Advanced Search
Volume 40 Issue 4
Aug.  2022
Turn off MathJax
Article Contents

WANG Jian, PENG Jie, CAO YingChang, LIU KeYu, SONG MingShui, LIU HuiMin. Mid-late Eocene Paleoclimate Characteristics and Significance in the Dongying Depression: An example from well Hk-1[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1059-1072. doi: 10.14027/j.issn.1000-0550.2021.010
Citation: WANG Jian, PENG Jie, CAO YingChang, LIU KeYu, SONG MingShui, LIU HuiMin. Mid-late Eocene Paleoclimate Characteristics and Significance in the Dongying Depression: An example from well Hk-1[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1059-1072. doi: 10.14027/j.issn.1000-0550.2021.010

Mid-late Eocene Paleoclimate Characteristics and Significance in the Dongying Depression: An example from well Hk-1

doi: 10.14027/j.issn.1000-0550.2021.010
Funds:

National Key Research and Development Program of China 2019YFC0605501

Natural Science Foundation of Shandong Province ZR2019MD004

Fundamental Research Funds for the Central Universities and the Development Fund of Key Laboratory of Deep Oil & Gas 20CX02102A

  • Received Date: 2020-09-30
  • Rev Recd Date: 2021-01-07
  • Publish Date: 2022-08-10
  • The mid⁃late Eocene with complex paleoclimate change is a key period for understanding the evolution of Paleogene paleoclimate in East Asia. Previous studies focused on this period were mainly based on sedimentological data from central and western China, but the paucity of sedimentary stratigraphic evidence from eastern China make the mid⁃late Eocene climate evolution a continuing area of research interest. The sediments of the Dongying Depression in eastern China provide a stratigraphic sequence of red-bed clastic rocks, gypsum-salt rocks and shallow-semi-deep lacustrine mudstones during the mid-late Eocene, which was a period highly sensitive to paleoclimate change. Selecting the Fourth member of the Shahejie Formation (Es4) of the Hk1 well as the study object, the evolutional characteristics and corresponding significance of the mid⁃late Eocene climate are discussed with relation to a comprehensive analysis of sedimentological data and geochemical indicators (e.g., Na/Al ratio and the Chemical Index of Weathering (CIW’)). The results indicate that the mid⁃late Eocene paleoclimate evolution in eastern China may be divided into five stages, in which the trends of paleoclimate change in stages 1⁃3 were similar to those in central and western China: long-term drying and cooling trend with the Middle Eocene Climate Optimum (MECO). The trends in stages 4 and 5 were clearly distinct from those in central and western China. The climate in eastern China became relatively humid and the latitudinal zonal paleoclimate pattern was beginning to be broken during stage 4. The paleoclimate pattern change from latitudinal zones to east/humid and west/arid during stage 5 suggest that the East Asian summer monsoon became prevalent and dominated the climate in eastern China at that time.
  • [1] Ma X L, Jiang H C, Cheng J, et al. Spatiotemporal evolution of Paleogene palynoflora in China and its implication for development of the extensional basins in East China[J]. Review of Palaeobotany and Palynology, 2012, 184: 24-35.
    [2] Wang D H, Lu S C, Han S, et al. Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics[J]. Journal of Asian Earth Sciences, 2013, 62: 776-787.
    [3] Sayem A S M, Guo Z T, Wu H B, et al. Sedimentary and geochemical evidence of Eocene climate change in the Xining Basin, northeastern Tibetan Plateau[J]. Science China Earth Sciences, 2018, 61(9): 1292-1305.
    [4] Abels H A, Dupont-Nivet G, Xiao G Q, et al. Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 399-412.
    [5] Hoorn C, Straathof J, Abels H A, et al. A Late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 344-345: 16-38.
    [6] Kargaranbafghi F, Neubauer F. Tectonic forcing to global cooling and aridification at the Eocene-Oligocene transition in the Iranian Plateau[J]. Global and Planetary Change, 2018, 171: 248-254.
    [7] Liu X D, Yin Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3/4): 223-245.
    [8] Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445(7128): 635-638.
    [9] Zhang Z S, Wang H J, Guo Z T, et al. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3/4): 317-331.
    [10] Sun X J, Wang P X. How old is the Asian monsoon system?-Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.
    [11] 王健. 东营凹陷南部缓坡带薄砂体沉积特征及储层成岩改造模式[D]. 青岛:中国石油大学(华东),2013.

    Wang Jian. Sedimentary characteristics and reservoir diagenetic reconstruction model of thin sandbodies of southern gentle slope belt in Dongying Depression[D]. Qingdao: China University of Petroleum (East China), 2013.
    [12] Quan C, Liu Y S, Utescher T. Eocene monsoon prevalence over China: A paleobotanical perspective[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 302-311.
    [13] Quan C, Liu Z H, Utescher T, et al. Revisiting the Paleogene climate pattern of East Asia: A synthetic review[J]. Earth-Science Reviews, 2014, 139: 213-230.
    [14] 胡东生. 盐湖地学的研究进展和发展方向[J]. 地球科学进展,1997,12(5):411-415.

