Advanced Search
Volume 39 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

GU Qiang, XING FengCun, QIAN HongShan, SUN HanXiao. Correlation Between Ooid Characteristics and Hydrodynamic Forces in the Feixianguan Formation, Northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1371-1386. doi: 10.14027/j.issn.1000-0550.2021.059
Citation: GU Qiang, XING FengCun, QIAN HongShan, SUN HanXiao. Correlation Between Ooid Characteristics and Hydrodynamic Forces in the Feixianguan Formation, Northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1371-1386. doi: 10.14027/j.issn.1000-0550.2021.059

Correlation Between Ooid Characteristics and Hydrodynamic Forces in the Feixianguan Formation, Northeastern Sichuan

doi: 10.14027/j.issn.1000-0550.2021.059
Funds:

National Natural Science Foundation of China 41672103, 41302089

  • Received Date: 2020-12-28
  • Rev Recd Date: 2021-05-12
  • Publish Date: 2021-12-10
  • Ooids developed all over the world in the Lower Triassic, and giant ooids appeared. The ooid shoal at the margin of the Feixianguan Formation platform in northeastern Sichuan comprises strongly heterogeneous and complex ooid types. The relationship between ooid type, grain size parameter evolution and hydrodynamic forces were studied for deposits in the Longtancun, Laixi and Yudongzi regions using field measurement, microscopic identification and grain-size analysis. Seven primary divisions and nine subdivisions of ooids were found, and fractured ooids may be classed separately. In addition to skewness, other parameters (e.g., average particle size, standard deviation, kurtosis and graphic curve shape of particle size data) are strongly correlated. The classifications suggest that the ooid shoal at Longtan village indicates a change from an active marginal zone to a stable ooid sand flat as hydrodynamic conditions gradually decreased. At Laixi, a deposition cycle of active marginal zone-stable ooid sand flat to active marginal zone is evident, with decreasing and then increasing hydrodynamic force. The hydrodynamic force decreases with upward at Yudongzi. However, there is poor correlation between the horizon containing giant and the overall trend of changes in ooid grain type and size, possibly because the abnormally large particle size in the giant ooids is affected by a combination of microbial action and the rapid increase of seawater carbonate saturation rather than rapid change in hydrodynamic force. Therefore, when judging the hydrodynamic conditions of sedimentary environments containing giant ooids using grain-size parameters, it is not possible to draw a conclusion from grain size alone, but it is necessary to analyze the correlations between ooid grain-size parameters.
  • [1] Ekart D D, Cerling T E, Montanez I P, et al. A 400 million year carbon isotope record of pedogenic carbona: Implications for paleoatomospheric carbon dioxide[J]. American Journal of Science, 1999, 29(10): 805-827.
    [2] Joachimski M M, Lai X L, Shen S Z, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction[J]. Geology, 2012, 40(3): 195-198.
    [3] Retallack G J. Permian and Triassic greenhouse crises[J]. Gondwana Research, 2013, 24(1): 90-103.
    [4] Chen J, Shen S Z, Li X H, et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the End-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 26-38.
    [5] Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the End-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8543-8548.
    [6] Clarkson M O, Kasemann S A, Wood R A, et al. Ocean acidification and the Permo-Triassic mass extinction[J]. Science, 2015, 348(6231): 229-232.
    [7] Song H J, Song H Y, Tong J N, et al. Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic[J]. Chemical Geology, 2021, 562: 120038.
    [8] Sephton M A, Looy C V, Brinkhuis H, et al. Catastrophic soil erosion during the End-Permian biotic crisis[J]. Geology, 2005, 33(12): 941-944.
    [9] Algeo T J, Chen Z Q, Fraiser M L, et al. Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 1-11.
    [10] Wei H Y, Shen J, Schoepfer S D, et al. Environmental controls on marine ecosystem recovery following mass extinctions, with an example from the Early Triassic[J]. Earth-Science Reviews, 2015, 149: 108-135.
    [11] Tian L, Tong J N, Bottjer D, et al. Rapid carbonate depositional changes following the Permian-Triassic mass extinction: Sedimentary evidence from South China[J]. Journal of Earth Science, 2015, 26(2): 166-180.
    [12] Cao Y, Song H Y, Algeo T J, et al. Intensified chemical weathering during the Permian-Triassic transition recorded in terrestrial and marine successions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519: 166-177.
    [13] 王艳艳. 川西北地区早三叠世早期错时相灰岩特征及其意义[D]. 成都:成都理工大学,2012.

    Wang Yanyan. Characters and importances of earliest Triassic anachronistic limestones in northwestern Sichuan area[D]. Chengdu: Chengdu University of Technology, 2012.
    [14] Li F, Yan J X, Chen Z Q, et al. Global oolite deposits across the Permian-Triassic boundary: A synthesis and implications for palaeoceanography immediately after the End-Permian biocrisis[J]. Earth-Science Reviews, 2015, 149: 163-180.
    [15] 李飞. 二叠纪—三叠纪之交鲕粒结构特征及时空分布对古海洋环境的指示[D]. 武汉:中国地质大学,2016.

