Advanced Search
Volume 40 Issue 6
Dec.  2022
Turn off MathJax
Article Contents

CHEN ChengYe, WANG QinXian, CHEN DuoFu. Genesis of Siderite in Miocene Marine Shale in Kuohsing Area, Taiwan[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1691-1701. doi: 10.14027/j.issn.1000-0550.2021.047
Citation: CHEN ChengYe, WANG QinXian, CHEN DuoFu. Genesis of Siderite in Miocene Marine Shale in Kuohsing Area, Taiwan[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1691-1701. doi: 10.14027/j.issn.1000-0550.2021.047

Genesis of Siderite in Miocene Marine Shale in Kuohsing Area, Taiwan

doi: 10.14027/j.issn.1000-0550.2021.047
Funds:

National Key Research and Development Program of China 2018YFC0310003

National Natural Science Foundation of China 41673029

National Natural Science Foundation of China 41730528

  • Received Date: 2021-01-06
  • Rev Recd Date: 2021-05-01
  • Publish Date: 2022-12-10
  • Siderite records historical geological information about fluids, and thus can be used to trace diagenetic zones related to biogeochemical reactions. Siderite nodules have been found in Miocene marine shale in the Kuohsing area of Taiwan, but their genesis is not clear. Field observations show that the siderite is scattered in parallel discontinuous lenses in the shale, which consists mainly of authigenic siderite (78.63%) and other minerals. The REE distributions of the siderite are characterized by MREE enrichment with no Ce anomaly. This indicates that the siderite was formed in weakly oxidizing conditions, facilitating the precipitation of siderite in a suboxic zone. The δ13C and δ18O values of this siderite are from -3.69‰ to +0.08‰ and from -1.09‰ to +0.25‰, respectively, suggesting that it was precipitated in the suboxic zone with an admixture of seawater and organic matter. Studies show that authigenic siderite can be used to identify biogeochemical processes in sediments and indicate diagenetic zones.
  • [1] 朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展,2011,26(4):355-364.

    Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: An overview[J]. Advances in Earth Science, 2011, 26(4): 355-364.
    [2] Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on geochemistry. 2nd ed. Oxford: Elsevier, 2014: 293-334.
    [3] Berner R A. Early diagenesis: A theoretical approach[M]. Princeton, N.J.: Princeton University Press, 1980.
    [4] Reeburgh W S. Rates of biogeochemical processes in anoxic sediments[J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 269-298.
    [5] Roberts A P, Weaver R. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4)[J]. Earth and Planetary Science Letters, 2005, 231(3/4): 263-277.
    [6] Canfield D E, Thamdrup B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away[J]. Geobiology, 2009, 7(4): 385-392.
    [7] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279.
    [8] Liu A Q, Tang D J, Shi X Y, et al. Growth mechanisms and environmental implications of carbonate concretions from the ~ 1.4 Ga Xiamaling Formation, North China[J]. Journal of Palaeogeography, 2019, 8: 20.
    [9] 陈多福,陈先沛,陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报,2002,20(1):34-40.