    Hu Dongsheng. Research progress and developmental direction in the geology of salt lakes[J]. Advance in Earth Sciences, 1997, 12(5): 411-415.
    [15] Wang J, Wang Y J, Liu Z C, et al. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1/2): 37-47.
    [16] Wang J, Cao Y C, Liu K Y, et al. Pore fluid evolution, distribution and water-rock interactions of carbonate cements in red-bed sandstone reservoirs in the Dongying Depression, China[J]. Marine and Petroleum Geology, 2016, 72: 279-294.
    [17] Wang J, Cao Y C, Liu K Y, et al. Diagenesis and evolution of the Lower Eocene red-bed sandstone reservoirs in the Dongying Depression, China[J]. Marine and Petroleum Geology, 2018, 94: 230-245.
    [18] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163.
    [19] Huber M, Goldner A. Eocene monsoons[J]. Journal of Asian Earth Sciences, 2012, 44: 3-23.
    [20] Quan C, Liu Y S, Utescher T. Paleogene temperature gradient, seasonal variation and climate evolution of Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 313-314: 150-161.
    [21] Song B W, Zhang K X, Lu J F, et al. The Middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift[J]. Canadian Journal of Earth Sciences, 2013, 50(2): 183-196.
    [22] Licht A, Van Cappelle M, Abels H A, et al. Asian monsoons in a Late Eocene greenhouse world[J]. Nature, 2014, 513(7519): 501-506.
    [23] Quan C, Liu Y S, Utescher T. Paleogene evolution of precipitation in northeastern China supporting the Middle Eocene intensification of the East Asian monsoon[J]. PALAIOS, 2011, 26(11): 743-753.
    [24] Guo X W, He S, Liu K Y, et al. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2010, 94(12): 1859-1881.
    [25] Lampe C, Song G Q, Cong L Z, et al. Fault control on hydrocarbon migration and accumulation in the Tertiary Dongying Depression, Bohai Basin, China[J]. AAPG Bulletin, 2012, 96(6): 983-1000.
    [26] Wang J, Cao Y C, Liu H M, et al. Formation conditions and sedimentary model of over-flooding lake deltas within continental lake basins: An example from the Paleogene in the Jiyang Subbasin, Bohai Bay Basin[J]. Acta Geologica Sinica (English Edition), 2015, 89(1): 270-284.
    [27] Liang C, Wu J, Jiang Z X, et al. Sedimentary environmental controls on petrology and organic matter accumulation in the Upper Fourth member of the Shahejie Formation (Paleogene, Dongying Depression, Bohai Bay Basin, China)[J]. International Journal of Coal Geology, 2018, 186: 1-13.
    [28] Liu J, Wang J, Cao Y C, et al. Sedimentation in a continental high-frequency oscillatory lake in an arid climatic background: A case study of the Lower Eocene in the Dongying Depression, China[J]. Journal of Earth Science, 2017, 28(4): 628-644.
    [29] Nijenhuis I A, Bosch H J, Sinninghe Damsté J S, et al. Organic matter and trace element rich sapropels and black shales: A geochemical comparison[J]. Earth and Planetary Science Letters, 1999, 169(3/4): 277-290.
    [30] Hinnov L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 419-475.
    [31] Schwarzacher W. Repetitions and cycles in stratigraphy[J]. Earth-Science Reviews, 2000, 50(1/2): 51-75.
    [32] Schnyder J, Ruffell A, Deconinck J F, et al. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining Late Jurassic-Early Cretaceous palaeoclimate change (Dorset, U.K.)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 303-320.
    [33] Wu H C, Zhang S H, Jiang G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for Long-Period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
    [34] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.

    Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(3): 409-428.
    [35] Hammer Ø, Harper D A T, Ryan P D. PAST: Paleontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1): 1-9.
    [36] Paulissen W E, Luthi S M. High-frequency cyclicity in a Miocene sequence of the Vienna Basin established from high-resolution logs and robust chronostratigraphic tuning[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307(1/4): 313-323.
    [37] Wu H C, Zhang S H, Jiang G Q, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 308-323.
    [38] Huang C J, Hinnov L, Fischer A G, et al. Astronomical tuning of the Aptian Stage from Italian reference sections[J]. Geology, 2010, 38(10): 899-902.
    [39] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
    [40] Fang Q, Wu H C, Hinnov L A, et al. A record of astronomically forced climate change in a Late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China[J]. Sedimentary Geology, 2016, 341: 163-174.
    [41] 姚益民,徐道一,张海峰,等. 山东东营凹陷新生代天文地层表简介[J]. 地层学杂志,2007,31(增刊2):423-429.