    Li Fei. The spatial and temporal distributions of ooids and their petrological and geochemical compositions: Implications for paleoceanographic conditions in the Permian-Triassic transition[D]. Wuhan: China University of Geosciences, 2016.
    [16] Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354.
    [17] Bathurst R G C. Carbonate sediments and their diagenesis[M]. 2nd ed. Amsterdam: Elsevier Publishing Co., 1975.
    [18] Simone L. Ooids: A review[J]. Earth-Science Reviews, 1980, 16: 319-355.
    [19] Peryt T. Coated grains[M]. Berlin: Springer-Verlag, 1983.
    [20] Tucker M E, Wright V P, Dickson J A D. Carbonate sedimentology[M]. Oxford: Blackwell Science, 1990.
    [21] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer, 2004.
    [22] Hardie L A. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas[J]. Geology, 2003, 31(9): 785-788.
    [23] Tian L, Bottjer D J, Tong J N, et al. Distribution and size variation of Ooids in the Aftermath of the Permian–Triassic mass extinction[J]. PALAIOS, 2015, 30(9): 714-727.
    [24] Trower E J, Lamb M P, Fischer W W. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates[J]. Earth and Planetary Science Letters, 2017, 468: 112-118.
    [25] Trower E J, Cantine M D, Gomes M L, et al. Active ooid growth driven by sediment transport in a high-energy shoal, little ambergris cay, Turks and Caicos Islands[J]. Journal of Sedimentary Research, 2018, 88(9): 1132-1151.
    [26] Sipos A A, Domokos G, Jerolmack D J. Shape evolution of ooids: A geometric model[J]. Scientific Reports, 2018, 8(1): 1758.
    [27] Reeder S L, Rankey E C. Interactions between tidal flows and ooid shoals, northern Bahamas[J]. Journal of Sedimentary Research, 2008, 78(3): 175-186.
    [28] Rankey E C, Reeder S L. Tidal sands of the Bahamian archipelago[M]//Davis R A Jr, Dalrymple R W. Principles of tidal sedimentology. Dordrecht: Springer, 2011: 537-565.
    [29] Summons R E, Bird L R, Gillespie A L, et al. Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora[J]. Geobiology, 2013, 11(5): 420-436.
    [30] 周书欣. 碳酸盐鲕粒的成因与鉴别[J]. 地质地球化学,1982(1):16-19.

    Zhou Shuxin. Origin and identification of carbonate oolites[J]. Geochemistry, 1982(1): 16-19.
    [31] Zhao D F, Hu G, Wang L C, et al. Sedimentary characteristics and origin of dolomitic ooids of the terminal Ediacaran Dengying Formation at Yulin (Chongqing, South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 544: 109601.
    [32] Beaupré S R, Roberts M L, Burton J R, et al. Rapid, high-resolution 14C chronology of ooids[J]. Geochimica et Cosmochimica Acta, 2015, 159: 126-138.
    [33] Li X W, Trower E J, Lehrmann D J, et al. Implications of giant ooids for the carbonate chemistry of Early Triassic seawater[J]. Geology, 2020, 49(2): 156-161.
    [34] 罗志立. 峨眉地裂运动和四川盆地天然气勘探实践[J]. 新疆石油地质,2009,30(4):419-424.

    Luo Zhili. Emei taphrogenesis and natural gas prospecting in Sichuan Basin[J]. Xinjiang Petroleum Geology, 2009, 30(4): 419-424.
    [35] 杜远生,殷鸿福,王治平. 秦岭造山带晚加里东—早海西期的盆地格局与构造演化[J]. 地球科学:中国地质大学学报,1997,22(4):401-405.

    Du Yuansheng, Yin Hongfu, Wang Zhiping. The Late Caledonian-early hercynian basin’s framework and tectonic evolution of Qinling Orogenic Belt[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(4): 401-405.
    [36] 王兴志,张帆,马青,等. 四川盆地东部晚二叠世—早三叠世飞仙关期礁、滩特征与海平面变化[J]. 沉积学报,2002,20(2):249-254.

    Wang Xingzhi, Zhang Fan, Ma Qing, et al. The characteristics of reef and bank and the fluctuation of sea-level in Feixianguan Period of Late Permian-Early Triassic, east Sichuan Basin[J]. Acta Sedimentologica Sinica, 2002, 20(2): 249-254.
    [37] 马永生,牟传龙,郭彤楼,等. 四川盆地东北部飞仙关组层序地层与储层分布[J]. 矿物岩石,2005,25(4):73-79.

    Ma Yongsheng, Mou Chuanlong, Guo Tonglou, et al. Sequence stratigraphy and reservoir distribution of Feixianguan Formation in northeastern Sichuan[J]. Journal of Mineralogy and Petrology, 2005, 25(4): 73-79.
    [38] 马永生,牟传龙,谭钦银,等. 关于开江—梁平海槽的认识[J]. 石油与天然气地质,2006,27(3):326-331.

    Ma Yongsheng, Mou Chuanlong, Tan Qinyin, et al. A discussion on Kaijiang-Liangping ocean trough[J]. Oil & Gas Geology, 2006, 27(3): 326-331.
    [39] 乔占峰. 川东北地区普光气田飞仙关组层序地层与储层精细研究[D]. 成都:成都理工大学,2008.

    Qiao Zhanfeng. The detailed study of the sequence stratigraphy and the reservoir of the Feixianguan Formation in the Puguang gasfield in the northeast of the Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2008.
    [40] 刘树根,王一刚,孙玮,等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版),2016,43(1):1-23.