    Chen Duofu, Chen Xianpei, Chen Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40.
    [10] Campbell K A, Nelson C S, Alfaro A C, et al. Geological imprint of methane seepage on the seabed and biota of the convergent Hikurangi Margin, New Zealand: Box core and grab carbonate results[J]. Marine Geology, 2010, 272(1/2/3/4): 285-306.
    [11] Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge: Offshore southeastern North America[M]//Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX, 2000.
    [12] Rovere M, Rashed H, Pecchioni E, et al. Habitat mapping of cold seeps associated with authigenic mineralization (Paola Ridge, southern Tyrrhenian Sea): Combining seafloor backscatter with biogeochemistry signals[J]. Italian Journal of Geosciences, 2015, 134(1): 23-31.
    [13] Tong H P, Feng D, Peckmann J, et al. Environments favoring dolomite formation at cold seeps: A case study from the Gulf of Mexico[J]. Chemical Geology, 2019, 518: 9-18.
    [14] Lu Y, Sun X M, Xu H, et al. Formation of dolomite catalyzed by sulfate-driven anaerobic oxidation of methane: Mineralogical and geochemical evidence from the northern South China Sea[J]. American Mineralogist, 2018, 103(5): 720-734.
    [15] Mozley P S, Wersin P. Isotopic composition of siderite as an indicator of depositional environment[J]. Geology, 1992, 20(9): 817-820.
    [16] Wang Q X, Tong H P, Huang C Y, et al. Tracing fluid sources and formation conditions of Miocene hydrocarbon-seep carbonates in the central western Foothills, Central Taiwan[J]. Journal of Asian Earth Sciences, 2018, 168: 186-196.
    [17] Huang C Y, Wu W Y, Chang C P, et al. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan[J]. Tectonophysics, 1997, 281(1/2): 31-51.
    [18] Huang C Y, Yuan P B, Tsao S J. Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis[J]. Geological Society of America Bulletin, 2006, 118(3/4): 274-288.
    [19] Mouthereau F, Lacombe O, Deffontaines B, et al. Deformation history of the southwestern Taiwan foreland thrust belt: Insights from tectono-sedimentary analyses and balanced cross-sections[J]. Tectonophysics, 2001, 333(1/2): 293-322.
    [20] 耿威,张训华,黄龙,等. 台湾及其附近海域区域地质特征与新构造运动[J]. 海洋地质与第四纪地质,2014,34(6):73-82.

    Geng Wei, Zhang Xunhua, Huang Long, et al. Regional geological features and neotectonic movement of Taiwan inland and offshore areas[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 73-82.
    [21] 何春荪. 台湾地质概论—台湾地质图说明书[M]. 台北:台湾中央地质调查局,1986.

    He Chunsun. An introduction to the geology of Taiwan, explanatory text of the geologic map of Taiwan[M]. Taipei: Central Geological Survey, 1986.
    [22] Huang C Y. Oligocene and Eocene stratigrahpy of the Kuohsing area, central Taiwan[J]. Acta Geologica Taiwanica, 1986, 24: 281-318.
    [23] Rongemaille E, Bayon G, Pierre C, et al. Rare earth elements in cold seep carbonates from the Niger delta[J]. Chemical Geology, 2011, 286(3/4): 196-206.
    [24] McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
    [25] Feng D, Chen D F, Peckmann J. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps[J]. Terra Nova, 2009, 21(1): 49-56.
    [26] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
    [27] Morad S, Felitsyn S. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: Implication for the Cambrian oceanic anoxia and phosphogenesis[J]. Sedimentary Geology, 2001, 143(3/4): 259-264.
    [28] 桑树勋,郑永飞,张华,等. 徐州地区下古生界碳酸盐岩的碳、氧同位素研究[J]. 岩石学报,2004,20(3):707-716.

