Advanced Search
Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents

GU YiFan, CAI GuangYin, LI ShuXin, JIANG YuQiang, QIU Zhen, SUN ShaSha, FU YongHong. Pore Structure and Controlling Factors of Different Lithofacies in Transitional Shale: A case study of the Shanxi Formation Shan23 submember, eastern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 318-332. doi: 10.14027/j.issn.1000-0550.2021.070
Citation: GU YiFan, CAI GuangYin, LI ShuXin, JIANG YuQiang, QIU Zhen, SUN ShaSha, FU YongHong. Pore Structure and Controlling Factors of Different Lithofacies in Transitional Shale: A case study of the Shanxi Formation Shan23 submember, eastern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 318-332. doi: 10.14027/j.issn.1000-0550.2021.070

Pore Structure and Controlling Factors of Different Lithofacies in Transitional Shale: A case study of the Shanxi Formation Shan23 submember, eastern Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.070
Funds:

Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance 2020CX030101

National Natural Science Foundation of China 51674044

  • Received Date: 2021-02-18
  • Accepted Date: 2021-07-08
  • Rev Recd Date: 2021-05-10
  • Available Online: 2021-07-08
  • Publish Date: 2023-02-10
  • Transitional facies shale as present in the Shanxi Formation Shan23 submember in the eastern Ordos Basin is the key target of shale gas exploration in China. It is characterized by many types of lithofacies and rapid lateral change, and has significant resource potential. By systematic analysis using nitrogen adsorption, NMR, image recognition and organic maceral identification techniques, the lithofacies were classed into five divisions: siliceous shale, siliceous-argillaceous shale, calcareous-siliceous shale, siliceous-calcareous shale and argillaceous shale facies. Their pore structures were studied and the main controlling factors are discussed. The results show that: (1) the morphology, connectivity and development degree of organic pores are best in the calcareous-siliceous (or siliceous-calcareous) shale facies, while inorganic pores and microfractures are developed in all facies; (2) the contribution of specific surface area and total pore volume comes mainly from micropores and small mesopores, although the contribution of large mesopores and macropores is also very obvious; (3) TOC and maturity do not control pore structure; (4) the organic matter in the siliceous and siliceous-argillaceous shale is vitrinite, and the morphology, connectivity and development degree of organic pores are poor. Sapropelinite was observed in calcareous-siliceous (or siliceous-calcareous) and argillaceous shale facies, which is the effective component for the development of organic pores. It is considered that the effective organic matter is the predominant factor controlling the pore structure of Shan23 submember transitional shale.
  • [1] Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
    [2] Alshahrani S S. Depositional environment, history, diagenesis, and petroleum geology of the Cleveland Shale member, northeastern Ohio[D]. Bowling Green: Bowling Green State University, 2013.
    [3] Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the barnett shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22.
    [4] 梁超,姜在兴,杨镱婷,等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发,2012,39(6):691-698.

    Liang Chao, Jiang Zaixing, Yang Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698.
    [5] Jia A Q, Hu D F, He S, et al. Variations of pore structure in organic-rich shales with different lithofacies from the Jiangdong block, Fuling shale gas field, SW China: Insights into gas storage and pore evolution[J]. Energy & Fuels, 34(10): 12457-12475.
    [6] 王勇,王学军,宋国奇,等. 渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J]. 石油勘探与开发,2016,43(5):696-704.

    Wang Yong, Wang Xuejun, Song Guoqi, et al. Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 696-704.
    [7] 史洪亮,熊亮,董晓霞,等. 川南地区五峰组—龙马溪组下段页岩岩相特征及演化序列差异性成因[J]. 天然气工业,2019(增刊1):71-77.

    Shi Hongliang, Xiong Liang, Dong Xiaoxia, et al. Lithofacies characteristics and evolution sequence differences of the lower member of the Wufeng Longmaxi Formation in southern Sichuan[J]. Natural Gas Industry, 2019(Suppl.1): 71-77.
    [8] 王志峰,张元福,梁雪莉,等. 四川盆地五峰组—龙马溪组不同水动力成因页岩岩相特征[J]. 石油学报,2014,35(4):623-632.