    Yao Yimin, Xu Daoyi, Zhang Haifeng, et al. A brief introduction to the Cenozoic astrostratigraphic time scale for the Dongying Depression, Shandong[J]. Journal of Stratigraphy, 2007, 31(Suppl. 2): 423-429.
    [42] Schulz M, Mudelsee M. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002, 28(3): 421-426.
    [43] Drummond C N, Wilkinson B H, Lohmann K C, et al. Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 101(1/2): 67-79.
    [44] 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.

    Song Mingshui. Sedimentary environment geochemistry in the Shasi section of southern ramp, Dongying Depression[J]. Journal of Mineralogy and Petrology, 2005, 25(1): 67-73.
    [45] 孙立新,张云,张天福,等. 鄂尔多斯北部侏罗纪延安组、直罗组孢粉化石及其古气候意义[J]. 地学前缘,2017,24(1):32-51.

    Sun Lixin, Zhang Yun, Zhang Tianfu, et al. Jurassic sporopollen of Yan’an Formation and Zhiluo Formation in the northeastern Ordos Basin, Inner Mongolia, and its paleoclimatic significance[J]. Earth Science Frontiers, 2017, 24(1): 32-51.
    [46] Graham S A, Chamberlain C P, Yue Y J, et al. Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin[J]. American Journal of Science, 2005, 305(2): 101-118.
    [47] Liang C, Jiang Z X, Cao Y C, et al. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression[J]. GSA Bulletin, 2018, 130(1/2): 154-174.
    [48] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
    [49] Zachos J C, Dickens G R, Zeebe R E. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176): 279-283.
    [50] Bohaty S M, Zachos J C. Significant southern ocean warming event in the Late Middle Eocene[J]. Geology, 2003, 31(11): 1017-1020.
    [51] Zhang R, Jiang D B, Ramstein G, et al. Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: A modeling study[J]. Earth and Planetary Science Letters, 2018, 484: 295-308.
    [52] Bosboom R E, Dupont-Nivet G, Houben A J P, et al. Late Eocene sea retreat from the Tarim Basin (West China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 385-398.
    [53] Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992.
    [54] van der Beek P, van Melle J, Guillot S, et al. Eocene Tibetan Plateau remnants preserved in the Northwest Himalaya[J]. Nature Geoscience, 2009, 2(5): 364-368.
    [55] Beerling D J, Royer D L. Convergent Cenozoic CO2 history[J]. Nature Geoscience, 2011, 4(7): 418-420.
    [56] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
    [57] Carrapa B, DeCelles P G, Wang X, et al. Tectono-climatic implications of Eocene Paratethys regression in the Tajik Basin of central Asia[J]. Earth and Planetary Science Letters, 2015, 424: 168-178.
    [58] Zhang Z S, Flatøy F, Wang H J, et al. Early Eocene Asian climate dominated by desert and steppe with limited monsoons[J]. Journal of Asian Earth Sciences, 2012, 44: 24-35.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(261) PDF downloads(124) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-09-30
  • Revised:  2021-01-07
  • Published:  2022-08-10

Mid-late Eocene Paleoclimate Characteristics and Significance in the Dongying Depression: An example from well Hk-1

doi: 10.14027/j.issn.1000-0550.2021.010
Funds:

National Key Research and Development Program of China 2019YFC0605501

Natural Science Foundation of Shandong Province ZR2019MD004

Fundamental Research Funds for the Central Universities and the Development Fund of Key Laboratory of Deep Oil & Gas 20CX02102A

Abstract: The mid⁃late Eocene with complex paleoclimate change is a key period for understanding the evolution of Paleogene paleoclimate in East Asia. Previous studies focused on this period were mainly based on sedimentological data from central and western China, but the paucity of sedimentary stratigraphic evidence from eastern China make the mid⁃late Eocene climate evolution a continuing area of research interest. The sediments of the Dongying Depression in eastern China provide a stratigraphic sequence of red-bed clastic rocks, gypsum-salt rocks and shallow-semi-deep lacustrine mudstones during the mid-late Eocene, which was a period highly sensitive to paleoclimate change. Selecting the Fourth member of the Shahejie Formation (Es4) of the Hk1 well as the study object, the evolutional characteristics and corresponding significance of the mid⁃late Eocene climate are discussed with relation to a comprehensive analysis of sedimentological data and geochemical indicators (e.g., Na/Al ratio and the Chemical Index of Weathering (CIW’)). The results indicate that the mid⁃late Eocene paleoclimate evolution in eastern China may be divided into five stages, in which the trends of paleoclimate change in stages 1⁃3 were similar to those in central and western China: long-term drying and cooling trend with the Middle Eocene Climate Optimum (MECO). The trends in stages 4 and 5 were clearly distinct from those in central and western China. The climate in eastern China became relatively humid and the latitudinal zonal paleoclimate pattern was beginning to be broken during stage 4. The paleoclimate pattern change from latitudinal zones to east/humid and west/arid during stage 5 suggest that the East Asian summer monsoon became prevalent and dominated the climate in eastern China at that time.