    Sang Shuxun, Zheng Yongfei, Zhang Hua, et al. Researches on carbon and oxygen stable isotopes of Lower Paleozoic carbonates in Xuzhou area[J]. Acta Petrologica Sinica, 2004, 20(3): 707-716.
    [29] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
    [30] Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps[J]. Chemical Geology, 2004, 205(3/4): 443-467.
    [31] Plet C, Grice K, Pagès A, et al. Microbially-mediated fossil-bearing carbonate concretions and their significance for palaeoenvironmental reconstructions: A multi-proxy organic and inorganic geochemical appraisal[J]. Chemical Geology, 2016, 426: 95-108.
    [32] Ábalos B, Elorza J. Structural diagenesis of siderite layers in black shales (Albian black flysch, northern Spain)[J]. The Journal of Geology, 2012, 120(4): 405-429.
    [33] Baker J C, Kassan J, Hamilton P J. Early diagenetic siderite as an indicator of depositional environment in the Triassic Rewan Group, southern Bowen Basin, eastern Australia[J]. Sedimentology, 1996, 43(1): 77-88.
    [34] Leonowicz P. Origin of siderites from the Lower Jurassic Ciechocinek Formation from SW Poland[J]. Geological Quarterly, 2007, 51(1): 67-78.
    [35] Rodrigues A G, De Ros L F, Neumann R, et al. Paleoenvironmental implications of early diagenetic siderites of the Paraíba do Sul Deltaic Complex, eastern Brazil[J]. Sedimentary Geology, 2015, 323: 15-30.
    [36] Pe-Piper G, Piper D J W. Significance of the chemistry and morphology of diagenetic siderite in clastic rocks of the Mesozoic Scotian Basin[J]. Sedimentology, 2020, 67(2): 782-809.
    [37] Irwin H, Curtis C, Coleman M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments[J]. Nature, 1977, 269(5625): 209-213.
    [38] Raiswell R, Fisher Q J. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments: Implications for the formation of concretions[J]. Chemical Geology, 2004, 211(1/2): 71-85.
    [39] Birgel D, Meister P, Lundberg R, et al. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: A modern analogue for Palaeo-/Neoproterozoic stromatolites?[J]. Geobiology, 2015, 13(3): 245-266.
    [40] Krylov A, Khlystov O, Zemskaya T, et al. First discovery and formation process of authigenic siderite from gas hydrate-bearing mud volcanoes in fresh water: Lake Baikal, eastern Siberia[J]. Geophysical Research Letters, 2008, 35(5): L05405.
    [41] Matsumoto R. Isotopically heavy oxygen-containing siderite derived from the decomposition of methane hydrate[J]. Geology, 1989, 17(8): 707-710.
    [42] Pye K, Dickson J A D, Schiavon N, et al. Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England[J]. Sedimentology, 1990, 37(2): 325-343.
    [43] Franchi F, Rovere M, Gamberi F, et al. Authigenic minerals from the Paola Ridge (southern Tyrrhenian Sea): Evidences of episodic methane seepage[J]. Marine and Petroleum Geology, 2017, 86: 228-247.
    [44] Nerma A, Mehadji A O, Munnecke A, et al. Carbonate concretions in Miocene mudrocks in NW Algeria: Types, geochemistry, and origins[J]. Facies, 2019, 65(2): 17.
    [45] Carothers W W, Adami L H, Rosenbauer R J. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite[J]. Geochimica et Cosmochimica Acta, 1988, 52(10): 2445-2450.
    [46] Baumann L M F, Birgel D, Wagreich M, et al. 2016. Microbially-driven formation of Cenozoic siderite and calcite concretions from eastern Austria. Austrian Journal of Earth Sciences [J], 109(2): 211-232.
    [47] 赵彦彦,李三忠,李达,等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学,2019,43(1):141-167.

    Zhao Yanyan, Li Sanzhong, Li Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1): 141-167.
    [48] German C R, Holliday B P, Elderfield H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3553-3558.
    [49] Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin[J]. Earth and Planetary Science Letters, 2011, 312(3/4): 443-452.
    [50] Himmler T, Haley B A, Torres M E, et al. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean[J]. Geo-Marine Letters, 2013, 33(5): 369-379.
    [51] Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644.
    [52] Chen D F, Dong W Q, Qi L, et al. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna[J]. Chemical Geology, 2003, 201(1/2): 103-118.
    [53] Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 631-644.
    [54] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules[J]. Paleoceanography, 1990, 5(5): 823-833.
    [55] Petrash D A, Bialik O M, Bontognali T R R, et al. Microbially catalyzed dolomite formation: From near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582.
    [56] Coleman M L, Hedrick D B, Lovley D R, et al. Reduction of Fe(III) in sediments by sulphate-reducing bacteria[J]. Nature, 1993, 361(6411): 436-438.
    [57] Gautier D L. Siderite concretions: Indicators of early diagenesis in the Gammon Shale (Cretaceous)[J]. Journal of Sedimentary Research, 1982, 52(3): 859-871.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(3)

Article Metrics

Article views(167) PDF downloads(52) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-01-06
  • Revised:  2021-05-01
  • Published:  2022-12-10

Genesis of Siderite in Miocene Marine Shale in Kuohsing Area, Taiwan

doi: 10.14027/j.issn.1000-0550.2021.047
Funds:

National Key Research and Development Program of China 2018YFC0310003

National Natural Science Foundation of China 41673029

National Natural Science Foundation of China 41730528

Abstract: Siderite records historical geological information about fluids, and thus can be used to trace diagenetic zones related to biogeochemical reactions. Siderite nodules have been found in Miocene marine shale in the Kuohsing area of Taiwan, but their genesis is not clear. Field observations show that the siderite is scattered in parallel discontinuous lenses in the shale, which consists mainly of authigenic siderite (78.63%) and other minerals. The REE distributions of the siderite are characterized by MREE enrichment with no Ce anomaly. This indicates that the siderite was formed in weakly oxidizing conditions, facilitating the precipitation of siderite in a suboxic zone. The δ13C and δ18O values of this siderite are from -3.69‰ to +0.08‰ and from -1.09‰ to +0.25‰, respectively, suggesting that it was precipitated in the suboxic zone with an admixture of seawater and organic matter. Studies show that authigenic siderite can be used to identify biogeochemical processes in sediments and indicate diagenetic zones.

