Advanced Search
Volume 40 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

YANG RenChao, DONG Liang, ZHANG Ji, WANG Yi, FAN AiPing. Origin, Distribution and Controlling Factors of Stratigraphic Water in the Western Sulige Gas Field[J]. Acta Sedimentologica Sinica, 2022, 40(1): 267-280. doi: 10.14027/j.issn.1000-0550.2020.079
Citation: YANG RenChao, DONG Liang, ZHANG Ji, WANG Yi, FAN AiPing. Origin, Distribution and Controlling Factors of Stratigraphic Water in the Western Sulige Gas Field[J]. Acta Sedimentologica Sinica, 2022, 40(1): 267-280. doi: 10.14027/j.issn.1000-0550.2020.079

Origin, Distribution and Controlling Factors of Stratigraphic Water in the Western Sulige Gas Field

doi: 10.14027/j.issn.1000-0550.2020.079
Funds:

China⁃ASEAN Maritime Cooperation Fund Project 12120100500017001

National Natural Science Foundation of China 41402120

  • Received Date: 2020-04-14
  • Rev Recd Date: 2020-09-05
  • Publish Date: 2022-01-10
  • Severe water production of gas wells in the western Sulige gas field restricts the development of gas production from the dense sandstone in this area. The unclear nature of the origin, distribution and behavior of the groundwater have been a a key scientific problem. In this study, the stratigraphic water properties and geochemical characteristics were analyzed from a large amount of logging data and the collection of dynamic production data. The results show that (1) the stratigraphic water is highly saline at the level of brine, as a whole; (2) the water is mainly CaCl2 type; and (3) its pH is weakly acid. The following conclusions were drawn from the study. (1) The stratigraphic water stems mainly from a buried metamorphic source, and the good state of its preservation in the groundwater is also beneficial for the preservation of natural gas. (2) The spatial distribution of the stratigraphic water is consistent with that of the lower gas (S1 sub-member) and upper water (H8u sub-member) and east gas⁃west water. (3) In the study area, the water is mainly of three types: low-structure water (type I), low permeability zone retention water (type II) and isolated lens water (type III). (4) The lower part of the western structure contains mostly type I water; the H8l sub-member, the edge of the sand body and the gently sloping zone form the low-permeability zone that retains type II water; and the H8u sub-member and the highest part of the eastern zone of the study area contain mostly type III isolated lenses of water. (5) Gas in the dense sandstone of the western Sulige gas field has the characteristics of near-source reservoir formation; and (6) the main factors controlling the gas⁃water distribution include the hydrocarbon supply potential of the gas source rocks, the physical properties of the reservoir, the vertical migration distance, and its tectonic location, among other factors. These findings, which have clarified the origin of the groundwater, its distribution and controlling factors, and have established the gas⁃water distribution and natural gas accumulation mode, can be used to guide water-avoidance in the gas field.
  • [1] 肖巧玲,罗顺社,霍勇,等. 苏里格地区苏47区块山1段储层特征研究[J]. 中国石油和化工标准与质量,2013,34(5):120.

    Xiao Qiaoling, Luo Shunshe, Huo Yong, et al. Research on reservoir characteristics of S1 member of block S47 in Sulige area[J]. China Petroleum and Chemical Standard and Quality, 2013, 34(5): 120.
    [2] 郭莉,段长江,牛政,等. 苏里格地区苏47区块中二叠统盒8段辫状河三角洲沉积特征研究[J]. 长江大学学报(自然科学版):理工卷,2012,9(11):58-60.

    Guo Li, Duan Changjiang, Niu Zheng, et al. Sedimentary characteristics of braided river delta in H8 of the Middle Permian in Su 47 block, Sulige area[J]. Journal of Yangtze University (Natural Science Edition): Science & Technology, 2012, 9(11): 58-60.
    [3] 王晓梅,赵靖舟,刘新社,等. 苏里格气田西区致密砂岩储层地层水分布特征[J]. 石油与天然气地质,2012,33(5):802-810.

    Wang Xiaomei, Zhao Jingzhou, Liu Xinshe, et al. Distribution of formation water in tight sandstone reservoirs of western Sulige gas field, Ordos Basin[J]. Oil & Gas Geology, 2012, 33(5): 802-810.
    [4] 王继平,李跃刚,王宏,等. 苏里格西区苏X区块致密砂岩气藏地层水分布规律[J]. 成都理工大学学报(自然科学版),2013,40(4):387-393.

    Wang Jiping, LI Yuegang, Wang Hong, et al. Study on formation water distribution law in tight sandstone gas reservoir of Su X block in west area of Sulige, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(4): 387-393.
    [5] 武洪涛,孙妹娴. 鄂尔多斯盆地构造演化浅述[J]. 科技资讯,2019,17(7):78-79,81.

    Wu Hongtao, Sun Meixian. A brief introduction to the tectonic evolution of the Ordos Basin[J]. Science & Technology Information, 2019, 17(7): 78-79, 81.
    [6] 廖明敏,冯强汉,魏千盛,等. 苏里格气田西区气水分布规律及生产制度优化[C]//创新·质量·低碳·可持续发展——第十届宁夏青年科学家论坛石化专题论坛论文集. 银川:《石油化工应用》杂志社,2014. [

    Liao Mingmin, Feng Qianghan, Wei Qiansheng, et al. Gas-water distribution and production system optimization in the western area of Sulige gas field[C]//Innovation·Quality·Low Carbon·Sustainable Development——Paper of the 10th Ningxia Young Scientist Forum Petrochemical Forum Collection. Yinchuan: "Petrochemical Application" Magazine, 2014.]
    [7] 郭家铭. 苏里格南部上古生界山1段、盒8段物源分析与沉积体系展布特征[J]. 非常规油气,2019,6(6):41-49.