    Liu Shugen, Wang Yigang, Sun Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 1-23.
    [41] 邢凤存,陆永潮,郭彤楼,等. 碳酸盐岩台地边缘沉积结构差异及其油气勘探意义:以川东北早三叠世飞仙关期台地边缘带为例[J]. 岩石学报,2017,33(4):1305-1316.

    Xing Fengcun, Lu Yongchao, Guo Tonglou, et al. Sedimentary texture diversity of different carbonate platform margins and it its significance for petroleum exploration: A case study of carbonate platform margins in Feixianguan Period of the Early Triassic, NE Sichuan Basin, China[J]. Acta Petrologica Sinica, 2017, 33(4): 1305-1316.
    [42] 王一刚,刘划一,文应初,等. 川东北飞仙关组鲕滩储层分布规律、勘探方法与远景预测[J]. 天然气工业,2002,22(增刊1):14-19.

    Wang Yigang, Liu Huayi, Wen Yingchu, et al. Distribution law, exploration method and prospectiveness prediction of the oolitic beach reservoirs in Feixianguan Formation in northeast Sichuan Basin[J]. Natural Gas Industry, 2002, 22(Suppl.1): 14-19.
    [43] 李岩峰,刘殊,曾晓. 川东飞仙关组鲕滩储层地震响应特征及预测[J]. 石油物探,2005,44(3):236-239.

    Li Yanfeng, Liu Shu, Zeng Xiao. Seismic response feature and prediction of oolitic beach reservoir of Feixianguan Formation in east Sichuan Basin[J]. Geophysical Prospecting for Petroleum, 2005, 44(3): 236-239.
    [44] 马永生,郭旭升,凡睿. 川东北普光气田飞仙关组鲕滩储集层预测[J]. 石油勘探与开发,2005,32(4):60-64.

    Ma Yongsheng, Guo Xusheng, Fan Rui. Reservoir prediction of Feixianguan Formation in Puguang gas field, northeast Sichuan province[J]. Petroleum Exploration and Development, 2005, 32(4): 60-64.
    [45] 敬朋贵. 川东北地区礁滩相储层预测技术与应用[J]. 石油物探,2007,46(4):363-369.

    Jing Penggui. Reservoir prediction technology of reef-flat facies in northeast Sichuan province and its application[J]. Geophysical Prospecting for Petroleum, 2007, 46(4): 363-369.
    [46] Ma Y S, Mou C L, Tan Q Y, et al. Reef-bank features and their constraint to reservoirs of natural gas, from Permian Changxing Formation to Triassic Feixianguan Formation in Daxian-Xuanhan area of Sichuan province, South China[J]. Earth Science Frontiers, 2007, 14(1): 182-192.
    [47] 牟传龙,马永生,谭钦银,等. 四川通江—南江—巴中地区长兴组—飞仙关组沉积模式[J]. 地质学报,2007,81(6):820-826.

    Mou Chuanlong, Ma Yongsheng, Tan Qinyin, et al. Sedimentary model of the Changxing-Feixianguan Formations in the Tongjiang-Nanjiang-Bazhong area, Sichuan[J]. Acta Geologica Sinica, 2007, 81(6): 820-826.
    [48] 段金宝,黄仁春,程胜辉,等. 川东北元坝地区长兴期—飞仙关期碳酸盐岩台地沉积体系及演化[J]. 成都理工大学学报(自然科学版),2008,35(6):663-668.

    Duan Jinbao, Huang Renchun, Cheng Shenghui, et al. Depositional system and the evolution of carbonate rock platform of Changxing-Feixianguan Period in Yuanba area of northeast Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(6): 663-668.
    [49] 程锦翔,谭钦银,郭彤楼,等. 川东北元坝地区长兴组—飞仙关组碳酸盐台地边缘沉积特征及演化[J]. 沉积与特提斯地质,2010,30(4):29-37.

    Cheng Jinxiang, Tan Qinyin, Guo Tonglou, et al. Sedimentary characteristics and evolution of the carbonate platform-margins in the Changxing Formation-Feixianguan Formation in Yuanba, northeastern Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(4): 29-37.
    [50] Beukes N J.Ooids and oolites of the proterophytic boomplaas formation, supergroup transvaal, west griqualand, South Africa[M]//Peryt T M. Coated grains. Berlin, Heidelberg: Springer, 1983: 199-214.
    [51] Zempolich W G, Baker P A. Experimental and natural mimetic dolomitization of aragonite ooids[J]. Journal of Sedimentary Research, 1993, 63(4): 596-606.
    [52] Friedman G M. Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies[J]. Journal of Sedimentary Research, 1962, 32(1): 15-25.
    [53] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008.

    Zhu Xiaomin. Sedimentary petrology [M]. 4th ed. Beijing: Petroleum Industry Press, 2008.
    [54] 杜天澍,徐辉. 碳酸盐岩地层中鲕粒的分类[J]. 石油实验地质,1983,5(4):285-288.

    Du Tianshu, Xu Hui. Classification of oolitic grains in carbonate formations[J]. Experiment Petroleum Geology, 1983, 5(4): 285-288.
    [55] 王英华,杨承运,张秀莲. 鲕粒的结构变化与成岩作用性质和强度的关系[J]. 沉积学报,1983,1(2):73-83.

    Wang Yinghua, Yang Chengyun, Zhang Xiulian. Relationship between the changes of ooidal texture and the property and strength of diagenesis[J]. Acta Sedimentologica Sinica, 1983, 1(2): 73-83.
    [56] 张秀莲. 鲕粒在成岩作用中的次生变化及其意义[J]. 大庆石油地质与开发,1984,3(4):377-388.