CHEN ChengYe, WANG QinXian, CHEN DuoFu. Genesis of Siderite in Miocene Marine Shale in Kuohsing Area, Taiwan[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1691-1701. doi: 10.14027/j.issn.1000-0550.2021.047
Citation: CHEN ChengYe, WANG QinXian, CHEN DuoFu. Genesis of Siderite in Miocene Marine Shale in Kuohsing Area, Taiwan[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1691-1701. doi: 10.14027/j.issn.1000-0550.2021.047
  • 海底沉积物是碳循环的重要场所,海洋中90%以上的有机质埋藏于大陆架边缘沉积物中[1]。有机质的分解和再矿化不仅在碳循环中扮演着重要作用,而且在早期成岩过程中起着关键作用[23]。有机质分解和再矿化过程中分别利用不同的氧化剂,从而在沉积物剖面上形成不同的成岩带[2],包括有机质氧化带、硝酸盐还原带、铁锰还原带、硫酸盐还原带和产甲烷带等[36]。在正常的海洋环境中,首先是有氧条件下的有机质氧化;随着埋藏深度的增加,硝酸盐、铁锰氧化物依次作为氧化剂还原有机质[78];处于该带之下的硫酸盐还原带,硫酸根在缺氧条件下被甲烷或有机质还原,反应产生大量HS-[9-10];在更深部的产甲烷带,该带的有机质通过发酵作用产生CH4和CO2[11]

    特定的自生矿物可以用来反映不同成岩带中的生物地球化学过程,因为有机质在不同成岩带的生物地球化学过程会生成对应的自生矿物[2]。较高的温度和相对氧化的环境有利于文石沉淀,因此文石倾向于形成在接近海底的氧化带中[1213];而在深层的硫酸盐还原带,由于硫酸盐还原和甲烷氧化产生大量的HCO3-和HS-,孔隙水中不断提高的碱度和硫化氢有利于促进高镁方解石、白云石及黄铁矿的沉淀[1314]。而菱铁矿在次氧化带和产甲烷带均可形成[15]。在次氧化带,由于铁氧化物与有机质反应产生大量的Fe2+和HCO3-,使得沉积物孔隙水中的溶解铁含量和碱度增加[5],促进了菱铁矿的沉淀。在较深的产甲烷带,因为硫化氢浓度很低,活性铁和碳酸氢根的浓度很高,也有利于菱铁矿的形成[1112]。由此可见,菱铁矿是示踪沉积物中次氧化带和产甲烷带的重要矿物。

    台湾中部国姓地区中新世猴洞坑组下部的海相灰色页岩中发育两套冷泉碳酸盐岩,典型的管道状特征和极负的δ13C值,表明其形成与冷泉流体活动有关[16]。在两套冷泉碳酸盐岩之间,发育了大量的菱铁矿结核,这些菱铁矿结核的形成环境和成因尚未厘清。本文拟通过菱铁矿的矿物学和岩石学,稀土元素及碳氧同位素地球化学,探讨菱铁矿的形成环境,确定菱铁矿的成因,示踪生物地球化学过程的变迁。

  • 台湾岛位于欧亚大陆与菲律宾海板块之间的俯冲碰撞活动区[1718]。依据地形构造单元,台湾岛由西到东分别为海岸平原、西部麓山带、雪山山脉、中央山脉和海岸山脉[1718]。西部麓山带代表了晚新生代碰撞挤压形成的一系列层叠的褶皱和断层[19],是典型的被动式大陆边缘沉积,主要由中始新世、晚渐新世至更新世浅海相沉积物组成[20]