    Guo Jiaming. Provenance analysis and sedimentary system distribution characteristics in the Shan1 and He8 member of upper Paleozoic in southern Sulige area[J]. Unconventional Oil & Gas, 2019, 6(6): 41-49.
    [8] 杨传奇,刘佳庆,陈世海,等. 鄂尔多斯盆地马营:纸坊地区长6、长8致密砂岩储层特征及优质储层影响因素分析[J]. 非常规油气,2017,4(6):26-33.

    Yang Chuanqi, Liu Jiaqing, Chen Shihai, et al. Characteristics of tight sandstone reservoirs of Chang-6 and Chang-8 and analysis of influencing factors of high quality reservoirs in Maying-Zhifang area, Ordos Basin[J]. Unconventional Oil & Gas, 2017, 4(6): 26-33.
    [9] 吴则鑫. 苏里格气田致密气井产能主控因素分析[J]. 非常规油气,2018,5(5):62-67.

    Wu Zexin. Analysis of production capacity control factors of low-permeability tight gas reservoir[J]. Unconventional Oil & Gas, 2018, 5(5): 62-67.
    [10] Fisher J B, Boles J R. Water-rock interaction in Tertiary sandstones, San Joaquin Basin, California, U.S.A.: Diagenetic controls on water composition[J]. Chemical Geology, 1990, 82: 83-101.
    [11] Hanor J S. Origin of saline fluids in sedimentary basins[C]//Parnell M. Geofluids: Origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication,1994: 151-174.
    [12] Hanor J S. Physical and chemical controls on the composition of waters in sedimentary basins[J]. Marine and Petroleum Geology, 1994, 11(1): 31-45.
    [13] Land L S. Na-Ca-Cl saline formation waters, Frio Formation (Oligocene), South Texas, USA: Products of diagenesis[J]. Geochimica et Cosmochimica Acta, 1995, 59(11): 2163-2174.
    [14] Land L S, Macpherson G L. Origin of saline formation waters, Cenozoic section, Gulf of Mexico sedimentary basin[J]. AAPG Bulletin, 1992, 76(9): 1344-1362.
    [15] 王运所,许化政,王传刚,等. 鄂尔多斯盆地上古生界地层水分布与矿化度特征[J]. 石油学报,2010,31(5):748-753,761.

    Wang Yunsuo, Xu Huazheng, Wang Chuangang, et al. Characteristics of the salinity and distribution of the Neopaleozoic formation water in Ordos Basin[J]. Acta Petrolei Sinica, 2010, 31(5): 748-753, 761.
    [16] 裴泽,陈嘉荔. 苏里格气田西区地层水化学特征与气藏保存[J]. 石油工程建设,2014,40(6):65-67.

    Pei Ze, Chen Jiali. Chemical characteristics of formation water and gas reservoir preservation at west block of Sulige gas field[J]. Petroleum Engineering Construction, 2014 ,40(6): 65-67.
    [17] 李继宏,李荣西,韩天佑,等. 鄂尔多斯盆地西缘马家滩地区地层水与油气成藏关系研究[J]. 石油实验地质,2009,31(3):253-257.

    Li Jihong, Li Rongxi, Han Tianyou, et al. Study of stratum water and oil and gas accumulation relations of Majiatan area in the western Ordos Basin[J]. Petroleum Geology & Experiment, 2009, 31(3): 253-257.
    [18] 崔明明,王宗秀,樊爱萍,等. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系[J]. 天然气地球科学,2018,29(9):1364-1375.

    Cui Mingming, Wang Zongxiu, Fan Aiping, et al. Characteristics of formation water and gas-water relation in southwest Sulige gas field, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(9): 1364-1375.
    [19] 闵琪,付金华,席胜利,等. 鄂尔多斯盆地上古生界天然气运移聚集特征[J]. 石油勘探与开发,2000,27(4):26-29.

    Min Qi, Fu Jinhua, Xi Shengli, et al. Characteristics of natural gas migration and accumulation in the Upper Paleozoic of Ordos Basin[J]. Petroleum Exploration and Development, 2000, 27(4): 26-29.
    [20] 李剑锋. 鄂尔多斯盆地西缘古生界烃源岩生烃潜力及油气地球化学特征研究[D]. 西安:西北大学,2005.

    Li Jianfeng. Study on the hydrocarbon potential of Paleozoic source rock and the geochemical character of condensate & gases in the west Ordos Basin[D]. Xi’an: Northwest University, 2005.
    [21] 查明,陈中红. 山东东营凹陷前古近系水化学场、水动力场与油气成藏[J]. 现代地质,2008,22(4):567-575.

    Zha Ming, Chen Zhonghong. Formation water chemical and hydrodynamic fields and their relations to the hydrocarbon accumulation in the pre-tertiary of Dongying Depression, Shandong[J]. Geoscience, 2008, 22(4): 567-575.
    [22] 刘济民. 油田水文地质勘探中水化学及其特性指标的综合应用[J]. 石油勘探与开发,1982,9(6):49-55.

    Liu Jimin. The characteristics of underground water chemistry and its application in oilfield hydrology exploration[J]. Petroleum Exploration and Development, 1982, 9(6): 49-55.
    [23] 赵兴齐,陈践发,程锐,等. 开鲁盆地奈曼凹陷奈1区块九佛堂组地层水地球化学特征与油气保存条件[J]. 中国石油大学学报(自然科学版),2015,39(3):47-56.

    Zhao Xingqi, Chen Jianfa, Cheng Rui, et al. Geochemical characteristics of formation water and hydrocarbon preservation of Jiufotang Formation in Nai 1 block of Naiman Sag, Kailu Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(3): 47-56.
    [24] 李伟. 塔里木盆地油田水文地质与油气聚集关系研究[M]. 北京:石油工业出版社,1995:122-132.

    Li Wei. Research on the relationship between hydrogeology and oil and gas accumulation of oil fields in Tarim Basin[M]. Beijing: Petroleum Industry Press, 1995: 122-132.
    [25] 刘崇禧. 我国陆相盆地油田水文地球化学特征[J]. 地球化学,1982,11(2):190-197.