WANG Jian, PENG Jie, CAO YingChang, LIU KeYu, SONG MingShui, LIU HuiMin. Mid-late Eocene Paleoclimate Characteristics and Significance in the Dongying Depression: An example from well Hk-1[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1059-1072. doi: 10.14027/j.issn.1000-0550.2021.010
Citation: WANG Jian, PENG Jie, CAO YingChang, LIU KeYu, SONG MingShui, LIU HuiMin. Mid-late Eocene Paleoclimate Characteristics and Significance in the Dongying Depression: An example from well Hk-1[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1059-1072. doi: 10.14027/j.issn.1000-0550.2021.010
  • 古新世—早始新世气候是新生代以来最温暖的时期[12],始新世中晚期是全球气候条件从温室向初始冰室过渡的重要时期(约49~33 Ma)。在此期间古气候长期呈降温趋势,最终导致在渐新世转变为冰室气候条件[3],伴随着这种长期降温趋势的是一系列突然而短暂的降温和变暖事件,这使得全球始新世气候变化复杂,被称为“Doubthouse”[46]。在亚洲地区,由于全球气候变冷、青藏高原的隆升和塔里木盆地海退等原因,始新世的气候变化更为复杂,中国新生代地层中含有大量的孢粉化石和地层学资料,是了解新生代东亚地区古气候格局和演化趋势的重要区域[2,5,711]

    受行星风系控制,始新世早期中国被分为三个气候带(图1a)[10],即中部以广泛发育的蒸发岩和红层沉积为标志的(半)干旱带和南北两侧以煤、油页岩和森林花粉组合为标志的湿润气候带[10,1213]。中部干旱带的盐湖和红层沉积不仅记录着沉积环境变化的信息,更是古气候演化的重要载体[1417]。研究表明,晚渐新世(24 Ma)时,行星风系控制的纬度分带古气候格局已经转变为与现今极为相似的季风气候格局[10,18]。越来越多的证据显示,在始新世时期古气候格局已发生明显改变[1,12,1920],以往针对中部干旱带始新世古气候演化的研究主要集中在中国西部的西宁盆地、柴达木盆地等[3,2122],缺少中国东部广泛分布的沉积地层的证据,使得行星风系控制的气候分带格局被打破的时间,以及其后的气候演化特征仍存在非常大的争议[1,910,1213,20,23]。中国东部的东营凹陷位于中部干旱带的东部边缘(图1a),中晚始新世时期发育有一套连续的红层—膏盐层—湖相泥岩沉积序列(图1c)[11],对古气候变化非常敏感,既受盛行西风的影响,又能及时记录季风气候格局的出现,是研究该时期古气候演化的重点区域。

    Figure 1.  Tectonic setting and distribution of gypsum⁃salt rocks of the Es 4x in the Dongying Depression

    文章通过对东营凹陷Hk1井沙三下亚段(Es 3x)—孔一上亚段(Ek 1s)进行天文旋回分析建立了东营凹陷Es 3x-Ek 1s的天文地层格架,对东营凹陷沙四段沉积时期进行了限定;同时分析了东营凹陷沙四段沉积学、地球化学[如:Na/Al比值、化学变化指数(CIW’)]特征,并与中国西部同时期古气候演化特征进行对比,探讨中晚始新世中国古气候演化特征及其意义。

  • 渤海湾盆地是我国东部重要的陆相含油气盆地,位于中部干旱带和北部湿润带交界处,面积约2×105 km2图1a)[10],其在中生代发育为弧后盆地,新生代转变为克拉通内裂陷盆地。渤海湾盆地的构造演化主要可分为裂陷期(65.0~24.6 Ma)和坳陷期(24.6 Ma至今)两个阶段[2426]。东营凹陷位于渤海湾盆地东南部(图1b),是济阳坳陷的一个次级构造单元。

    东营凹陷新生代沉积厚度可超过5 000 m,由古近系孔店组(Ek)、沙河街组(Es)、东营组(Ed)、新近系馆陶组(Ng)、明化镇组(Nm)和第四纪平原组(Qp)组成,沙河街组自下而上又可分为沙四段(Es 4),沙三段(Es 3),沙二段(Es 2)和沙一段(Es 1)(图2)。

    Figure 2.  Sedimentary facies and stratigraphic column of well Hk1 of the Es 3x⁃Es 4, Dongying Depression

    东营凹陷沙四段沉积时期内研究区气候整体干旱炎热[11,17,2728],是盐湖主要发育时期,各岩层单层厚度较小,主要为高盐度水体干旱条件下形成的蒸发岩、碳酸盐岩以及由季节性洪水带来的陆源碎屑沉积物互层[11,28]。Hk1井位于膏盐沉积中心,沉积有巨厚的红层碎屑沉积和膏盐岩(图1c)[11]。沙四下亚段(Es 4x)沉积物颜色以紫色、紫红色等氧化色为主,岩性主要为泥岩、粉砂岩以及含膏泥岩,上部膏岩和盐岩含量增加,开始出现厚层蒸发岩。沙四上亚段(Es 4s)以灰色,深灰色等还原色为主,沙四上亚段下部以膏盐岩为主,上部膏岩消失,以(半)深湖相泥质为主(图2)。