    国姓地区位于西部麓山带中部,紧邻北港基盘高区的东侧(图1)。晚渐新世至早中新世地层在乌溪河两岸出露良好,包括水长流组、大坑组、石门村组和猴洞坑组等,由一系列的泥页岩、砂岩和粉砂岩组成[22]。猴洞坑组根据岩性由上至下分为三层,上、下层均以页岩为主,中间夹厚层砂岩。猴洞坑组下层的上部和下部均发育冷泉碳酸盐岩,通常以层状、不规则结节状及烟囱状等形态产出(图2a,d)[16]。菱铁矿结核分布于冷泉碳酸盐岩发育层位之间,呈致密的结核状与围岩整合产出,与围岩界限明显(图2b)。

    Figure 1.  Geographical location and geological features of study area (modified from references [16,21])

    Figure 2.  Stratigraphic column of study area and field photographs of nodules (modified from references [16,21])

  • 采集的每件样品被切割分为两份,其中一份用于制作光学薄片;另一份被研磨成200目粉末,用于X射线衍射(XRD)、主量元素、稀土元素和碳氧同位素测试。

    薄片鉴定在LEICA-DMRX光学显微镜下进行,显微镜图像用高清数码相机LECIA DC500拍摄。菱铁矿破裂新鲜面微观结构观察使用上海海洋大学Coxem EM30PLUS扫描电子显微镜(SEM)完成,工作电压为15~20 kV,工作距离为10~14 mm。

    X射线衍射分析在中国科学院矿物学和成矿学重点实验室完成,测试仪器为Bruker AXS D8,工作参数为Cu靶Kα射线,石墨单色器,测试电压为40 kV,电流为30 mA。扫描角度为3°~85°(2θ),步进扫描,速度步宽0.02°,发散狭缝为1°,防散射狭缝为1°,接受狭缝为0.3 mm。

    主量元素分析在中国科学院地球化学研究所进行,测试仪器为ICP-AES。50 mg粉末样品在室温条件下加入5%的乙酸中溶解24 h。摇匀,放置在摇床上摇晃1 h后离心;然后取上层清液加入内标上机测试。此外,标样OU-6、AMH-1和GBPG-1用来校正溶样过程和基体效应的影响,精度优于1%。稀土元素分析在中国科学院地球化学研究所矿床地球化学国家重点实验室完成,测试仪器为ICP-MS。称取50 mg粉末,加入5%乙酸溶解24 h[23],然后离心取上清液,加入Rh内标后上机测试。测试误差优于5%。

    全岩的碳氧稳定同位素分析采用磷酸法,在中国科学院同位素年代学和地球化学重点实验室由GV IsoPrime® Ⅱ型稳定同位素质谱仪测定。测试结果以VPDB为标准,分析精度13C优于±0.05‰,18O优于±0.08‰。

  • 菱铁矿结核呈致密块状,结核表面呈铁褐色,抛光面显示均一的结构(图2c)。XRD分析显示菱铁矿是主要的碳酸盐岩矿物,含量为46%~92%,平均为78.63%,部分结核样品中含有极少量方解石(表1)。除此之外,菱铁矿结核还含有石英等陆源碎屑(平均含量为13.25%)和少量黏土矿物(表1)。

    样品菱铁矿方解石白云石石英钠长石钾长石黏土矿物δ13Cδ18O
    G01651988-1.46-0.93
    G02821800-0.84-1.09
    G03841600-0.93-0.80
    G0492800-0.53-0.15
    G05871300-0.740.25
    G068151400-0.99-0.35
    G09924400-3.69-0.10
    G10461114140160.08-0.27

    菱铁矿主要是以泥微晶碳酸盐岩的形式存在(图3a)。SEM观察发现,菱铁矿主要是似菱形的小颗粒,直径为2~5 μm(图3d,e)。生物碎屑和黄铁矿颗粒也随机散落在碳酸盐岩基质上(图3b,c,e)。

    Figure 3.  Polarizing microscope and scanning electron microscope photographs of the Kuohsing siderite