    Liu Chongxi. Hydrogeochemical characteristics of non-marine oil-field basins in China[J]. Geochimica, 1982, 11(2): 190-197.
    [26] 李伟,刘济民,陈晓红,等. 吐鲁番坳陷油田水地化特征及其石油地质意义[J]. 石油勘探与开发,1994,21(5):12-18.

    Li Wei, Liu Jimin, Chen Xiaohong, et al. Characteristics of oil field water in Turpan Depression and its petroleum geological significance[J]. Petroleum Exploration and Development, 1994, 21(5): 12-18.
    [27] 王泽明,鲁宝菊,段传丽,等. 苏里格气田苏20区块气水分布规律[J]. 天然气工业,2010,30(12):37-40.

    Wang Zeming, Lu Baoju, Duan Chuanli, et al. Gas-water distribution pattern in block 20 of the Sulige gas field[J]. Natural gas Industry, 2010, 30(12): 37-40.
    [28] 王波,陈义才,李小娟,等. 苏里格气田盒8段气水分布及其控制因素[J]. 天然气勘探与开发,2010,33(2):29-33.

    Wang Bo, Chen Yicai, Li Xiaojuan, et al. Gas-water distribution and its control factors of He 8 member in Sulige gas field[J]. Natural Gas Exploration and Development, 2010, 33(2): 29-33.
    [29] 孟德伟,贾爱林,冀光,等. 大型致密砂岩气田气水分布规律及控制因素:以鄂尔多斯盆地苏里格气田西区为例[J]. 石油勘探与开发,2016,43(4):607-614,635.

    Meng Dewei, Jia Ailin, Ji Guang, et al. Water and gas distribution and its controlling factors of large scale tight sand gas: A case study of western Sulige gas field, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 607-614, 635.
    [30] 张一果,孙卫,马永平. 鄂尔多斯盆地苏里格气田异常低压成因探讨[J]. 地下水,2013,35(3):237-238,254.

    Zhang Yiguo, Sun Wei, Ma Yongping.Discussion on the cause of abnormal low pressure in Sulige gas field, Ordos Basin[J]. Ground Water, 2013, 35(3): 237-238, 254.
    [31] 王颖. 苏里格气田苏11区块气水分布特征及控制因素分析[J]. 非常规油气,2017,4(3):25-28,14.

    Wang Ying. Analysis on characteristics and controlling factors of gas-water distribution pattern in Su 11 block of Sulige gas field[J]. Unconventional Oil & Gas, 2017, 4(3): 25-28, 14.
    [32] 孟琦,刘红兵,万鹤,等. 低渗透气藏气井产能预测新方法[J]. 非常规油气,2018,5(2):50-54.

    Meng Qi, Liu Hongbing, Wan He, et al. A new method for production prediction of gas wells in low permeability reservoirs[J]. Unconventional Oil & Gas, 2018, 5(2): 50-54.
    [33] 王颖. 一种利用生产数据评价苏里格低渗气井产能的新方法[J]. 非常规油气,2020,7(4):85-90.

    Wang Ying. A new method for evaluating the productivity of gas wells in Sulige low permeability reservoirs by using the production data[J]. Unconventional Oil & Gas, 2020, 7(4): 85-90.
    [34] Fan A P, Yang R C, Lenhardt N, et al. Cementation and porosity evolution of tight sandstone reservoirs in the Permian Sulige gas field, Ordos Basin (central China)[J]. Marine and Petroleum Geology, 2019, 103: 276-293.
    [35] Yang R C, Fan A P, Van Loon A J, et al. Depositional and diagenetic controls on sandstone reservoirs with low porosity and low permeability in the eastern Sulige gas field, China[J]. Acta Geologica Sinica, 2014, 88(5): 1513-1534.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(5)

Article Metrics

Article views(401) PDF downloads(201) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-04-14
  • Revised:  2020-09-05
  • Published:  2022-01-10

Origin, Distribution and Controlling Factors of Stratigraphic Water in the Western Sulige Gas Field

doi: 10.14027/j.issn.1000-0550.2020.079
Funds:

China⁃ASEAN Maritime Cooperation Fund Project 12120100500017001

National Natural Science Foundation of China 41402120

Abstract: Severe water production of gas wells in the western Sulige gas field restricts the development of gas production from the dense sandstone in this area. The unclear nature of the origin, distribution and behavior of the groundwater have been a a key scientific problem. In this study, the stratigraphic water properties and geochemical characteristics were analyzed from a large amount of logging data and the collection of dynamic production data. The results show that (1) the stratigraphic water is highly saline at the level of brine, as a whole; (2) the water is mainly CaCl2 type; and (3) its pH is weakly acid. The following conclusions were drawn from the study. (1) The stratigraphic water stems mainly from a buried metamorphic source, and the good state of its preservation in the groundwater is also beneficial for the preservation of natural gas. (2) The spatial distribution of the stratigraphic water is consistent with that of the lower gas (S1 sub-member) and upper water (H8u sub-member) and east gas⁃west water. (3) In the study area, the water is mainly of three types: low-structure water (type I), low permeability zone retention water (type II) and isolated lens water (type III). (4) The lower part of the western structure contains mostly type I water; the H8l sub-member, the edge of the sand body and the gently sloping zone form the low-permeability zone that retains type II water; and the H8u sub-member and the highest part of the eastern zone of the study area contain mostly type III isolated lenses of water. (5) Gas in the dense sandstone of the western Sulige gas field has the characteristics of near-source reservoir formation; and (6) the main factors controlling the gas⁃water distribution include the hydrocarbon supply potential of the gas source rocks, the physical properties of the reservoir, the vertical migration distance, and its tectonic location, among other factors. These findings, which have clarified the origin of the groundwater, its distribution and controlling factors, and have established the gas⁃water distribution and natural gas accumulation mode, can be used to guide water-avoidance in the gas field.