    Zhang Xiulian. Secondary variation of oolitic grains and its significance in the study of diagenesis[J]. Petroleum Geology & Oilfield Development in Daqing, 1984, 3(4): 377-388.
    [57] Sumner D Y, Grotzinger J P. Numerical modeling of Ooid size and the problem of Neoproterozoic giant Ooids[J]. Journal of Sedimentary Petrology, 1993, 63(5): 974-982.
    [58] 梅冥相. 显生宙罕见的巨鲕及其鲕粒形态多样性的意义:以湖北利川下三叠统大冶组为例[J]. 现代地质,2008,22(5):683-698.

    Mei Mingxiang. Implication for the unusual giant oolites of the phanerozoic and their morphological diversity: A case study from the Triassic Daye Formation at the Lichuan section in Hubei province, South China[J]. Geoscience, 2008, 22(5): 683-698.
    [59] 李飞,王夏,薛武强,等. 一种新的错时相沉积物:巨鲕及其环境意义[J]. 沉积学报,2010,28(3):585-595.

    Li Fei, Wang Xia, Xue Wuqiang, et al. Origin and environmental significance of giant ooids in the Early Triassic: A new kind of anachronistic facies[J]. Acta Sedimentologica Sinica, 2010, 28(3): 585-595.
    [60] 代明月,齐永安,陈尧,等. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因[J]. 古地理学报,2014,16(5):726-734.

    Dai Mingyue, Qi Yong’an, Chen Yao, et al. Giant ooids and their genetic analysis from the Zhangxia Formation of Cambrian Series 3 in Mianchi area, western Henan province[J]. Journal of Palaeogeography, 2004, 16(5): 726-734.
    [61] 范鸿,姬国锋,时志强,等. 巨鲕成因探讨:来自上扬子地区下寒武统、中泥盆统及下三叠统的证据[J]. 山东科技大学学报(自然科学版),2015,34(6):16-24.

    Fan Hong, Ji Guofeng, Shi Zhiqiang, et al. Origin of giant ooids: Evidence from Lower Cambrian, Middle Devonian and Lower Triassic in Upper Yangtze region[J]. Journal of Shandong University of Science and Technology (Natural Science), 2015, 34(6): 16-24.
    [62] Li F, Yan J X, Burne R V, et al. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 96-107.
    [63] Li F, Yan J X, Algeo T, et al. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China)[J]. Global and Planetary Change, 2013, 105: 102-120.
    [64] 段雄. 上扬子地区早寒武世及早三叠世巨鲕灰岩对比研究[D]. 成都:成都理工大学,2015.

    Duan Xiong. Contrastive research about giant ooids of Early Cambrian and Early Triassic in Upper Yangtz area[D]. Chengdu: Chengdu University of Technology, 2015.
    [65] 郭芪恒,金振奎,史书婷,等. 鲕粒粒度特征及其指示意义:以北京西山下苇甸寒武系张夏组剖面为例[J]. 沉积学报,2020,38(4):737-746.

    Guo Qiheng, Jin Zhenkui, Shi Shuting, et al. Characteristics of ooid size and its environmental significance: A case study from the Cambrian Zhangxia Formation at Xiaweidian outcrop, Beijing[J]. Acta Sedimentologica Sinica, 2020, 38(4): 737-746.
    [66] 赵东方,胡广,张文济,等. 渝北巫溪鱼鳞剖面灯影组鲕粒沉积特征及其地质意义[J]. 地质论评,2018,64(1):191-202.

    Zhao Dongfang, Hu Guang, Zhang Wenji, et al. Sedimentary characteristics of ooids of Sinian (Ediacaran) Dengying Formation on the Yulin section in Wuxi, Chongqing, and geological implications[J]. Geological Review, 2018, 64(1): 191-202.
    [67] 付坤荣,黄理力,祝怡,等. 塔中地区晚奥陶世碳酸盐台缘与台内沉积差异:定性和定量的碳酸盐岩微相综合分析[J]. 沉积学报,2018,36(1):101-109.

    Fu Kunrong, Huang Lili, Zhu Yi, et al. The depositional diversity between platform margin and platform interior on the Late Ordovician carbonate rimmed-platform of Tazhong area: A case study of qualitative and quantitative integrated microfacies analysis[J]. Acta Sedimentologica Sinica, 2018, 36(1): 101-109.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(1)

Article Metrics

Article views(471) PDF downloads(118) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-12-28
  • Revised:  2021-05-12
  • Published:  2021-12-10

Correlation Between Ooid Characteristics and Hydrodynamic Forces in the Feixianguan Formation, Northeastern Sichuan

doi: 10.14027/j.issn.1000-0550.2021.059
Funds:

National Natural Science Foundation of China 41672103, 41302089

Abstract: Ooids developed all over the world in the Lower Triassic, and giant ooids appeared. The ooid shoal at the margin of the Feixianguan Formation platform in northeastern Sichuan comprises strongly heterogeneous and complex ooid types. The relationship between ooid type, grain size parameter evolution and hydrodynamic forces were studied for deposits in the Longtancun, Laixi and Yudongzi regions using field measurement, microscopic identification and grain-size analysis. Seven primary divisions and nine subdivisions of ooids were found, and fractured ooids may be classed separately. In addition to skewness, other parameters (e.g., average particle size, standard deviation, kurtosis and graphic curve shape of particle size data) are strongly correlated. The classifications suggest that the ooid shoal at Longtan village indicates a change from an active marginal zone to a stable ooid sand flat as hydrodynamic conditions gradually decreased. At Laixi, a deposition cycle of active marginal zone-stable ooid sand flat to active marginal zone is evident, with decreasing and then increasing hydrodynamic force. The hydrodynamic force decreases with upward at Yudongzi. However, there is poor correlation between the horizon containing giant and the overall trend of changes in ooid grain type and size, possibly because the abnormally large particle size in the giant ooids is affected by a combination of microbial action and the rapid increase of seawater carbonate saturation rather than rapid change in hydrodynamic force. Therefore, when judging the hydrodynamic conditions of sedimentary environments containing giant ooids using grain-size parameters, it is not possible to draw a conclusion from grain size alone, but it is necessary to analyze the correlations between ooid grain-size parameters.

GU Qiang, XING FengCun, QIAN HongShan, SUN HanXiao. Correlation Between Ooid Characteristics and Hydrodynamic Forces in the Feixianguan Formation, Northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1371-1386. doi: 10.14027/j.issn.1000-0550.2021.059
Citation: GU Qiang, XING FengCun, QIAN HongShan, SUN HanXiao. Correlation Between Ooid Characteristics and Hydrodynamic Forces in the Feixianguan Formation, Northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1371-1386. doi: 10.14027/j.issn.1000-0550.2021.059
  • 二叠纪—三叠纪生物大灭绝导致大量生物死亡及生态系统的严重破坏,早三叠世全球变暖[1-4]、海水多次酸化[5-7]、风化速率[8-12]及海洋沉积速率突增[13]等多个事件共存。在这一紊乱的时期,作为碳酸盐岩组分的鲕粒广泛发育于全球下三叠统地层[14-16],且因出现巨型鲕粒而受到广泛关注。作为一种指相颗粒,鲕粒可通过原始矿物、圈层特征、形态特征、以及鲕粒组合特征指示古海洋条件,如水动力、水深、盐度、气候条件以及敏感的水化学条件等[17-22]。直径作为其最直观的特征,常与水动力条件及海水碳酸盐饱和度相联系。在鲕粒形成过程中物理环境与海水化学一样重要[23-26]。鲕粒大小反映快速沉淀和磨损率之间的动态平衡[18],与流速直接相关[27-29],直径大表示更强的水动力条件[30-31]。相对于鲕粒总寿命[32],鲕粒快速达到动态平衡大小,而后大小和形状基本保持不变。研究发现早三叠世全球鲕粒和巨鲕的出现与富氧/缺氧及碳同位素扰动有很强的对应关系,是生物大灭绝的沉积响应,鲕粒的大小可能是一个量化生态系统破坏程度的沉积指标,巨鲕的出现可能代表遭受比其他地区更高的生态系统压力[14,23]。Li et al.[33]通过建立鲕粒直径数据约束下的鲕粒生长物理化学模型定量的分析了早三叠世海水化学,得出早三叠世碳酸盐饱和度可能达到现代的7倍,且pH值也大幅下降。因此对鲕粒粒度的精细研究,对恢复这一时期复杂的古环境具有重要意义。四川东北部下三叠统飞仙关组鲕粒滩非均质性强、沉积结构复杂,前人已进行了大量研究,但对鲕粒类型的细分、鲕粒类型的时空演化及鲕粒类型与水动力条件(粒度)的相关性还需进一步的精细研究。因此本文选取川东北莱溪、龙潭村及鱼洞子飞仙关组剖面,通过野外实测、镜下鉴定及粒度分析方法对其进行研究。

  • 早三叠世,上扬子地区位于东特提斯,飞仙关组鲕粒发育与同时期全球热带—亚热带浅水台地鲕粒沉积相对应[14,23]图1a)。研究剖面位于上扬子地区开江—梁平海槽西侧,海槽的形成受南秦岭洋的扩张与收缩、“峨眉地裂”运动的影响,受海平面下降及沉积速率加快的共同影响而消亡于飞仙关期。开江—梁平海槽西侧发育正常碳酸盐岩台地,东侧与城口—鄂西海槽之间则具有孤立台地性质[34-40]。鲕粒主要发育于开江—梁平海槽两侧以及城口—鄂西海槽西部台缘鲕粒滩(图1b),少量形成于台内点滩[41-45]。开江—鄂西海槽西侧为迁移型,白云石化作用弱,滩体厚度薄但明显向东迁移;东侧为加积型,白云石化作用强烈,鲕粒滩厚度大。鲕粒滩发育主要受海平面变化、古构造、古风向及差异沉降影响[41,46-49]。由于早三叠世处于“文石海”时期,文石优先沉淀,稳定性较差,后期常被成岩改造为稳定的低镁方解石或白云石。莱溪、龙潭村及鱼洞子剖面位于开江—鄂西海槽西侧,飞仙关早期台缘鲕粒滩发育,鱼洞子剖面位于鲕粒滩主体区,莱溪及龙潭村位于鲕粒滩边缘带。研究剖面白云石化作用较弱,可减小鲕粒原始空间尺寸被白云石化作用期间潜在的尺寸再生影响[50-51],从而提高本次研究的准确性。