    Wang Zhifeng, Zhang Yuanfu, Liang Xueli, et al. Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2014, 35(4): 623-632.
    [9] 霍建峰,高健,郭小文,等. 川东地区龙马溪组页岩不同岩相孔隙结构特征及其主控因素[J]. 石油与天然气地质,2020,41(6):1162-1175.

    Huo Jianfeng, Gao Jian, Guo Xiaowen, et al. Characteristics and controlling factors of pore structures of various lithofacies in shales of Longmaxi Formation, eastern Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(6): 1162-1175.
    [10] 王曦蒙,刘洛夫,汪洋,等. 川南地区龙马溪组页岩岩相对页岩孔隙空间的控制[J]. 石油学报,2019,40(10):1192-1201.

    Wang Ximeng, Liu Luofu, Wang Yang, et al. Control of lithofacies on pore space of shale from Longmaxi Formation, southern Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(10): 1192-1201.
    [11] 闫德宇,黄文辉,张金川. 鄂尔多斯盆地海陆过渡相富有机质泥页岩特征及页岩气意义[J]. 地学前缘,2015,22(6):197-206.

    Yan Deyu, Huang Wenhui, Zhang Jinchuan. Characteristics of marine-continental transitional organic-rich shale in the Ordos Basin and its shale gas significance[J]. Earth Science Frontiers, 2015, 22(6): 197-206.
    [12] 王玉满,王淑芳,董大忠,等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘,2015,23(1):119-133.

    Wang Yuman, Wang Shufang, Dong Dazhong, et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119-133.
    [13] 袁桃,魏祥峰,张汉荣,等. 四川盆地及周缘上奥陶统五峰组—下志留统龙马溪组页岩岩相划分[J]. 石油实验地质,2020,42(3):371-377,414.

    Yuan Tao, Wei Xiangfeng, Zhang Hanrong, et al. Shale petrofacies division of Wufeng-Longmaxi Formations in Sichuan Basin and its periphery[J]. Petroleum Geology and Experiment, 2020, 42(3): 371-377, 414.
    [14] 蒋裕强,宋益滔,漆麟,等. 中国海相页岩岩相精细划分及测井预测:以四川盆地南部威远地区龙马溪组为例[J]. 地学前缘,2016,23(1):107-118.

    Jiang Yuqiang, Song Yitao, Qi Lin, et al. Fine lithofacies of China’s marine shale and its logging prediction: A case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin, China[J]. Earth Science Frontiers, 2016, 23(1): 107-118.
    [15] 车世琦. 测井资料用于页岩岩相划分及识别:以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏,2018,30(1):121-132.

    Che Shiqi. Shale lithofacies identification and classification by using logging data: A case of Wufeng-Longmaxi Formation in Fuling gas field, Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 121-132.
    [16] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586.

    Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586.
    [17] 陈洪德,李洁,张成弓,等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报,2011,27(8):2213-2229.

    Chen Hongde, Li Jie, Zhang Chenggong, et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2213-2229.
    [18] Li Y, Yang J H, Pan Z J, et al. Unconventional natural gas accumulations in stacked deposits: A discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China[J]. Acta Geologica Sinica-English Edition, 2019, 93(1): 111-129.
    [19] 李易隆,贾爱林,冀光,等. 鄂尔多斯盆地中—东部下石盒子组八段辫状河储层构型[J]. 石油学报,2018,39(9):1037-1050.

    Li Yilong, Jia Ailin, Ji Guang, et al. Reservoir architecture of braided river in member 8 of Xiashihezi Formation, central-eastern Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(9): 1037-1050.
    [20] 匡立春,董大忠,何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发,2020,47(3):435-446.