YANG RenChao, DONG Liang, ZHANG Ji, WANG Yi, FAN AiPing. Origin, Distribution and Controlling Factors of Stratigraphic Water in the Western Sulige Gas Field[J]. Acta Sedimentologica Sinica, 2022, 40(1): 267-280. doi: 10.14027/j.issn.1000-0550.2020.079
Citation: YANG RenChao, DONG Liang, ZHANG Ji, WANG Yi, FAN AiPing. Origin, Distribution and Controlling Factors of Stratigraphic Water in the Western Sulige Gas Field[J]. Acta Sedimentologica Sinica, 2022, 40(1): 267-280. doi: 10.14027/j.issn.1000-0550.2020.079
  • 苏里格气田为我国陆上产能最大的天然气气田,但气田西区气井产水严重,气水关系复杂,地层水成因、分布规律与控制因素不明,且不同气井在产水量、产气量、水气比、出水阶段、产水对气井的影响程度等方面都存在差异,这些问题直接影响了生产井布署及气田高效滚动开发进程。在最近的生产过程中,天然气富集区域产能减少,逐渐由产气富集区向气水混合区及富水区发展,气井投产后压力下降较快,天然气产能不足而产水严重,对苏里格气田西区生产工作造成巨大困难。针对研究区的开发现状,通过地层水地球化学特征分析,明确地层水成因,把握气水分布规律,明确气水分布地质控制因素,成为该区滚动开发、有利区筛选、井位优选等气田开发工作的迫切需求[1-4]

  • 鄂尔多斯盆地是我国第二大沉积盆地,位于我国中部地区,地处阴山—大青山以南,贺兰—六盘山以东,秦岭以北,吕梁—中条山以西,北靠黄河河套,南接渭北高原,横跨陕、甘、宁、晋以及内蒙古自治区,总面积达37×104 km2。它在大地构造属性上属地台型构造沉积盆地,原属华北地台的一部分,其整体为一个近南北向似矩形的中、新生代内陆坳陷盆地,位于中国东部稳定区和西部活动带的结合部位,具有稳定沉降、坳陷迁移、扭动明显的多旋回沉积型特点[5-6]。根据现今的构造形态和盆地演化史,盆地内可划分为六个一级构造单元:伊盟隆起、渭北隆起、晋西褶曲带、陕北斜坡、天环坳陷和西缘褶皱冲断带(图1)。石炭系—二叠系自下而上依次为本溪组、太原组、山西组、石盒子组和石千峰组。本溪组—太原组主要发育障壁岛—潟湖、潮坪沉积,山西组、石盒子组及石千峰组以河流—湖泊三角洲相沉积为主[7-8]

    Figure 1.  Division of tectonic units in Ordos Basin (modified from reference[5]) and structural map of top surface of H8 section

    研究区位于鄂尔多斯盆地苏里格气田西区南部,整体位于盆地陕北斜坡西部构造低部位,总体呈现北东高、南西低的西倾单斜构造,坡降3~10 m/km,区块面积1 745 km2。研究区内断层不发育,仅发育一系列北东—南西走向低缓鼻隆构造,宽度5~8 km,长度10~35 km,起伏幅度10~25 m(图1)。研究区内天然气资源量巨大,已探明的天然气地质储量1.887×1011 m3,其主力含气层段为二叠系下石盒子组盒8段和山西组1段。近年来,随着气田不断开发,部分气井产水严重,气水分布关系复杂[9];各井产能差别较大,气水产量规律不明。如S-7-59井日产气量6.95×104 m3,日产水量8.6×104 m3;相邻的S-7-45井产气仅0.71×104 m3、产水6×104 m3。因此,本文将重点研究苏里格气田西部地层水性质及地球化学特征,分析地层水成因,查明地层水分布规律,筛选天然气富集区,以期为该区天然气避水开发提供地质依据。

  • 地层水是油气储层中与油气伴生的地下水,是油气运移的动力和载体。地层水中常常保留了油气运移、聚集和成藏的信息[10-15]。地层水与石油、天然气共存于同一地层流体系统中,它们之间存在着密切的成因联系。从有机质的热演化到油气生成、运移和聚集成藏,地层水在其中都起到了重要作用。因此,地层水化学成分及其分布特征在一定程度上反映了油气的形成与分布特征。研究地层水性质及地球化学特征,推断地层水的成因,对于发现油气田油、气、水分布规律,分析油气运移、聚集和油气藏形成、保存条件都具有重要意义。

  • 在含油气盆地的发展过程中,伴随着油气的生、储、运、集、散,地下水的化学成分也和油气的变化一样,经历了复杂而漫长的化学演化过程。含水岩系经过沉积、浅埋、深埋、变质及淋滤等水文地质发展阶段,油、气、水之间相互发生活跃的化学反应[16-20],致使储层水化学成分重新分配和组合,形成新的水化学类型和特殊的水化学性质。

    研究区地层水中浓度最高的离子是Cl-,其次是K++Na+、Ca2+表1),主要离子浓度组合是Cl->K++Na+>Ca2+> S O 4 2 - >Mg2+> H C O 3 - 。阳离子组成中,以K++Na+含量占优势,介于58.21%~65.32%,Ca2+含量和Mg2+含量很低;阴离子组成中,以Cl-为主, S O 4 2 - 次之,Cl-含量介于85.6%~98.4%, H C O 3 - 含量极低。地层水主要离子浓度与深度的关系各不相同。K++Na+和Cl-随深度的变化与矿化度随深度的变化具有高度一致性,说明地层水的矿化度大小主要取决于K++Na+和Cl-的含量。