    Figure 1.  Lower Triassic global ooids development and sedimentary facies distribution in the study area during the early Feixianguan period

  • 实测莱溪、龙潭村及鱼洞子剖面,根据岩性、沉积结构及构造划分层位,对鲕粒发育层位重点取样。对岩石样品进行磨片并使用茜素红染色,在偏光显微镜下对鲕粒进行识别划分。鲕粒粒度分析则利用徕卡偏光显微镜及川大图像分析系统软件对莱溪22张、龙潭村29张及鱼洞子58张鲕粒发育薄片进行镜下鲕粒粒度测量。为了减小误差,对粒度较大的鲕粒使用2倍物镜,10倍目镜,选取最能代表样品鲕粒发育特征的3~5个视域进行测量。粒度较小的鲕粒使用4倍物镜,10倍目镜进行测量,每个样品测量鲕粒数至少100。对所测得的鲕粒粒径D使用Φ=-log2D进行转化得到转化值Φ′,因为所测得值为镜下值,所以再对Φ′使用弗里德公式Φ=0.902 7Φ′+0.381 5进行校正[52]。最后利用所得Φ值进行计算得到鲕粒样品的平均粒径、标准偏差、偏度及峰度等粒度参数,并绘制直方图、频率曲线以及概率累计曲线对粒度资料进行图解[53]

  • 鲕粒受沉积环境的影响而呈现出不同形态,在已有研究的基础上[18,30,54-56],综合考虑鲕粒成因、原始矿物、圈层结构、形态特征及成岩作用改造等多方面因素,将研究区内鲕粒划分为原生沉积的藻鲕、同心鲕、表鲕、复鲕、椭形鲕、巨鲕、偏心鲕及后生改造的泥晶鲕、偏心鲕、变形鲕、负鲕、单晶鲕、多晶鲕、白云化鲕、残余鲕、破碎鲕(图2)。研究发现偏心鲕在原生沉积及后生改造中都可形成,应结合其组成矿物及圈层形态进行识别。破碎鲕可根据破碎形态进一步划分为断壳鲕、破裂鲕、错裂鲕及残缺鲕。

    Figure 2.  Classification scheme of ooid types

  • 研究区内藻鲕仅少量发育,形态常受控于核心,鲕粒边界微起伏,鲕粒边部颜色较深(图3a),部分受海水纤状环边胶结及大气淡水胶结(图3b)。同心鲕粒径较大,0.5~2 mm,鲕粒圈层结构明显(图3c),可见栉壳状胶结及等粒状大气淡水胶结,部分圈层或核受大气淡水选择性溶蚀再沉淀形成较粗晶粒(图3d)。同心鲕重结晶作用受圈层结构限制,而形成明暗相间的圈层(图3e)。表鲕的粒径变化较大,其形成受水动力及核大小的影响,因此表鲕发育层位不能简单的认为水动力小,而需要从鲕粒组合及表鲕核心大小等多方面来分析判断(图3f)。复鲕由两个或多个鲕粒组成一个新的核心,被外部大的包壳所包围形成,颗粒间灰泥充填,外部包壳最内层可变厚度,这可能是由核心内部颗粒之间的间隙确定的(图3g,h)。椭形鲕受不规则核心形状控制(图3i),同沉积的其他类型鲕粒为球形。研究区巨鲕粒径可达10 mm,相比于其他鲕粒其核心更大(图3j),同心圈层发育,颗粒间灰泥填充,部分圈层及基质重结晶(图3k)。已有研究表明,其异常的粒径可能是由于早三叠世大部分骨骼生物灭绝而导致的核心供应减少、微生物的积极参与及海水碳酸盐饱和度的快速增加形成[33,57-64],该地区此时可能遭受很高的生态系统压力[14]。原生成因的偏心鲕同心层不对称,主要是由于较低的水动力使鲕粒悬浮生长受阻,导致包壳不对称生长(图3l)。

    Figure 3.  Typical photomicrographs of primary sedimentary ooids

  • 泥晶鲕圈层结构不发育,粒径较小,0.1~0.5 mm。在浪基面以下发生泥晶化,整体颜色较深,保存完整(图4a)。部分泥晶鲕颗粒间发育两期胶结,海水成因的纤状环边胶结以及等粒状大气淡水胶结(图4b),部分中心部位发生重结晶作用。变形鲕为鲕粒受压力发生塑性变形形成,因此在镜下观察时可见整个薄片的鲕粒都发生不同程度的变形(图4c)。鲕粒受溶蚀形成负鲕,研究区内负鲕粒径较小,可见附着于内壁或充填孔隙的沥青(图4d,e)。单晶鲕与多晶鲕多为负鲕接受大气淡水再沉淀而形成(图4f,g),可见示顶底结构(图4h),少数为重结晶作用形成。研究区白云石化作用较弱,见部分鲕粒外部同心层与基质被白云石化的白云化鲕(图4i),而残余鲕则被完全白云石化后只能大概识别其轮廓(图4j)。破碎鲕可根据其破碎特征划分为断壳鲕、破裂鲕、错断鲕以及残缺鲕(图4k)。后生成因偏心鲕为鲕粒内部圈层受到溶蚀,核心发生偏移后鲕粒内部孔隙再次沉淀结晶形成,可通过鲕粒圈层特征识别(图4l)。