  • 本次研究选取了Hk1井沙四段96个非等间隔砂泥岩样品,在实验室去除风化表面后将新鲜样品切下密封保存,并在中石化胜利油田地质科学研究院采用电感耦合等离子体发射光谱仪(ICP-AES)对这些砂泥岩样品进行无机地球化学元素测定。在进行测定之前先将保存好的样品冷冻干燥,并用研钵进行研磨,研磨后在90 ℃温度下在铁氟龙容器中利用10 mL HClO4(60%)、HNO3(65%)、H2O的6.5∶2.5∶1混合物和10 mL HF(40%)对得到的粉末状样品进行溶解,随后将所得溶液通过190 ℃沙浴蒸发至干燥后将残留物溶解在50 mL 1-M HCl中进行分析测试[29]。样品测试温度为22 ℃,湿度为60%,测试误差小于5%。

  • 自然伽马测井(GR)能够反映细粒沉积物中的物质组成含量变化,且垂向连续性好,因此常选用自然伽马测井数据作为古气候替代性指标来反映古环境和古气候的变化[3033]。Hk1井钻深超过5 000余米,自然伽马测井连续性好,研究选取了HK1井沙三下亚段—孔一上亚段(2 929~5 140 m)共计8 845个自然伽马测井数据点进行分析计算。GR曲线作为古气候替代性指标常包含有各种因素所引起的环境噪音,为了得到更好的分析结果,本次研究主要对所选取的自然伽马测井数据进行了去均值化和去趋势化预处理[3436]

  • 根据现有研究,主要的天文轨道周期有(长、短)偏心率、斜率以及岁差三种,比率大致为20∶5∶2∶1[3738]。但是由于地球与其他星球的相互作用以及地球自转等因素的影响,各天文轨道周期都处在一个动态变化中[3940],为了得到更准确的天文轨道周期,需要计算各地质历史时期内的天文轨道周期。

    东营凹陷沙三中亚段和沙三下亚段界线的古地磁年龄为38.975 Ma[41],因此通过La2004计算方案计算了-50~30 Ma间的偏心率、斜率及岁差轨道参数[39]图3c,数据来源http://vo.imcce.fr/insola/earth/online/earth/earth.html),并通过Redfit软件对所获得轨道参数进行频谱分析,提取置信度超过95%的频率,共得到了7个相应的理论周期(图3a),同时使用Past软件进行连续小波变换(图3b),得出的小波波谱图中的平行带所对应的轨道周期与进行谱分析得到的周期有着很好的对应[35,39,42]。由此表明在-50~30 Ma间的主要轨道周期有:405 ka(E3),125 ka(E2),95.2 ka(E1),39.5 ka(O1),23.2 ka(P3),21.9 ka(P2)和18.6 ka(P1),其比值关系为21.774∶6.720∶5.118∶2.124∶1.247∶1.177∶1。

    Figure 3.  Theoretical orbital cycle of the Paleogene in the Dongying Depression

  • Hk1井沙三下亚段—孔一上亚段自然测井数据频谱分析结果显示研究区置信度超过95%的厚度周期主要有21.540 m,6.401 m,5.858 m,5.410 m(图4a)。此外,分析发现结果中超过80%置信度区间的峰值还存在110.56 m的厚度周期(图4a),且在连续小波变换图谱中也有明显反映(图4b),由此判定东营凹陷Es 3x-Ek 1s地层主要厚度周期有110.56 m,21.540 m,6.401 m,5.858 m,5.410 m。为确定地层中所观察到的旋回是否受天文轨道周期影响,最常用的方法就是比对观察到的旋回与该时期理论轨道旋回的相对比率[37]。研究区地层的主要周期比值为20.436∶3.982∶1.627∶1.083∶1,与该时期的米兰科维奇理论轨道周期405 ka∶95.2 ka∶39.5 ka∶23.2 ka∶21.9 ka(E3∶E1∶O1∶P3∶P2)吻合较好,可知东营凹陷沙三下亚段—孔一上亚段沉积受米兰科维奇旋回的控制[37]。长偏心率、短偏心率、斜率和岁差分别控制了110.560 m,21.540 m,6.401 m和5.858 m(5.410 m)厚度周期的旋回。

    Figure 4.  Spectrum analysis and wavelet transform diagram of GR of well Hk1, Es 3x⁃Ek 1s, Dongying Depression:

    随后采用高斯带通滤波器在GR曲线上分别对长偏心率(110.560 m),短偏心率(21.540 m),斜率(8.801 m)和岁差(5.858 m)进行滤波,构建沙三下亚段—孔一上亚段米氏旋回地层格架,并以沙三下亚段顶的古地磁年龄(38.975 Ma)为时间边界建立具有相对时间概念的浮动天文年代标尺(图5[41]。由此知东营凹陷沙三下亚段—孔一上亚段记录有21个E3长偏心率旋回(图5),持续时间约为8.505 Ma。

    Figure 5.  Identification and division of Milankovitch cycles, well Hk1, Es 3x⁃Ek 1s, Dongying Depression

  • 在沉积学上,陆相湖盆沉积是古气候演化的良好载体,其中最常用的指标有泥岩颜色和岩性[2,11]。本文根据Hk1井的岩性和泥岩颜色使用Wang et al.[2]的方法划分了研究区的沉积相,并以此为基础分析了研究区水文旋回和古气候特征(图2)。

    Hk1井沙四下亚段下部岩性以红色、紫红色泥岩和砂岩互层为主,表明此时沉积环境为干旱条件下的滨湖沉积,至沙四下亚段上部开始出现以厚层膏盐岩为代表的盐湖相沉积。沙四上亚段下部,研究区地层表现为厚层膏盐岩和灰色泥岩互层,反映该段沉积环境在(半)深湖和盐湖之间迅速变化,整体以盐湖沉积为主,气候干湿变化频繁且剧烈;沙四上亚段上部,湖盆水体进一步加深,沉积相转为(半)深湖相,气候湿润(图2)。

  • 除沉积学特征外,地球化学指标也常用于古气候研究。气候温暖潮湿时,化学风化作用加强,Sr含量和Na/Al比值低,Ca/Mg比值高[3,27,4344],但在气候非常炎热的条件下,Ca/Mg比值的高值反而指示干旱气候[45]。因此,将Na/Al,Ca/Mg比值、Sr含量和化学变化指数(CIW’)(研究区样品钙质含量相对较高,本研究使用改良过的化学变化指数{CIW’=[Al2O3/(Al2O3+Na2O)]×100}来替代化学蚀变指数(CIA)和化学风化指数(CIW)[3])作为古气候指标。Na元素含量和Sr/Ba比值可以用以分析水体古盐度,较高的Na含量和Sr/Ba值指示较高的古盐度[4647]。Al和K含量则可用于陆源供应分析,较高的Al,K含量表示较多的陆源输入[11,47]

    研究表明,古湖盆盐度、陆源输入等受古气候的控制。研究区内Ca/Mg比值与Al含量负相关(图6a),CIW’与Sr/Ba比值成负相关(图6c),表明气候对湖盆陆源输入和古盐度有较显著的影响,随着气候变暖变湿,陆源输入增加,古盐度降低。湖泊古盐度和陆源输入进一步控制湖盆沉积,Ca元素和Al元素含量的负相关关系表明陆源输入高时湖盆钙质含量低,主要沉积陆源碎屑(图6b),Ca元素含量和Sr/Ba比值则说明湖泊古盐度高时湖盆主要发育膏盐岩和碳酸盐沉积(图6d)。

    Figure 6.  Correlations between different geochemical parameters from well Hk1, Es 4, Dongying Depression

    东亚凹陷沙四段无机地球化学元素及其比值垂向分布如图7所示,Ca、Al元素含量高,Mg,Sr,Ba和Na元素含量低。Ca元素含量变化大,从1.51%~24.51%(平均值6.87%),Al元素含量在1.19%~10.97%之间(平均值6.59%),Fe元素含量在1.00%~10.13%之间(平均值3.78%),其它元素含量变化不大。根据岩性、元素含量及元素比值的垂向变化情况可将沙四段古气候演化分为五个阶段(图7)。

    Figure 7.  Variation characteristics of geochemical elements and their ratios and CIW’ of well Hk1 of the Es 4 in the Dongying Depression

    第1阶段(4 705~4 287 m),Na/Al(平均值为0.28),Ca/Mg(平均值为2.14),Sr(平均值为478.21 μg/g),Sr/Ba(平均值为0.31)值较低,整体呈增加趋势;Al(平均值为7.55%),CIW’(平均值为79)值较高,整体呈下降趋势,反映在研究区第一阶段化学风化程度较高,但随着时间的演化,古气候整体向着相对寒冷干旱的方向演化,陆源输入减少,水体古盐度逐渐增加。

    第2阶段(4 287~4 023 m)陆源输入减少,砂岩和粉砂岩含量减少,以红色泥岩层和含泥膏盐为主,上部出现厚层膏盐岩。Na/Al(平均值为0.45),Ca/Mg(平均值为2.53),Sr(平均值为931.98 μg/g),Al(平均值7.20%),CIW’(平均值为69)值的延续了第一阶段的变化趋势,但在第二阶段底部Al含量和CIW’值存在短期上升过程,表明该阶段古气候在初期略有回暖,并在之后继续朝着相对干冷的方向演化。