  • 主量元素分析结果见表2,样品中含量最多的元素是铁,Fe2O3平均含量为22.71%,其次是镁和钙,MgO和CaO平均含量分别为4.16%和3.25%。

    编号Na2OMgOAl2O3P2O5K2OCaOTiO2MnOFe2O3
    G010.113.330.320.110.081.800.000.4019.87
    G020.084.160.290.100.082.440.000.4924.11
    G030.113.940.320.120.082.150.000.4923.68
    G040.074.590.150.150.033.510.000.6225.98
    G050.074.830.220.140.053.360.000.5325.69
    G060.064.100.130.170.033.310.000.4921.07
    G090.054.180.130.110.046.160.000.4618.54
  • 稀土元素结果见表3。菱铁矿结核的总稀土元素(∑REE)含量为32×10-6~43×10-6,菱铁矿的稀土元素展示出相似的配分模式,1)中稀土(MREE)相对富集,轻稀土(LREE)相对亏损(平均(Gd/Yb)N=1.86;(Pr/Yb)N=0.83);2)轻微的La的负异常(平均(La/La*N=0.96);3)轻微Ce异常(平均(Ce/Ce*N=1.07);4)接近平均页岩的Y/Ho比(平均(Y/Ho)=26.93)。

    元素G01G02G03G04G05G06G09
    La4.274.844.705.815.496.345.50
    Ce12.0612.3712.4615.0114.5816.8113.87
    Pr1.521.461.581.781.742.021.59
    Nd6.756.267.037.447.358.616.79
    Sm1.701.501.811.841.822.111.68
    Eu0.410.380.460.460.470.550.43
    Gd1.761.702.082.082.022.381.87
    Tb0.270.270.330.340.320.370.32
    Dy1.471.501.981.921.802.091.86
    Ho0.260.280.380.360.340.380.36
    Er0.670.741.040.940.860.950.96
    Tm0.090.100.140.120.110.110.13
    Yb0.490.550.880.680.630.630.76
    Lu0.070.080.130.100.090.090.11
    LaN/SmN0.370.470.380.460.440.440.48
    DyN/SmN1.031.191.301.241.171.171.31
    GdN/YbN2.171.871.421.851.962.281.48
    PrN/YbN0.990.850.570.830.891.020.67
    Y/Ho25.9727.7725.3028.1826.8627.3727.09
    (La/La*)N0.941.001.000.910.900.931.02
    (Ce/Ce*)N1.071.061.041.081.091.081.07
    注:(Ce/Ce*)N=3CeN/(2LaN+NdN);(La/La*)N=LaN/(3PrN-2NdN);(Pr/Pr*)N=2PrN/(CeN+NdN),公式中N表示澳大利亚后太古代页岩标准化(PAAS)[24]
  • 碳氧同位素分析结果见表1。菱铁矿的δ13C介于-3.69‰~+0.08‰,平均值为-1.14‰,与上下地层中发育的冷泉碳酸盐岩(δ13C:-47.6‰~-20.0‰)相比[16],显示较重的值。菱铁矿的δ18O值显示较小的变化范围,介于-1.09‰~+0.25‰,平均值为-0.43‰(表2)。

  • 成岩作用可能导致稀土元素组成发生改变,成岩作用较大时会使Ce/Ce*与DyN/SmN及总REE含量呈现很好的相关性[25]。通过对国姓菱铁矿的稀土元素的分析发现,指示成岩作用的指标相关性很差[26]图4a,c),说明国姓菱铁矿的稀土元素受成岩作用影响较小。此外,根据Morad et al.[27]的研究,当Ce异常值与LaN/SmN的相关性很差,且LaN/SmN大于0.35的情况下,Ce异常的后期成岩改造可以被完全排除,可以认为保持了原始的Ce异常特征。如图4b显示,国姓地区菱铁矿的Ce异常值与LaN/SmN的相关性很差,并且所有样品的LaN/SmN值均大于0.35,表明菱铁矿的Ce异常没有受到后期成岩作用的影响,可以用来反映当时流体的氧化还原条件。

    Figure 4.  Kuohsing siderite correlations, Ce/Ce* vs. (a) ΣREE; (b) LaN/SmN; (c) DyN/SmN; (d) Pr/Pr*[26]