    Figure 4.  Typical photomicrographs of epigenetic ooids

  • 龙潭村剖面鲕粒主要发育于飞一段台缘鲕粒滩,飞二段仅见少量台内点滩,鲕粒总含量向上呈减少再增加趋势(图5)。泥晶鲕垂向分布较广,从底到顶其含量随同心鲕的减少逐渐增加,常伴随复鲕发育。同心鲕主要分布于飞一段下部,与破碎鲕的出现相吻合,而与表鲕的发育相反。负鲕同时或晚于同心鲕出现,根据其特征,可推断飞仙关早期龙潭村位于海平面附近,水动力较强且地层暴露遭受过大气淡水选择性溶蚀,同时单晶鲕的出现大多晚于负鲕,仅部分层段两者共存,单晶鲕发育的样品镜下可见大气淡水再沉淀形成的示顶底结构(图4h),且灰泥基质仅见微弱重结晶作用(图4f,g),因此单晶鲕的形成主要是受大气淡水中溶解碳酸钙再沉淀形成而不是因重结晶作用而形成。多晶鲕的分布和单晶鲕较为一致,但早于单晶鲕。椭形鲕分布较乱,在鲕粒滩与台内点滩中均发育。巨鲕发育于飞一段底部与其他类型鲕粒共生。剖面白云化作用弱,因此未见残余鲕,仅在14层见极少白云化鲕。

    Figure 5.  Ooid characteristics and comprehensive sedimentary column of Feixianguan Formation in Longtancun

  • 莱溪剖面鲕粒发育层位与龙潭村相似,但鲕粒类型与龙潭村有区别,且砂屑含量较高,鲕粒总含量向上逐渐减少(图6)。剖面未见同心鲕,泥晶鲕分布广泛,含量从飞一段底部向上逐渐减少。表鲕及复鲕仅发育于飞一段底部。飞一段底部及飞二段台缘鲕粒滩均见到鲕粒,但飞二段巨鲕含量比飞一段低。剖面单晶鲕及多晶鲕发育,未见负鲕,但是根据剖面单晶鲕中示顶底结构可以判断单晶鲕成因与龙潭村一致,多晶鲕发布较广,常与单晶鲕及负鲕伴生。白云化鲕与残余鲕在飞一段可见。破碎鲕主要发育在飞一段。藻鲕仅发育于39层。

    Figure 6.  Ooid characteristics and comprehensive sedimentary column of Feixianguan Formation in Laixi

  • 鱼洞子剖面鲕粒主要发育于飞二段(图7)。泥晶鲕分布广,但从底部向上其含量随同心鲕含量的变化先减少再增加。显现出与同心鲕发育相反的趋势。剖面表鲕,复鲕及藻鲕发育较少,主要集中于22~28层。巨鲕在剖面内发育较多,且巨鲕大多以同心层形式出现,仅少量呈复鲕形式出现。剖面负鲕、单晶鲕及多晶鲕较为发育,且相关性较好。负鲕在飞二段顶部及其发育,形成大量铸模孔。单晶鲕与多晶鲕的发育与前两个基本剖面一致,常伴生出现。破碎鲕与变形鲕发育段吻合,集中于飞二段下部,该层段鲕粒形成后遭受成岩压实压溶作用,镜下可见缝合线穿过鲕粒。

    Figure 7.  Ooid characteristics and comprehensive sedimentary column of Feixianguan Formation in Yudongzi

  • 鲕粒粒度与沉积环境水动力条件具有很强的相关性[17-31],且已有相关工作者将粒度分析方法用于颗粒碳酸盐岩及鲕粒碳酸盐岩研究[65-67]。台内滩鲕粒发育较少且分布不连续,因此以连续的台缘鲕粒滩对鲕粒粒度的时空演化进行研究。由于实测粒径转换为Φ值,因此平均粒径曲线变化趋势与鲕粒平均粒径大小变化相反,且前人通过分析确定的标准偏差划分碎屑岩分选性的标准,对碳酸盐岩分选性划分是不准确的,因此通过镜下鉴定来校正划分标准,鉴定结果与郭芪恒等[65]制定的下苇甸张夏组鲕粒分选划分标准基本一致,因此本文采用其划分标准(表1)。

    分选级别 极好 较好 中等 较差
    标准偏差(σ) <0.3 0.3~0.35 0.35~0.4 0.4~0.45 0.45~0.5 >0.5

    Table 1.  Classification criteria for ooid sorting (after Guo et al.[65])

    偏度同样被用于判断沉积物分选性,但具有两种完全不同的含义。当明显不同的两个或多个粒度总体混合时,如果两个或多个含量相等,虽然偏度趋于0,却表现为差的分选,频率曲线形态呈马鞍状双峰或多峰对称型[53]。在碎屑岩研究中偏度与标准偏差对应性较好,但是由于鲕粒的成因及粒度关系复杂,粒径较大的鲕粒也能在弱水动力条件下形成。因此在碳酸盐岩的研究中,偏度对分选性的划分作用较小,但通过与标准偏差的结合可用于推测频率曲线形态。频率曲线形态能反映沉积环境水动力变化(图8a),单峰表示水动力条件稳定,与反映沉积物搬运方式的概率累计曲线(图8b)具有很强的相关性,对样品统计分析发现单峰型主要对应直线型,多峰型主要对应三段型(图9)。