    井号 K+Na Ca2+ Mg2+ Cl- S O 4 2 - H C O 3 -
    SX-6-71 5 501 3 894 203 17 908 184 303
    SX-15-36 9 871 7 713 407 27 588 3 215 143
    SX-4-33 10 715 6 539 305 23 487 7 233 251
    SX-24-39 4 718 4 786 847 15 906 2 867 315
    SX-2-34H 7 411 6 219 122 22 103 721 247

    Table 1.  Formation water ion concentration (mg/L), western Sulige gas field

    地层水中各种离子的含量反映了所在地层的水动力特征和水化学环境,在一定程度上可以说明油气的保存和破坏条件。研究区盒8段、山1段地层水中K+、Na+、Ca2+、Mg2+等阳离子含量差异悬殊,阳离子中以碱金属离子K+、Na+、Ca2+占绝对优势。主要是由于盒8段、山1段富集天然气,改变了地层的水化学环境,有利于Na+离子或钠盐富集,并为溶解度较低的Ca2+、Mg2+盐沉淀创造了有利条件。

    在主要阴离子Cl- H C O 3 - S O 4 2 - 中,Cl-具有最强的迁移性能,不易被黏土或其他矿物表面吸附,也不受生物积累影响。因此,盒8段、山1段地层水中Cl-含量较高,含量范围15 906~27 588 mg/L。 H C O 3 - 含量也占一定比例。深埋藏卤水中硫酸根的含量,受细菌活动和水中钙、银、钡离子含量以及pH值的影响,在缺氧条件下,由于脱硫细菌的作用,硫酸盐被还原成硫化氢,使硫酸根离子减少;当钙、银、钡含量较高时,它们同硫酸根离子作用生成沉淀,也使硫酸根离子数量减少。因此,研究区盒8段、山1段地层水中 S O 4 2 - 离子数量比较少。

  • 研究表明沉积盆地中地层水矿化度随深度的增加而增大,研究区地层水矿化度也有这种趋势。沉积盆地在初始沉积时沉积捕获的是正常海水(约35 000 mg/L)或湖水(小于1 000 mg/L),地层水矿化度较小。而在现今许多沉积盆地中,都存在着地层水矿化度异常高的地层,说明沉积物在沉积后,包括地层水在内的盆地流体又经历了大规模的垂向运移和侧向运移。

    从上述地层水的矿化度特征判断,研究区地层水属于埋藏变质型水,表明气水封闭性好。在此前提下,讨论矿化度对气水分布的影响才具有参考价值。由产气井在矿化度平面分布图的投点可知,矿化度越高,气藏产量越高;表明良好的封闭性对天然气的富集起建设性作用。

    从研究区矿化度等值线平面图来看(图2),全区从北偏西北往东南方向,矿化度总体呈现递减的趋势,北部矿化度较高,而西南部的矿化度较低。研究区中部是矿化度等值线分界线,中部偏西北和东北为高值区,其他地方数值偏小。这种矿化度分布趋势与气水在平面上的分布规律说明高矿化度区域气层更发育,也表明高矿化部位天然气可进入围岩,驱替地层水。

    Figure 2.  Salinity contour diagram of formation water,western Sulige gas field

    研究区地层水pH值为6~6.9,呈现弱酸性,而偏酸性地层水也是油气田地层水的一个显著特点[20]。说明研究区地下水经长期地层内部循环、经过充分的水岩作用而拥有高度变质的特征,而这一特点也有利于天然气的保存。

  • 根据地球化学家苏林据氯钠比等特征系数提出的地下水型分类及其建立的烃类聚集与水型关系的密切程度序列为CaCl2型>NaHCO3型>MgCl2型>Na2SO4型,发现研究区盒8段、山1段的地层水水型主要为CaCl2型(表2),Na2SO4与MgCl2的数量较少,且二者均为过渡类型,表明地层水在纵向上具有深层交替停滞状态特征,地下水处于还原环境,反映储层封闭的条件良好,对烃类聚集成藏与赋存非常有利。

    井号 层位 地层水离子含量(mg/L) 总矿化度 水型 pH值
    K++Na+ Ca2+ Mg2+ Cl- S O 4 2 - H C O 3 -
    SX-29-21 8下亚段 14 210.6 1 652.9 0.0 23 019.5 1 980.8 594.1 41 457.8 CaCl2 6.5
    SX-52-52 1 3 834.0 1 217.0 308.0 8 324.0 486.0 476.0 14 650.0 CaCl2 6.0
    SX-56-56 8上亚段 9 634.0 3 718.0 615.0 2 2196.0 810.0 734.0 37 710.0 CaCl2 6.0
    SX-46-50 8下亚段 6 405.0 1 420.0 31.0 9 510.0 3 645.0 471.0 21 480.0 Na2SO4 6.0
    SX-46-39 8下亚段 7 870.9 2 172.9 125.4 14 379.2 1 980.8 375.2 26 094.5 CaCl2 6.4
    SX-56-59 8下亚段 3 151.0 1 014.0 62.0 6 243.0 486.0 394.0 11 350.0 CaCl2 6.0
    SX-44-43 8下亚段 4 689.0 1 539.0 125.0 9 816.0 0.0 855.0 17 020.0 CaCl2 6.0
    SX-44-53 1 4 669.0 1 369.0 185.0 9 313.0 608.0 680.0 16 820.0 CaCl2 6.0
    SX-51-50 1 7 270.0 2 253.0 105.0 34 380.0 2 080.0 365.0 46 454.0 CaCl2 6.5
    SX-54-53 8下亚段 8 311.0 1 573.0 0.0 14 893.0 1 275.0 587.0 26 640.0 CaCl2 6.5
    SX-59-71 8下亚段 5 797.0 1 231.0 498.0 9 942.0 3 197.0 454.0 21 119.0 MgCl2 6.0
    SX-54-64 1 6 860.0 1 847.0 125.0 11 075.0 3 689.0 698.0 24 290.0 CaCl2 6.0
    SX-61-42 8下亚段 14 260.0 2 197.0 636.0 24 832.0 3 726.0 234.0 45 890.0 CaCl2 6.0
    SX-24-39 1 4 717.5 4 785.5 846.7 15 906.4 2 867.4 315.4 29 438.9 CaCl2 6.9