    碳酸盐岩的氧同位素容易受到后期成岩作用的影响,特别是大气降水对碳酸盐岩的氧同位素有显著的改造[28],因此δ18O组成常被用于判断碳酸盐岩遭受后期成岩作用改造的程度。通常,δ18O小于-5‰被认为是碳酸盐岩遭受严重成岩作用改造的重要指标[29]。国姓菱铁矿的氧同位素为-1.09‰~+0.25‰,明显高于-5‰,表明菱铁矿未受到后期成岩作用的严重影响。且菱铁矿的碳、氧同位素相关性很差(图5),进一步说明菱铁矿保留了原始的碳氧同位素特征。而且,菱铁矿的δ13C值明显高于上、下层位中的冷泉碳酸盐岩极负的碳同位素组成(δ13C:-47.6‰~-20.0‰)[16]图5),表明形成菱铁矿与冷泉碳酸盐岩的流体来源不同。此外,岩石学观察发现菱铁矿结核并未发生重结晶作用。因此,菱铁矿的碳、氧同位素可以用来反映菱铁矿形成过程中的流体中的碳来源。

    Figure 5.  Carbon and oxygen isotopic composition of Kuohsing seep carbonates and siderite formed in different sedimentary environments in different areas[1112,16,3236]

  • 通常,不同来源的流体可能具有不同的碳同位素组成。早期成岩作用过程中形成的碳酸盐岩的碳同位素组成主要由孔隙水中的溶解无机碳决定,因此,碳同位素组成可以用于示踪其流体来源[16,3031]。菱铁矿主要出现在产甲烷带和次氧化带内[15],其碳同位素通常具有较大的差异[3236]图5)。在产甲烷带内,有机质在微生物作用下经过“发酵”产生碳同位素极负的甲烷和极正的碳酸氢根[3739],碳酸氢根将优先与铁等金属离子结合并沉淀出碳同位素极正的菱铁矿等碳酸盐矿物。例如,Krylov et al.[40]在贝加尔湖沉积物的产甲烷带发现碳同位素极正的菱铁矿(最高可达+21.4‰);Matsumoto[41]在布莱克海脊水合物区的产甲烷带发现碳同位素值最高可达+12.5‰的菱铁矿。国姓地区的菱铁矿的δ13C值为‒3.69‰~+0.08‰,显著低于产甲烷带菱铁矿的碳同位素值,接近于次氧化带的菱铁矿,可能指示国姓地区的菱铁矿形成于次氧化带。在次氧化带内,沉积物中的有机质与铁的氧化物(或氢氧化物)发生反应可生成碳同位素最低可达-25‰的碳酸氢根[37]。但是由于次氧化带紧邻上覆海水,因此易受海水的侵蚀和改造,导致孔隙水的碳同位素值表现出海水混合后的特征(δ13C接近于0)[30,37]。例如,Pye et al.[42]发现诺福克海岸在次氧化带沉淀的菱铁矿表现出接近于海水的碳同位素(平均值-5.9‰)。Ábalos et al.[32]发现,在白垩纪阿尔必期黑色页岩中的菱铁矿,形成于次氧化带,同样展现出接近海水的δ13C值(-3.6‰±1.7‰)。

    菱铁矿的氧同位素值主要受沉淀时的流体组成和温度控制。在产甲烷带内,如果受深部水合物分解的影响,那么带内的孔隙流体将混入氧同位素极正的水(最高可达+9.9‰)[43],导致生成的碳酸氢根具有极高的氧同位素组成[30,41]。国姓地区菱铁矿的δ18O值为-1.09‰~+0.25‰,与同期海水的值接近[44],表明形成菱铁矿的沉积流体未受水合物分解影响。根据Carothers et al.[45]得出的分馏关系计算,在10 ℃~25 ℃时从孔隙水为-1.2‰(SMOW)沉淀的菱铁矿的δ18O值范围为0.1‰~+3.6‰(V-PDB),相对接近的氧同位素组成说明菱铁矿很可能沉淀于接近海底或沉积物内较浅的埋藏深度[15,44],进一步支持国姓地区的菱铁矿形成于次氧化带。Baumann et al.[46]在奥地利Zwieselalm组中发现的菱铁矿也具有近似的氧同位素,其氧同位素平均值为+0.5‰,被认为形成于次氧化带。因此,国姓地区的菱铁矿可能在次氧化带形成,带内孔隙水组成受海水影响,导致沉积流体的氧同位素接近于海水。