    Figure 8.  Pixel diameters

    Figure 9.  Curve feature correspondence

  • 对龙潭村剖面鲕粒粒度参数进行绘图分析,通过相关性分析生成预测线,通过大数定律与中心极限定理拟合确定95%可信区及95%预测区。研究显示剖面平均粒径(Mz)曲线从底到顶逐渐增大,但由于转换为Φ值,因此鲕粒实际平均粒径为逐渐减小(图10a)。鲕粒标准偏差逐渐减小(图10b),分选性由差到好。龙潭村鲕粒沉积偏度主要为正偏态(图10c)。峰度显示从底到顶鲕粒峰度由小变大(图10d),与标准偏差变化相反(图10e),与粒度变化相同。频率曲线形态多为单峰型,少数呈双峰及多峰型(图5)。

    Figure 10.  Scatter graphs of granularity parameters in Longtancun

  • 莱溪剖面鲕粒从低到顶平均粒径经历增大—减小—增大三次变化,粒径增大的层段出现巨鲕(图11a)。标准偏差与粒径变化相同,呈现增大—减小—增大变化(图11b)。偏度大部分为正态,相关性较差,与龙潭村一致,仅可用于判断频率曲线形态(图11c)。峰度与平均粒径变化一致(图11d),与标准偏差负相关(图11e)。频率曲线形态与概率累计曲线各形态均出现,但主要为单峰型对应直线型,双峰型对应二段型,多峰型对应三段型(图6)。

    Figure 11.  Scatter graphs of granularity parameters in Laixi

  • 鱼洞子剖面鲕粒从低到顶鲕粒平均粒径与标准偏差向上减小(图12a,b),分选性逐渐变好。偏度多为正态(图12c),峰度向上减小,由于巨鲕的影响与前两个剖面呈现出不同的变化规律(图12d),与标准偏差呈负相关(图12e)。频率曲线主要为单峰型与双峰型,多峰型仅少量出现。概率累积曲线主要为直线型与二段型,三段型较少出现。单峰型常与直线型伴生,二段型与双峰型伴生(图7)。

    Figure 12.  Scatter graphs of granularity parameters in Yudongzi

  • 根据龙潭村、莱溪及鱼洞子剖面鲕粒类型及粒度时空演化对比分析,鲕粒类型及粒度参数与沉积环境具有较好的相关性。粒径较大的同心鲕、较大的标准偏差、多峰型频率曲线及三段式概率累计曲线,通常指示鲕粒滩沉积环境中水动力较强的活动边缘带。但部分巨鲕由泥晶灰泥充填(图3j)且含巨鲕的样品粒度参数与无巨鲕的样品差距较大,相关性较差(图10~12),这也证实巨鲕的形成受微生物作用及海水碳酸盐饱和度异常增大等多种因素的复合影响,而不仅仅只是水动力变强的原因。因此在利用粒度参数分析有巨鲕发育的鲕粒滩沉积水动力条件时,需对鲕粒粒度参数进行相关性分析,去除相关性较差的样品数据。泥晶鲕等粒度较小的鲕粒通常分选性较好,多为单峰与直线型,常发育于鲕粒滩沉积环境中水动力弱、稳定的稳定鲕粒砂坪。龙潭村剖面从底到顶由同心鲕,负鲕、多晶鲕为主,转变为泥晶鲕、单晶鲕、复鲕为主的同时,鲕粒平均粒径也逐渐减小,分选性由差变好,频率累计曲线由多峰型为主变为单峰型为主,概率累计曲线则由三段型向直线型转变。鲕粒类型及粒度参数显示,鲕粒滩水动力逐渐减小,沉积环境由活动边缘带转变为稳定鲕粒砂坪沉积。莱溪剖面从底到顶粒径增大再减小、频率曲线呈多峰型—单峰型—多峰型及概率累计曲线由三段型—直线型—三段型指示莱溪剖面鲕粒滩水动力减小再增大,沉积环境呈活动边缘带—稳定鲕粒砂坪—活动边缘带旋回。鱼洞子剖面巨鲕发育较多,整体上从底到顶由粒径较大的同心鲕转变为粒径较小的泥晶鲕,水动力逐渐减小,沉积环境由活动边缘带转变为稳定鲕粒砂坪沉积。但局部表现出异常的粒径及曲线形态,这是由于巨鲕的发育所导致的。

  • (1) 川东北飞仙关组发育鲕粒有原生沉积的藻鲕、同心鲕、表鲕、复鲕、椭形鲕、巨鲕、偏心鲕及后生改造的泥晶鲕、偏心鲕、变形鲕、负鲕、单晶鲕、多晶鲕、白云化鲕、残余鲕、破碎鲕。

    (2) 龙潭村飞仙关组台缘鲕粒滩由活动边缘带转变为稳定鲕粒砂坪沉积,水动力减弱;莱溪呈活动边缘带—稳定鲕粒砂坪—活动边缘带沉积旋回,水动力降低再增加;鱼洞子飞二段台缘鲕粒滩沉积,向上水动力逐渐变弱。

    (3) 鲕粒类型及粒度参数时空演化与水动力具有良好的对应关系,但在巨鲕发育的层段这种对应关系可能会变差,这是由于巨鲕的形成可能主要是受微生物作用和碳酸盐饱和度的快速增加影响,而不是水动力的快速变化。因此在有巨鲕发育的层段利用鲕粒粒度分析沉积环境水动力时,不能简单地认为鲕粒粒径大则代表水动力更强。

Reference (67)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return