组上段数值,为0.33%~1.40%,平均为0.82%。整条剖面在下段出现最大值5.87%,远高于国内有效烃源岩的下限值,整体表现出先快速增加后缓慢减弱的变化趋势(图2),主要是由于龙马溪组下部为深水陆棚环境,水体安静易于浮游生物及菌藻类的生存,而上部地层水体变浅,陆源物质含量增多,因此在沉积相及地层岩性的影响下导致下段地层中TOC值高于上段。

    对比长宁剖面和南川剖面发现,从川西南至川东北TOC含量分布逐渐趋于集中,TOC含量平均值和TOCmin均呈现增大的趋势,但TOCmax分布趋势呈现完全不同的特征(图4)。古地理位置所造成的水体循环差异已不能解释这种情况,此时,初级生产力和氧化还原条件的变化对有机质的富集更为关键。

    Figure 4.  Box diagram of total organic carbon (TOC) content in fine⁃grained sedimentary rocks of the Longmaxi Formation in different areas of the Upper Yangtze

  • 对盐津牛寨剖面的SiO2、Al2O3、Fe2O3、CaO、Na2O和TiO2等6种常见主量元素进行测试分析,测试结果表明盐津牛寨剖面细粒沉积岩主量元素分布特征存在一定的差异性(表1)。

    采样号 TOC/% SiO2/% Al2O3/% Fe2O3/% CaO/% Na2O/% TiO2/% V/(μg/g) Cr/(μg/g) Co/(μg/g) Ni/(μg/g) Th/(μg/g) U/(μg/g) Zr/(μg/g) Mo/(μg/g) P/(μg/g) Babio/(μg/g)
    YNP13-b1 0.33 34.91 10.39 3.30 23.78 0.13 0.43 79.40 51.90 8.60 30.00 10.60 2.44 74.80 0.75 340.41 491.58
    YNP12-b3 0.62 30.48 10.18 3.76 25.96 0.15 0.40 96.60 54.00 9.64 31.20 10.30 3.26 57.40 2.70 270.58 387.14
    YNP12-b2 0.49 37.50 9.76 3.15 22.71 0.26 0.43 80.70 48.30 9.74 29.90 10.80 2.76 75.10 2.54 344.77 862.26
    YNP12-b1 0.79 50.12 17.05 5.88 6.83 0.38 0.60 132.00 85.70 16.30 51.50 16.20 5.14 74.40 5.50 270.58 865.17
    YNP11-b2 1.00 51.79 15.82 5.42 7.03 0.37 0.60 138.00 80.20 15.40 53.20 15.00 4.35 74.30 7.28 366.59 885.30
    YNP11-b1 0.83 58.43 17.50 6.44 1.37 0.53 0.68 136.00 84.40 17.00 69.60 16.80 4.07 90.60 5.79 401.51 1 426.83
    YNP10-b1 0.93 60.45 17.85 5.67 0.14 0.55 0.70 135.00 89.30 12.10 53.80 16.80 3.94 102.00 5.49 340.41 1 022.57
    YNP9-b2 0.98 61.81 16.54 5.88 0.36 0.94 0.71 116.00 78.30 10.40 58.20 18.50 4.46 126.00 7.39 480.06 975.96
    YNP9-b1 1.40 59.72 14.02 5.11 4.00 1.29 0.63 90.00 65.30 17.20 71.70 18.00 3.90 125.00 8.13 523.70 898.65
    YNP8-b1 2.61 64.56 16.41 2.23 0.07 0.59 0.75 162.00 80.10 2.32 19.00 19.70 7.68 123.00 14.20 218.21 1 221.25
    YNP7-b3 3.65 59.36 16.12 5.11 0.06 0.45 0.68 170.00 76.10 4.96 26.70 16.00 7.79 87.10 25.50 231.30 1 093.07
    YNP7-b2 5.87 64.41 12.61 3.48 0.24 0.44 0.56 222.00 59.70 7.82 76.60 8.47 9.32 102.00 50.40 270.58 926.11
    YNP7-b1 3.95 51.25 9.57 3.86 10.42 0.24 0.43 189.00 46.40 10.80 79.30 10.70 11.60 71.00 39.80 436.42 1 010.00
    YNP6-b1 3.12 50.17 7.02 2.40 14.42 0.21 0.30 145.00 33.80 7.78 64.60 8.07 11.90 89.10 23.70 296.77 923.92
    YNP5-b1 2.90 47.65 7.80 3.10 14.48 0.26 0.35 153.00 35.50 8.06 68.90 10.10 9.85 57.10 25.80 336.04 842.13
    YNP4-b2 2.38 37.04 5.96 2.38 20.70 0.18 0.28 154.00 30.60 6.37 61.60 8.08 8.70 62.20 22.40 261.85 711.12
    YNP4-b1 3.92 52.60 8.07 2.65 12.31 0.31 0.39 288.00 42.10 8.05 88.20 12.40 17.60 77.60 30.30 314.22 931.13
    YNP3-b1 2.96 25.54 5.85 2.88 27.18 0.03 0.25 198.00 47.10 4.95 57.80 7.26 9.48 44.90 8.74 357.86 452.60
    YNP2-b1 0.87 46.33 13.69 3.44 12.81 0.35 0.65 166.00 67.30 8.06 47.80 16.30 3.53 92.00 0.58 353.50 1 002.10