    第3阶段(4 023~3 755 m)岩性以红色泥岩为主,夹薄层砂岩和膏盐岩。该阶段Na/Al(平均值为0.44),Sr/Ba(平均值为2.03),Sr(平均值为953.84 μg/g)值在早期急剧降低,并在后期逐渐回升;Al(平均值7.04%),CIW’(平均值为71)等值早期则迅速增加,出现一段极大值区域,而后开始逐渐降低,指示该阶段早期古气候经历了一个短暂而剧烈的变暖过程并在后期持续降温。

    第4阶段(3 755~3 418 m)底界为Es 4x和Es 4s的边界,红色泥岩层消失,主要沉积厚层膏盐岩和灰色泥岩互层,沉积环境由氧化环境变为还原环境。Na/Al(平均值为0.72),Sr/Ba(平均值为4.68)虽然较第3阶段高,但整体呈减少趋势;而Al(平均值3.78%),CIW’(平均值60)值则呈增加趋势,指示第4阶段沉积时期研究区化学风化作用逐渐增强,古气候开始逐渐向湿润方向演化。

    第5阶段(3 418~3 239 m)沉积时期,膏盐岩消失,主要发育灰色泥岩和钙质泥岩互层。Na/Al(平均值为0.19),Sr/Ba(平均值为0.93)等值较上一阶段低许多;与Na/Al,Sr等相反,CIW’(平均值为84)值等在这一阶段达到最大,并保持相对稳定的状态,表明该阶段古气候在经历第4阶段的加湿过程后变得较为湿润。此外,此阶段Ca/Mg比值的增大也反映了此时气候相对湿润,钠盐、钾盐等易溶性盐类不参与沉淀[46]

  • 关于中国始新世气候情况,前人研究认为,中国中部存在一个近东西向分布的广泛的(半)干旱带(图1),以发育红层和蒸发岩为特征[10,1213,18]。然而,通过对东营凹陷Hk1井沙四段岩性和地化数据的综合分析发现东营凹陷在沙四上亚段沉积时期(中晚始新世)红层和蒸发岩逐渐消失,古气候由干旱转变为湿润,这显然表明在中晚始新世中国中部干旱带已经开始发生变化,这可能指示着行星风系控制的纬度分带古气候格局开始被打破。

    为了更加深入的了解始新世东亚地区古气候格局的演化,将研究区沙四段岩性、CIW’指数和相对湖平面变化曲线(图8a~c)与同时期中国西部的西宁盆地(图8d,e)[3]、柴达木盆地的古气候演化指标(图8f)[21]以及深海δ 18O记录(图8g)[4849]进行比较分析。

    Figure 8.  Comprehensive analysis of mid⁃late Eocene paleoclimate evolution in the Dongying Depression.

    结果表明,在第1~3阶段,研究区古气候与中国西部西宁盆地和柴达木盆地的古气候整体都较为干旱[3,21],且演化具有一致性(图8)。第1~2阶段,古气候整体干旱炎热,但随时间的推移,古气候缓慢的向着相对干旱寒冷的方向演化。第3阶段沉积时期东营凹陷经历了一个短暂而剧烈的变暖过程,对比发现西宁盆地和柴达木盆地也存在化学风化作用急剧增强的情况(图8e,f)[3,21],深海δ 18O记录(图8g)[4849]出现突变,表明该阶段全球古气候经历了一个短暂的急剧变暖事件,这一短暂的极热事件被认为是中始新世气候适宜期(MECO)[3,6,20,4850]。虽然国际上常将MECO出现年限大致定于42 Ma附近[3,6,20,4850],而在研究区这一短暂而剧烈的变暖事件发生于43~42 Ma前附近,但由于在之前的研究中进行天文旋回分析时未考虑不同岩性的沉积速率问题,沙四下亚段实际沉积年龄应早于经过天文旋回标定的年龄,因此研究认为东营凹陷第三阶段沉积时期对应于MECO这一全球极热事件。随后,古气候则再度朝着相对干旱寒冷的方向演化(图8)。

    第4~5阶段研究区古气候演化与中国西部古气候变化趋势出现明显差异。第4阶段沉积时期,东营凹陷红层消失,沉积环境由滨湖和盐湖沉积转为(半)深湖和盐湖沉积,气候波动性变化剧烈且频繁,化学风化强度逐渐增大,而化学风化强度的增大往往反映古气候的升温和加湿,但在中晚始新世全球古温度持续降低[4849],这表明该阶段东营凹陷古气候逐渐变得湿润(图8a~c)。第5阶段,东营凹陷膏盐岩基本消失,以(半)深湖发育的灰色泥岩和钙质泥岩沉积为主,CIW’值较大且保持相对稳定(图8a~c),全球古温度继续下降[4849],指示研究区古气候已经变得比较湿润。而在MECO之后西宁盆地岩性虽然整体还是以红色泥岩和膏盐岩互层为主,但膏盐岩含量显著增加,化学风化强度也呈长期降低趋势,反映在西宁盆地古气候自MECO后表现为长期干旱化的趋势,并持续到了34 Ma前(图8d,e)[3];柴达木盆地古气候演化与西宁盆地具有一致性,在中晚始新世同样呈现长期干旱化趋势(图8f)[21]。由此可知在第4阶段中国东西部古气候演化趋势便已经出现差异,在此期间中国东部古气候不断加湿,而西部持续干旱化,中国东西部气候差异性进一步扩大。