    Table 2.  Table of geochemical properties of formation water, western Sulige gas field

  • 钠氯系数(Na+/Cl-),该系数一般与油气聚集成藏无直接关系,其反映了地层水的浓缩变质作用和储层水文地球化学环境。在陆相沉积层中,若地下水钠氯系数(Na+/Cl-)>0.87,且矿化度高,可能是沉积水或变质的渗透水。若钠氯系数(Na+/Cl-)<0.87,则可能是变质的沉积水或高度变质的渗透水。一般认为,地层水封闭越好、越浓缩,变质越深,其钠氯系数(Na+/Cl-)比值越小,越利于油气保存。研究区钠氯系数均小于0.7(表3),说明天然气保存条件好。

    井号 层位 钠氯系数 脱硫系数 镁钙系数 钠钙系数 变质系数
    SX-29-21 8下亚段 0.62 0.09 0.00 8.60
    SX-52-52 1 0.46 0.06 0.25 3.15 39.47
    SX-56-56 8上亚段 0.43 0.04 0.17 2.59 51.76
    SX-46-50 8下亚段 0.67 0.38 0.02 4.51 513.39
    SX-46-39 8下亚段 0.55 0.14 0.06 3.62 177.43
    SX-56-59 8下亚段 0.50 0.08 0.06 3.11 151.52
    SX-44-43 8下亚段 0.48 0.00 0.08 3.05 116.04
    SX-44-53 1 0.50 0.07 0.14 3.41 75.58
    SX-51-50 1 0.21 0.06 0.05 3.23 396.67
    SX-54-53 8下亚段 0.56 0.09 0.00 5.28
    SX-59-71 8下亚段 0.58 0.32 0.40 4.71 31.60
    SX-54-64 1 0.62 0.33 0.07 3.71 143.48
    SX-61-42 8下亚段 0.57 0.15 0.29 6.49 61.47
    SX-24-39 1 0.30 0.18 0.18 0.99 24.36

    Table 3.  Formation hydrochemical parameters, western Sulige gas field

  • 脱硫系数通过地层水中 S O 4 2 - 的消耗程度反映地层水的氧化和还原状态。在还原环境中,当存在有机质时,脱硫酸细菌能使 S O 4 2 - 还原成H2S,使地下水中 S O 4 2 - 减少乃至消失, H C O 3 - 增加,pH值增大。脱硫系数越小,表明还原环境越强,地层封闭性越好,对油气的保存越有利。一般认为[21-22],地层水的脱硫酸系数小于1,表明地层水还原较彻底,且越小保存条件越好;若大于1,则认为还原作用不彻底,可能受到浅层氧化作用的影响。研究区脱硫系数均远小于1(表3),表明天然气保存条件好。

  • 镁钙系数(Mg2+/Ca2+)是表征浓缩变质作用和阳离子吸附交换作用强弱的水文地球化学重要参数之一[23-24]。镁钙系数越大,浓缩变质程度就越大,油田水封闭就越好,有利于油气聚集与保存。研究区油田水的镁钙系数变化较大(表3),对于天然气成藏条件分析仅具参考价值。

  • 钠钙系数(Na+/Ca2+)值分布在1~8.6之间,平均为3.8。地层水封闭越好、时间越长,浓缩变质越深,其钠钙系数(Na+/Ca2+)值越小,有利于油气的聚集。研究区钠钙系数多介于1~6.5(表3),有利于成藏。

  • 变质系数(Cl-+Na+)/Mg2+反映地下水的变质程度,间接反映地层的封闭性,其值越大代表地层封闭性越好、变质越深[25-26],一般变质系数大于4即为原生油气藏。从表3来看,变质系数大多介于13.2以上,远高于上述判断的阈值。

  • 表2表3数据可以得出:钠氯系数(Na+/Cl-)值为0.21~0.67,平均为0.5;脱硫系数( S O 4 2 - /Cl-)值为0~0.38,平均0.14;镁钙系数(Mg2+/Ca2+)值分布在0~0.4之间,大部分小于0.2;钠钙系数(Na+/Ca2+)值分布在1~8.6之间,平均3.8;变质系数为8.3~258.2,主要分布在20~100之间,变质系数远大于4,则研究区就属于高变质系数地区且地层水属于未破坏的油气藏油田水。

    苏里格气田西区地层水具有如下特征:1)地层水pH呈现具弱酸性,中-高矿化度,水型以氯化钙型为主;2)地层水的离子含量高低差异悬殊,以Cl离子和Ca2+离子占优势;3)地层水化学特征参数具有钠氯系数低、变质系数高、脱硫系数低、镁钙系数低和钠钙系数低的特征。这些特征均反映出地层水良好的封存状态,有利于天然气聚集和保存,系埋藏变质型水[27-30]。综合分析认为,研究区气藏封闭性较好,所以地层水主要为与外界隔绝的残余水和变质的古沉积水。

  • 苏里格气田西区气井中,大多数为产气井,少数井为气水同产井或产水井。为了更加明确地层水在平面上的分布规律,分析统计了研究区109口井测井解释结果、试气资料和生产动态资料,解释了盒8上亚段、盒8下亚段和山1段的水层厚度,并绘制了各亚段内地层水平面展布图(图3)。

    Figure 3.  Spatial distribution map of formation water thickness(m), western Sulige gas field

    平面上,研究区西部构造低部位的含水比东部斜坡部位高,含水层厚度较大。该特点在盒8上亚段表现最为显著,研究区西部含水层厚度介于7~12 m;东部一般含水层厚度3~6 m。盒8下亚段也具有类似特征,西部含水层累积厚度可达19~23 m;而东部一般介于3~7 m,仅个别井累计厚度达14 m。