    Table 1.  Characteristics of major and trace elements of fine-grained sedimentary rocks from Longmaxi Formation in Niuzhai section of Yanjin

    自下而上,SiO2、Al2O3、TiO2和Na2O呈前期快速增加后期逐步减缓的变化特征(图2);而CaO呈前期快速减小后期逐步增加的变化趋势,其规律与碳酸盐矿物变化规律相似,Fe2O3无明显变化趋势,表明海侵事件的发生对主量元素的构成影响明显,其中,SiO2在龙马溪组上、下段平均值分别49.90%、49.47%,整体表现出降低的趋势,Al2O3与TiO2在龙马溪组中的平均含量分别为12.22%、0.52%,且两者的变化趋势呈现良好的正向拟合关系。

  • 在评价海相细粒沉积岩的生产力时,常用生物钡(Babio)作为参考指标,一般用Ba的总量减去陆源碎屑Ba的估算值,可直接反应水体的生产力大小,计算公式为[40]

    B a b i o = B a - A l × ( B a / A l ) P A S S (1)

    式中:Ba样品和Al样品为样品中Ba和Al的含量,μg/g;(Ba/Al)PASS为后太古宙澳大利页岩中的Ba和Al含量比值[41]

    公式(1)计算结算结果显示龙马溪组细粒沉积岩中Babio含量变化较大(图2),其中龙马溪组下段为452.60~1 221.25 μg/g,平均为911.34 μg/g,上段为387.14~1 426.83 μg/g,平均为868.39 μg/g,明显低于底部黑色碳质页岩段。此外,采用元素比值法如Ba/Al或P/Al也能反映水体的生产力,研究区龙马溪组Ba/Al和P/Al呈现出先增后减的变化趋势,与Babio含量变化趋势相似(图2)。

    细粒沉积物在沉积成岩过程中会比其他沉积岩更容易吸附微量元素,为了消除陆源成分的干扰,国际上常采用富集系数(EFs)来快速判别页岩中不同元素的富集程度,计算公式为[42]

    X E F = ( X / A l ) / ( X / A l ) P A A S (2)

    式中:X和Al为样品中某一元素X和Al的含量,μg/g;;PAAS为后太古宙澳大利亚页岩标准化[39]。若XEF>1则表明样品中X元素相对于PAAS页岩更富集,XEF<1则亏损[43]

    公式(2)计算结算结果显MoEF、UEF在盐津牛寨剖面细粒沉积岩段上的分布存在明显差异,龙马溪组下段MoEF介于0.67~66.01,平均为41.80;UEF介于4.50~37.98,平均为19.82,明显大于龙马溪组上段灰黑色碳质页岩、泥岩段,其中MoEF介于1.15~9.20,平均为5.37;UEF介于3.84~5.58,平均为4.67。