  • 稀土元素主要通过交代碳酸盐矿物的Ca2+进入碳酸盐格架,所以沉积碳酸盐岩的稀土元素特征能够很好地指示沉积流体来源和古环境[47]。在氧化环境中,Ho和MREE会优先被铁锰氧化物吸附而减少[7,4748]。之后随着埋藏深度的增加,在次氧化带铁锰还原过程中被释放造成孔隙水中的Ho和MREE浓度增加,从而导致沉淀中较低的Y/Ho比和MREE富集的配分模式[7,49]。此外,在反应过程中,MREE富集的有机质也会因其降解而释放稀土元素到孔隙水中,使得孔隙水体中MREE富集[50]。国姓菱铁矿的稀土元素配分模式呈LREE亏损,MREE富集的特征(图6),表明菱铁矿在次氧化带形成,且受到了海水扩散的影响[51]。较低的Y/Ho(26.93)也支持菱铁矿形成于弱氧化的沉积环境。Ce异常能够被用于判断沉积环境的氧化还原条件[25,47,5253]。在氧化环境中,可溶性的Ce3+会被氧化成不溶于水的Ce4+,会优先进入Fe-Mn氧化物、有机质或黏土矿物中[26],使沉积水体出现Ce亏损。而在弱氧化或缺氧条件下,由于富Fe-Mn氧化物或氢氧化物颗粒会发生还原溶解[54],导致Ce4+被还原,孔隙水中出现Ce的无异常或正异常。国姓菱铁矿样品表现为Ce无异常(图4d),指示了弱氧化的沉积环境。综上所述,中稀土富集、较低的Y/Ho和Ce无异常都指示了弱氧化的环境,弱氧化的环境促进了菱铁矿的沉淀,也进一步支持菱铁矿很可能是在沉积物中较浅层的次氧化带形成。

    Figure 6.  PAAS⁃normalized REE distributions of Kuohsing siderite (seawater data from Zhang et al.[51])

  • 国姓地区菱铁矿的碳、氧同位素特征表明菱铁矿形成于次氧化带,而不是产甲烷带[55]图7)。次氧化带内的沉积流体受到上覆海水的影响。在海底沉积物中,菱铁矿的形成需要硫酸盐浓度极低或活化铁浓度很高的沉积环境[56]。随着海洋沉积物的不断堆积,硫酸盐在水—沉积物界面不断被消耗,并生成HS-[57]。HS-向下扩散,与次氧化带内经氧化铁与有机质的生物地球化学反应所产生的活化铁结合生成黄铁矿,从而阻碍铁的碳酸盐矿物菱铁矿的生成[34]。然而,当次氧化带内的铁还原速率超过黄铁矿生成速率时,菱铁矿便开始沉淀[34]。在国姓地区,大量的铁氧化物与有机质在次氧化带发生氧化还原反应,生成大量Fe2+,导致孔隙水中Fe2+浓度不断升高,超过扩散带来的HS-浓度,从而形成菱铁矿。由于上覆海水的影响,国姓地区菱铁矿所记录的碳源主要是海水和有机质降解混合产生。

    Figure 7.  Formation model of siderite in suboxic zone (modified from reference [55])

  • 台湾国姓地区中新世泥页岩中的菱铁矿以结核的形式产出,碳酸盐岩矿物以泥微晶菱铁矿为主。此外,国姓菱铁矿经PAAS标准化后的稀土元素配分模式显示轻稀土亏损、中稀土富集特征,且所有样品均无Ce异常,指示弱氧化的沉积环境,促进了菱铁矿在次氧化带沉淀。菱铁矿结核具有接近但略低于海水的碳同位素(-3.69‰~+0.08‰)和氧同位素值(-1.09‰~+0.25‰),指示菱铁矿沉积于海底沉积物的次氧化带内,其碳源来自有机质被铁锰氧化物氧化产生的碳酸氢根与海水混合后的流体。国姓菱铁矿的地球化学特征表明菱铁矿形成于次氧化带。因此,菱铁矿是示踪沉积物成岩作用带的重要指标。

Reference (57)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return