    综上,第1~3阶段中国东部和西部古气候整体处于(半)干旱情况,且随着时间的变化古气候朝着更加干旱的方向发展,这说明此时中国古气候还是呈纬度分带格局。至第4阶段,东部的东营凹陷古气候开始朝着湿润的方向演化并在第5阶段变得较为湿润,而西部的西宁盆地和柴达木盆地则是朝更加干旱的方向变化[3,21],指示在第4阶段沉积时期古气候的纬度分带格局已经开始逐渐被打破,直至第5阶段时期整体转变为“东湿西干”气候格局。

  • 目前关于东亚季风的形成时期还存在着较大争议[10,12,23,51]。根据黄土高原风尘沉积的发育年代,部分学者认为东亚季风在晚渐新世—早中新世期间开始主导东亚气候[10,18];但随着研究的不断深入,越来越多的学者认为早在始新世东亚季风就已经起源[12,2223,51],其中代表东亚季风出现的一个重要特征就是中国古气候分布格局的重组[10,13]

    研究通过对比西宁盆地CIW’和深海δ 18O记录,认为在第4阶段沉积时期中国古气候已经不完全表现为“两湿夹一干”的纬度分带格局(图1a),开始转变为“东湿西干”特征。这种气候格局的转变主要受到青藏高原隆升和塔里木盆地海退的影响,同时指示着东亚季风的出现[4,710,19,52]

    前人研究表明,在印支—亚洲古陆发生碰撞后,喜马拉雅西北部存在一个快速而短暂的初始造山期,导致在55~40 Ma之前青藏高原就已经形成了显著的高地形[22,5354],阻挡了来自西南侧的湿气向中国输送。自50 Ma前起古气温不断降低[55],全球海平面呈长期下降趋势[56],塔里木盆地在41 Ma前附近开始也开始了第四次大规模海退[52,57],导致来自西部经盛行西风运输的湿气含量进一步减少,使得自中始新世以来中国古气候逐渐变得更为干旱(图9a)。但伴随着青藏高原的隆升和塔里木海的海退,亚洲内陆和周缘大洋的热对比逐渐增大,促进了东亚季风的盛行[6,89];在夏季时,携带大量湿气的东亚夏季风自东部太平洋输入,给中国东部带来了大量水汽,使得东部的东营凹陷古气候变得逐渐变得湿润;而来自南侧印度洋和南太平洋的由南亚季风携带的湿气则被已经具有相当高度的青藏高原所阻挡(图9b)。同时,自50 Ma以来,太平洋沃克环流西部强度逐渐增强,将更多的湿气自太平洋输送至中国东部。最终导致了在中晚始新世中国古气候从受盛行西风控制的纬度分带格局转变为了与现代季风类似的东部湿润西部干旱的气候格局。这种古气候格局的转变往往指示东亚季风的出现[10,1213,23]。因此,研究认为在中晚始新世东亚季风已经开始形成,这与前人的模拟结果一致[19,58]

    Figure 9.  Main sources of water vapor, mid⁃late Eocene in China (Eocene paleogeography after reference [21])

    综上所述,研究认为在第4阶段沉积时期东亚夏季风已经开始影响中国东部地区,并在第5阶段成为东亚地区古气候的主导因素。

  • (1) 根据岩性、Na/Al比值和CIW’等古气候指标,系统分析了东营凹陷沙四段的气候演化特征,并将其划分为五个阶段。

    (2) 使用天文旋回对东营凹陷沙四段沉积时期做出限定后,在东营凹陷气候演化的基础上对比分析了同时期中国西部西宁盆地和柴达木盆地以及全球中晚始新世气候演化特征。在第1~3阶段,东营凹陷古气候变化与中国西部西宁盆地和柴达木盆地的古气候变化基本一致,经历了一个长期的干冷化过程并伴随着一次短暂而急剧的变暖事件(MECO);第4~5阶段,与中国西部古气候的持续干冷化不同,中国东部东营凹陷逐渐变得相对湿润。

    (3) 受青藏高原隆升和塔里木海退等因素的控制,第4阶段沉积时期,中国纬向分带古气候格局开始被打破,至第5阶段时期,古气候整体转变为东湿西干的气候格局,东亚季风开始盛行并成为中国东部地区气候的主导因素。

Reference (58)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return