    Ni/Co、V/(V+Ni)、U/Th和V/Cr值自下而上在盐津牛寨剖面表现出先增后减的变化趋势(图2),除氧化还原敏感元素外,Zr元素在古环境中也具有一定的指示意义,该元素在剖面中介于44.90~126.00 μg/g之间,平均为84.51 μg/g,与主量元素Al2O3和TiO2表现出一致的变化趋势。

  • 利用化学元素行为特征的差异性,可以定性—定量地描述海相细粒沉积岩的沉积环境特征,本次研究主要利用相关元素的含量或元素对比值来判定龙马溪组细粒沉积岩形成时的初级生产力、氧化还原条件、陆源供应的输入和盆地水体滞留程度。

  • 在海洋环境中,Ba元素早在2009年就被证实生物来源的Ba可以定量的表征古海洋的生产力[44],虽然P元素不仅是多数海洋生物组成骨骼的必备元素还是生物在生命活动过程中的营养元素之一[45],但在缺氧环境下P元素会从有机质中释放出来,造成生产力指标失真[46],采用Ba/Al或P/Al元素比值更能代表古海洋的初级生产力,因此本文采用Babio值、Ba/Al和P/Al综合判别古海洋的生产力。

    盐津牛寨剖面的Babio整体呈现与TOC一致的先增后减的趋势,但Babio高值段略微延迟于TOC高值段,Ba/Al和P/Al值除P/Al底部的一个样品外,其余样品的变化趋势与Babio一致(图2),都呈现出先增后减的特征,但Ba/Al和P/Al值的减弱地起始点明显早于Babio值,与比陆源碎屑输入的判别指标相对比,Ba/Al和P/Al与其呈现出负向相关性。理论上这三者应具有同步变化的特征,但由于盐津牛寨剖面更靠近隆起古陆,受海平面变化的影响,大量陆源碎屑物质的涌入,致使盐津牛寨剖面的Ba/Al值、P/Al值与Babio值减弱出现不同步现象,但整体而言,研究区龙马溪组的生产力呈现出下段高于上段的特征,与有机质的富集层段相吻合,表明生产力是有机质富集的控制因素之一。

  • V、Mo、U等元素在氧化状态下,呈现为高价态离子易于溶解迁移而在还原状态下表现为低价态易于富集沉淀,当海水状态发生变化时这些元素能记录这一变化过程并保存在沉积物中,但也有极个别元素如Th等的溶解状态不受海水的氧化还原状态的控制,但整体而言Ni/Co、V/(V+Ni)、U/Th和V/Cr等参数是与缺氧还原程度呈正相关关系[47-51]表2)。

    判别参数 缺氧—贫氧环境 氧化环境
    缺氧环境 贫氧环境
    Ni/Co >7.0 5.0~7.0 <5.0
    V/(V+Ni) >0.5 0.57~0.45 <0.45
    U/Th >1.25 0.75~1.25 <0.75
    V/Cr >4.25 2~4.25 <2.0

    Table 2.  Geochemical identification indices of redox conditions

    盐津牛寨剖面细粒沉积岩的Ni/Co、V/(V+Ni)和V/Cr平均值分别为6.34、0.73、2.81均指示盐津牛寨剖面处于缺氧—贫氧环境中,虽然U/Th平均值为0.62,但龙马溪组下部的13个样品平均值为0.79,同样处于缺氧—贫氧的环境中。对比四组数据分布模式,发现都具有从缺氧环境逐步过渡到氧化环境的特征(图5),但在底部的一个样品值明显低于下段其他样品,其中Ni/Co、U/Th和V/Cr值为5.93、0.22、2.47指示氧化环境或接近于氧化环境,表明龙马溪组下段底部氧化还原条件的不稳定,之后由于海侵事件的发生其环境迅速演化为缺氧环境,造成V/(V+Ni),U/Th和V/Cr值快速正偏,而到了龙马溪组上段由于海侵程度的减弱,相对海平面降低导致Ni/Co、U/Th和V/Cr值逐渐负偏指示海水氧化度逐渐趋于正常。这种变化趋势的与TOC变化趋势以及龙马溪组细粒沉积岩矿物分布的情况相吻合。