    纵向上,山1段产水井较少,累积含水厚度小;盒8下亚段含水井数最多,含水层累积厚度最大;盒8上亚段次之。山1段产水分布区域较小,水层厚度大多都在4~6 m,产水较多井的为S-19-82井,水层厚度达到6 m。盒8下亚段产水较多,分布区域广泛,产水最多的井为S-7-44井,水层厚度可达23 m,S184井产水也较多,厚度达14 m,其中水层厚度大于5 m的井还有S148井、S-20-46井、S-26-43井等,水层厚度大多分布在4~8 m。整体而言,盒8上亚段产水量较盒8下亚段产水少,水层厚度大多都在0~2 m,S-44-43井、S-30-46井、S161井、S-5-45井、S-55-50井是产水较多的井位,其中S-5-45井水层厚度可达12 m。

  • 依据地层水的空间分布和储集体性质的不同,将研究区地层水大致可以分为构造低部位水、孤立透镜状水和低渗带滞留水3类[31]图4)。分析盒8下亚段顶面构造与地层水厚度叠置平面图可以发现,研究区西部构造低部位含水较多(图5)。

    Figure 4.  Gas⁃water distribution profile, western Sulige gas field

    Figure 5.  Superposed diagrams of top surface structure and formation water thickness distribution in lower subsection of H8, western Sulige gas field

  • 这类地层水在测井解释上一般指水层或含气水层,水层厚度大,主要位于研究区构造低部位的鼻隆构造底部。苏里格气田整体属于“广覆式”生烃特点,而研究区远离主要生烃区域,生烃强度弱;也不具备天然气优先运移的条件,所以区域内天然气的供给能力有限,造成气水驱替动力不足,使得本来连通性好的砂体在低部位残留了原始地层水。

  • 这类地层水主要出现在研究区中部或西南部地区,储集砂体规模较小且远离烃源岩,导致天然气充注强度不足,地层水排泄不畅,滞留于相对孤立的单砂体内。该类地层水主要分布在河道底部相对孤立的砂体中,完全为地层水,不含油气。平面上分布多不连续,被不渗透或渗透性较差的泥岩和粉砂质泥岩所包围,地层水聚集在此类砂体后很难流出,因而被保存了下来。此类地层水在平面的分布上多呈孤立状,独立成片,横向连通性差,所以含此类地层水的气井在平面上常不均匀分布。

  • 这类地层水主要出现在储层低孔低渗和强非均质性背景下,含水饱和度高,储层为河道底部多期叠置砂体,在油气生成且大量充注之前,这些砂体内饱含地层水。进入生烃和排烃高峰期后,由于所处位置生烃强度相对较大,天然气获得强有力的补给并对储集砂体及时充注,使得天然气呈水溶相或游离相运移。随着天然气的不断充注,储层中天然气含量逐步增加,当充注到一定程度后,天然气将沿着已连通的有限通道运移,而其余通道就会相应的合并或停止增长,从而导致储层孔隙度逐渐变小,渗透率降低,渗流阻力增大。天然气充注到最后,物性较好的储层含气性往往较好,而物性较差的储层含气性差,一些致密储层甚至没有天然气的进入。而对于物性较差砂体而言,因一开始饱含地层水,水量较大,易形成低渗带滞留水。

    低渗气藏中含有较高的含水饱和度,由于气藏生成时天然气驱替地层水作用效率低,在气藏中形成大量残留水,残留水在气藏中越多,则含水饱和度越高,天然气在气藏中渗透率越低。如果孔隙中含水饱和度过高,而地层的压力不足以克服滞留在岩石中液体的毛细管压力,就不会形成产能[32-33];如果不能确认该类储层低渗的性质,那么在开采过程中打开这类储层时会有外来水的入侵,使得气体有效渗透率几倍甚至十几倍地下降,就更不会有有效的产层,对气藏的破坏也会更加严重。所以,在气田开发过程中要尽量避开这类储层,防止外来水入侵,保障有效产层,以达到较高的生产效率。

  • 苏里格气田气水分布规律复杂,气水分布控制因素多。对于断层构造不发育的苏里格气田致密砂岩气而言,控制气水分布的因素可能有气源岩供烃潜力、储层物性(表4)、垂向运移距离、构造位置等。由于断层不发育,缺乏垂向运移通道,对比分析研究区含气饱和度在各个层位的占比(图6),发现天然气垂向运移距离较近。从气源岩来看(表5),其气源岩主要为本溪组、太原组和山西组山2段的煤层、炭质泥岩(图7);在新生代构造抬升过程中,地层泄压,造成气源供给较弱;其储层主要为山1段、盒8段砂岩,岩性致密,具有典型的低孔低渗特征[34-35]。山1段砂岩储层靠近气源岩,具有“近水楼台先得月”的优势,其有效储层含气饱和度高,天然气驱替地层水作用较为彻底,山1段整体含水则自然最少。

    井号 水层
    层位 厚度/m 渗透率/×10-3 μm2 含气饱和度/%
    SX-52-52 1 4.4 0.1 51.5
    S90 8 2.4 0.6 40.9
    1 4.8 0.4 66.3
    SX-19-82 1 6.3 2.1 51.2
    SX-12-63 8 6.5 0.7 45.3
    8 3.5 1.1 42.0
    SX-9-63 8 4.6 1.6 34.8
    SX-9-64 8 7.6 1.6 31.7
    SX-5-45 8 11.6 0.7 35.7
    S155 8 5.9 0.4 39.0
    S184 8 13.6 0.4 34.8
    SX-26-43 8 9.3 0.5 35.2
    SX-2-41 8 1.8 0.4 38.7
    SX-31-24 8 9.7 0.5 41.0
    SX-50-75 8 5.2 0.2 31.3
    SX-20-77 8 6.4 0.7 19.5
    SX-7-62 8 3.3 0.9 27.9