    Figure 5.  Identification of redox conditions for fine⁃grained sedimentary rocks of the Longmaxi Formation in different areas of the Upper Yangtze

    对比川西南至川东北的长宁剖面和南川剖面氧化还原参数在垂向上的变化趋势发现(图5),龙马溪组细粒沉积岩的氧化还原条件都具有从缺氧—贫氧环境逐步过渡到氧化环境的特征,但其变化规律呈现截然不同的特征,盐津牛寨剖面和表现为底部从氧化环境快速过渡到缺氧然后缓慢转化为氧化环境,长宁剖面则从底部缺氧环境逐步过渡到氧化环境,而南川剖面表现为震荡式地从底部缺氧环境转换为氧化环境,造成上述不同现象的原因可能为海平面变化在不同古地理位置的差异响应。

  • 陆源碎屑的输入主要用石英含量以及TiO2、Al2O3和Zr值的变化规律来表示,全岩矿物分析结果表明,盐津牛寨剖面石英含量整体自下而上呈现先升高后降低的趋势,与TOC的变化趋势呈现良好的正向拟合关系,而且石英含量超过33.11%的层段主要集中在龙马溪组下部(图2)。主微量元素分析表明,盐津牛寨剖面龙马溪组TiO2、Al2O3、Zr三者之间均表现为良好的一致性,且呈现从龙马溪组下段底部快速增加逐渐过渡到上部缓慢降低(图2)上述现象均反映了龙马溪组下段陆源供应量明显增加。

    对比川西南至川东北方向的长宁剖面和南川剖面TiO2、Al2O3在垂向上的变化趋势发现(图6),盐津牛寨剖面与长宁剖面都具有TiO2、Al2O3从底部到顶部呈现先增加后减小的趋势,表明陆源碎屑的供应量先增强后减弱,但从其增幅来看,盐津牛寨剖面明显大于长宁剖面,相比之下说明盆地西南缘在早志留世处于更靠近岸边、陆源输入物质更强的古地理位置。与上述变化规律相比南川剖面则表现为陆源碎屑的供应量呈现较弱的减缓趋势,说明南川地区在早志留世处于离岸较远、陆源物质输入较弱的古地理位置。综上这种现象与前文所论述的古地理位置状况相印证,盐津牛寨剖面更靠近剥蚀区故陆源物质的接受量明显较大,相对而言长宁剖面和南川剖面离剥蚀区最远,且自川南至川东北为水体深度逐渐加深,导致该地区的陆源碎屑注入量记录呈现微弱的减缓趋势。

    Figure 6.  Variation of terrigenous debris input in the Longmaxi Formation in different areas of the Upper Yangtze

  • U、Mo元素在上地壳的含量仅为2.7 ug/g、3.7 ug/g,相对含量较低[41],在海洋生物中含量也很低,而海洋环境中的U、Mo元素主要通过陆地上的河流输入补充,因此富集在沉积物中的U和Mo元素一般来源于海水[52]。沉积过程中松散沉积对U和Mo元素的摄取开始时间不同,对U的摄取发生在氧化还原反应界线处,而对Mo的摄取则需要H2S的存在,故沉积物对U的摄取早于Mo元素,并且深海环境下的铁锰氢氧化物的吸附作用会吸附海水中的Mo元素而进入沉积物中,而U元素则不受吸附作用的影响[51,53],基于两者地球化学行为的差异,现多采用Mo/TOC值和U-Mo协变模式来判别水体的滞留程度。

    盐津牛寨剖面的Mo/TOC值介于0.66~10.08,平均为6.35,除一个样品可能因还原环境造成Mo的富集而升高外[19],其余样品均说明了在早志留世盆地西南缘处于中等烈滞留环境中(图7)。从盐津牛寨剖面的U-Mo协变模式图可以看出UEF、MoEF值较小(图8),Mo/U比值也小,主体落在0.3-1×SW区间内,从贫氧—缺氧环境UEF/MoEF值由0.3×SW逐步过渡到1×SW,随着水体逐还原程度的加剧UEF、MoEF值逐渐增大UEF/MoEF值却出现降低的趋势,表示海水中的Mo元素随着沉积作用的进行,得不到补充,使得UEF/MoEF值降低,这种变化模式介于东太平洋和现代黑海的UEF-MoEF协变模式之间(图8),表明当时盆地西南缘处于一个中等滞留海盆环境中,符合Mo/TOC值得出的结论,也验证了上述龙马溪组从底部到顶部还原程度逐步减弱的趋势。

    Figure 7.  TOC⁃Mo correlation of fine⁃grained sedimentary rocks of Longmaxi Formation in different areas of Upper Yangtze

    Figure 8.  UEF⁃MoEF covariation model of fine⁃grained sedimentary rocks of Longmaxi Formation in different areas of Upper Yangtze

    盆地水体的滞留程度在川西南至川东北方向并没有表现出明显的差异性,从TOC-Mo相关性图中(图7)可以看出,当TOC含量<2.00% 时,除牛寨剖面一个样品落在Mo/TOC=4.5界线之下、其余样品均分布在Mo/TOC=9~4.5区间内,表明水体滞留程度呈现出相似的状态;当TOC含量>2.00% 时,盐津牛寨剖面、南川剖面和长宁剖面Mo/TOC值基本绕Mo/TOC=9界线分布,仍然表明这三个地区的水体滞留程度相似,都为中等滞留环境。其次,对比U-Mo协变模式图(图8),也发现盐津牛寨剖面、南川剖面和长宁剖面都具有UEF/MoEF值在高值段出现降低的趋势,表示Mo元素补充量不同于非滞留海盆那样持续补充也不同于强滞留环境下海水中的Mo沉积后得不到补充,再次说明这三个地区所在的扬子陆棚海在早志留世处于一个中等滞留的沉积环境中。综上表明,在早志留世的“三面环隆”的地质背景下,海平面的升降并没有明显影响水体的滞留程度,并且总体属于相对开放的海域环境即中等滞留的水体环境。

  • 目前国际上在有机质富集的模式主要有三种模式:生产力模式、保存条件模式、生产力—保存条件协同控制模式,生产力模式认为生产力的高低是有机质富集的决定因素;保存条件模式强调在缺氧环境下不利于有机碳的分解,从而沉积物中会保存较多的有机质;而协同模式则认为有机碳的埋藏受上述条件的共同控制[54-56]。何龙等[19]认为氧化还原条件是影响南川非沉降中心细粒沉积岩有机质富集的主要因素,Li et al.[18]则认为海平面升降造成的氧化还原条件变化控制了川南沉降中心粒沉积岩有机质富集,选取Babio、Ni/Co、Al2O3、Mo/TOC代表初级生产力、氧化还原条件、陆源碎屑物质的注入和盆地水体的滞留程度分别与TOC进行线性拟合(表3),发现无论是盆地西南缘还是川南沉降中心和南川非沉降中心,TOC与盆地的水体滞留程度相关性都极低,表明水体的滞留程度不是有机质的富集的主控因素,综合对比发现,川南沉降中心显示TOC与氧化还原条件呈现显著的正向相关关系,与初级生产力和陆源碎屑物质的注入呈负向相关关系,符合李艳芳提出的海平面变化—保存条件模式;南川非沉降中心与上述四个因素的相关系数均为正值,但TOC-Ni/Co相关系数远高于其余三者,印证了何龙提出的保存条件模式。

    相关系数(R 2 盐津牛寨剖面 长宁剖面 南川剖面
    TOC-Babio 0.02 0.42(-) 0.16
    TOC-Ni/Co 0.61 0.82 0.42
    TOC-Al2O3 0.12(-) 0.51(-) 0.03
    TOC-Mo/TOC 0.27 0.14 0.08