    Table 4.  Physical properties of water formation and reservoir, western Sulige gas field

    Figure 6.  Histogram of gas saturation distribution, western Sulige gas field

    井号 气源岩 气层
    层位 厚度/m 层位 厚度/m 垂直距离/m 渗透率/×10-3 μm2 含气饱和度/%
    S148 2+太原+本溪 5.84 1 9.87 23.13 0.46 61.14
    SX-12-80 2+太原+本溪 10.04 8 4.24 77.30 0.49 51.33
    1 1.96 6.40 0.43 69.72
    SX-14-84 2+太原+本溪 9.10 8 3.31 68.64 0.37 49.27
    1 2.98 17.14 0.40 67.16
    SX-15-74 2+太原+本溪 12.2 8 2.20 116.58 0.62 35.37
    8 12.48 65.48 0.50 70.32
    1 4.70 28.98 0.36 51.24
    SX-15-78C4 2+太原+本溪 10.63 8 2.66 118.82 0.81 39.98
    8 14.31 62.42 0.39 80.12
    1 7.81 13.52 0.28 80.05
    SX-18-77 2+太原+本溪 6.36 8 2.33 80.24 0.52 80.22
    1 10.73 17.34 0.33 43.77
    SX-19-76 2+太原+本溪 5.50 8 4.16 138.57 0.56 35.65
    8 4.75 75.97 0.80 56.08
    1 13.74 26.27 0.27 75.84
    SX-21-65 2+太原+本溪 8.89 8 2.50 118.91 0.59 57.48
    8 10.75 100.51 1.26 75.79
    1 14.87 27.51 0.53 68.33
    SX-2-75 2+太原+本溪 9.69 8 5.03 132.09 1.45 55.91
    8 4.84 89.28 0.24 40.45
    1 6.34 27.28 0.31 50.81
    SX-20-78 2+太原+本溪 10.45 8 12.63 83.60 0.27 50.84
    1 2.95 43.90 0.13 35.70
    SX-56-56 2+太原+本溪 16.28 8 4.25 111.00 0.67 57.80
    8 21.11 73.40 1.05 50.65
    1 9.24 27.00 1.12 64.51
    SX-64-73 2+太原+本溪 11.95 8 3.87 87.95 0.22 11.81
    1 3.12 24.24 0.25 45.70
    SX-7-75 2+太原+本溪 12.48 8 10.89 79.88 0.42 58.07
    1 1.20 38.98 0.33 66.70
    SX-8-83 2+太原+本溪 10.66 8 5.38 88.88 0.40 67.57
    1 3.46 30.08 0.24 41.51
    SX-9-69 2+太原+本溪 9.24 8 10.59 123.04 0.92 61.71
    8 11.00 81.44 0.54 65.76
    1 19.62 28.44 1.62 57.05

    Table 5.  Physical properties and vertical thicknesses of gas source rocks and gas reservoirs, western Sulige gas field

    Figure 7.  Distribution map of gas source rock thickness, western Sulige gas field

    8下亚段砂体厚度大,沉积物粒度粗[34-35],物性最好(表5),天然气垂向运移距离中等,天然气驱替地层水作用不够彻底。因此,盒8下亚段累计含水厚度较大,以低渗带滞留水为主。在沉积过程中,河道边部的水动力条件较弱,故其沉积物粒度细、泥质杂基含量高,储层物性也一般较差,天然气驱替地层水作用不彻底,使得地层水多分布在构造斜坡带的砂体边部,天然气主要富集于斜坡带鼻隆构造与河道砂体叠置的区域。

    与盒8下亚段相比,盒8上亚段砂体厚度较小,沉积物粒度细,物性较差[34-35],天然气垂向运移距离最远,天然气驱替地层水作用最不彻底。因此,盒8上亚段累计含水厚度较大,以孤立透镜体水为主。天然气仅在斜坡带鼻隆构造与河道砂体中心带优质储层叠置的区域聚集成藏。

    空间立体分布图(图8)显示,构造低部位水多分布于研究区西部构造下倾位置,总结研究区内400余口气井的分析结果,结合研究区气井生产动态反馈情况,均发现该区的气水分布与试气资料和天然气实时开发动态资料吻合较好,表明气水分布模式的探究可以使苏里格气田西区开发过程中有效地避开地层水的干扰。

    Figure 8.  Gas⁃water distribution and gas accumulation pattern, western Sulige gas field

  • (1) 苏里格气田西区地层水矿化度高,整体属于盐水,局部可达卤水范畴;水型主要为CaCl2型;pH值显示弱酸性。研究区地层水主要为与外界隔绝的残余水和变质的古沉积水,地下水保存条件好,从而有利于天然气的保存。

    (2) 苏里格气田西区地层水的分布具有下气(山1段)上水(盒8上亚段)、东气西水的空间分布规律。垂向上,山1段砂岩储层含气性最好,含水最少;盒8下亚段、盒8上亚段含水较高。平面上,受东高西低的区域单斜构造控制,地层水在西部构造低部位分布较广。

    (3) 苏里格气田西区地层水分布类型可划分为三种:构造低部位水(Ⅰ型)、低渗带滞留水(Ⅱ型)、孤立透镜体水(Ⅲ型)。西部构造低部位多含水(Ⅰ型);盒8下亚段砂体边部、缓坡带多形成低渗带滞留水(Ⅱ型);盒8上亚段、研究区东部构造高部位多为孤立透镜体水(Ⅲ型)。

    (4) 苏里格气田西区致密砂岩气具有近源成藏的特点;控制气水分布的主要因素包括气源岩供烃潜力、储层物性、垂向运移距离、构造位置等。在明确地层水成因、分布规律与控制因素的基础上,建立稳定构造背景下致密砂岩储层气水分布与天然气成藏模式,可以有效指导气田的避水开发。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return