    Table 3.  Fitness of related parameters and TOC in different study areas

    盐津牛寨地区TOC与不同参数之间的相关性投点图显示(图9):TOC与氧化还原判别参数Ni/Co、V/Cr以及U/Th都呈现较好的正向相关,相关系数R 2分别为0.61、0.49和0.61;与陆源碎屑输入判别参数Al2O3、TiO2和Zr的相关系数R 2分别为0.12、0.06和0.00表明陆源碎屑的输入对该地区有机质的富集没有显著的影响;与初级生产力判别参数Ba/Al、Babio和P/Al的相关系数分别为0.27、0.02和0.04,其相关系数都较低,表明古海洋初级生产力不是有机质富集的主控因素。对比长宁剖面和南川剖面的TOC与各控制参数的相关性(表3),发现盆地西南缘的表现形式和南川非沉降中心较为相似,都表现为TOC与氧化还原条件呈现显著的正向相关关系,与初级生产力、陆源碎屑的输入无明显相关性(图9),综上,缺氧还原的沉积环境是影响研究区龙马溪组黑色页岩有机质富集的主要因素

    Figure 9.  TOC of fine⁃grained sedimentary rocks of Longmaxi Formation in Niuzhai section of Yanjin, southwest margin of Sichuan Basin

    在早志留世全球气候变暖,形成于晚奥陶世的冰川逐渐消融,在上扬子地区发生大面积海侵[57],导致早龙马溪早期水体分层,底层水迅速转变为中等滞留—缺氧状态(图10a),由于海平面的升高,处于盆地边缘的盐津牛寨地区水体滞留程度增加,同时由于大面积的海侵发生带来较多的笔石等浮游生物和菌藻类,随着生物代谢活动的进行这些浮游生物和菌藻类进入沉积物中进行埋藏,随着埋藏作用的进行,不断消耗本就处于缺氧环境下的溶解氧,最终形成缺氧环境,故此龙马溪组下段富集了大量的有机质。到了龙马溪组中—晚期随着海平面的下降(图10b),原本处于缺氧环境的底层水随着海平面的降低含氧量增加,同时海水裹挟大量的陆源碎屑物进入盐津牛寨地区,一方面直接稀释了有机质的浓度,另一方面破坏了原有浮游生物及菌藻类的生存环境,导致生物丰度下降,不再消耗底层水的溶解氧,导致细粒沉积岩中上段有机碳含量的降低[58-59]

    Figure 10.  Genesis model of fine⁃grained sedimentary rocks of the Longmaxi Formation in the Upper Yangtze area

  • (1) 盐津牛寨地区龙马溪组细粒沉积岩主要以黑色—灰黑色碳质页岩、页岩和泥岩为主,富有机质段主要集中在龙马溪组下段,矿物成分以石英、碳酸盐矿物和黏土矿物为主,石英呈现先增后减、逐步减少的变化趋势,碳酸盐矿物呈现两段式分布模式,黏土矿物呈逐渐增加的变化模式。

    (2) 利用主微量元素地球化学行为特征的差异性表明,盐津牛寨地区细粒沉积主要形成于缺氧环境下的高生产力、陆源碎屑输入少的中等滞留水体中。

    (3) 对比川南沉积中心和南川非沉降中心,发现在矿物成分上从川西南至川东北东黏土矿物含量逐渐趋于稳定,陆源碎屑含量呈现降低的趋势;Mo/TOC值和U-Mo协变模式图揭示早志留世上扬子陆棚海水体的滞留程度为中等滞留环境,且海平面的升降并没有明显影响水体的滞留程度。

    (4) 研究区龙马溪组富有机质细粒沉积岩的有机碳含量与氧化还原条件呈现显著的正向相关关系,与陆源碎屑物质的注入和古海洋的初级生产力无明显相关关系,即缺氧还原条件是控制盆地西南缘盐津牛寨地区富有机质富集的关键因素。

Reference (59)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return