    Kuang Lichun, Dong Dazhong, He Wenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435-446.
    [21] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [22] Li Y, Tang D Z, Xu H, et al. Geological and hydrological controls on water coproduced with coalbed methane in Liulin, eastern Ordos Basin, China[J]. AAPG Bulletin, 2015, 99(2): 207-229.
    [23] Du W, Jiang Z X, Zhang Y, et al. Sequence stratigraphy and sedimentary facies in the lower member of the Permian Shanxi Formation, northeastern Ordos Basin, China[J]. Journal of Earth Science, 2013, 24(1): 75-88.
    [24] 董大忠,邱振,张磊夫,等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报,2021,39(1):29-45.

    Dong Dazhong, Qiu Zhen, Zhang Leifu, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2020, 39(1): 29-45.
    [25] 刘辉,吴少华,姜秀民,等. 快速热解褐煤焦的低温氮吸附等温线形态分析[J]. 煤炭学报,2005,30(4)∶507-510.

    Liu Hui, Wu Shaohua, Jiang Xiumin,et al. The configuration analysis of the adsorption isothem of nitrogen in low temperature with the lignite char produced under fast pyrolysis [J].Joumal of China Coal Society, 2005, 30(4): 507- 510.
    [26] Sun W J, Feng Y Y, Jiang C F, et al. Fractal characterization and methane adsorption features of coal particles taken from shallow and deep coalmine layers[J]. Fuel, 2015, 155: 7-13.
    [27] Wang M, Xue H T, Tian S S, et al. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2015, 67: 144-153.
    [28] Wang G C, Carr T R. Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus shale in the Appalachian Basin[J]. Computers & Geosciences, 2012, 49: 151-163.
    [29] Singh P, Slatt R, Borges G, et al. Reservoir characterization of unconventional gas shale reservoirs: Example from the Barnett Shale, Texas, U.S.A[J]. The Shale Shaker, 2009, 60(1): 15-31.
    [30] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [31] 刘江涛,李永杰,张元春,等. 焦石坝五峰组—龙马溪组页岩硅质生物成因的证据及其地质意义[J]. 中国石油大学学报(自然科学版),2017,41(1):34-41.

    Liu Jiangtao, Li Yongjie, Zhang Yuanchun, et al. Evidences of biogenic silica of Wufeng-Longmaxi Formation shale in Jiaoshiba area and its geological significance[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(1): 34-41.
    [32] Sehieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
    [33] 纪文明,宋岩,姜振学,等. 四川盆地东南部龙马溪组页岩微—纳米孔隙结构特征及控制因素[J]. 石油学报,2016,37(2):182-195.

    Ji Wenming, Song Yan, Jiang Zhenxue, et al. Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2): 182-195.
    [34] 吉利明,邱军利,夏燕青,等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报,2012,33(2):249-256.

    Ji Liming, Qiu Junli, Xia Yanqing, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012, 33(2): 249-256.
    [35] 曹涛涛,刘光祥,曹清古,等. 有机显微组成对泥页岩有机孔发育的影响:以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质,2018,39(1):40-53.

    Cao Taotao, Liu Guangxiang, Cao Qinggu, et al. Influence of maceral composition on organic pore development in shale: A case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(1): 40-53.
    [36] 李军,金武军,王亮,等. 利用核磁共振技术确定有机孔与无机孔孔径分布:以四川盆地涪陵地区志留系龙马溪组页岩气储层为例[J]. 石油与天然气地质,2016,37(1):129-134.

    Li Jun, Jin Wujun, Wang Liang, et al. Quantitative evaluation of organic and inorganic pore size distribution by NMR: A case from the Silurian Longmaxi Formation gas shale in Fuling area, Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(1): 129-134.
    [37] 陈尚斌,朱炎铭,王红岩,等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,37(3):438-444.

    Chen Shangbin, Zhu Yanming, Wang Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444.
    [38] 韩向新,姜秀民,王德忠,等. 燃烧过程对页岩灰孔隙结构的影响[J]. 化工学报,2007,58(5):1296-1300.

    Han Xiangxin, Jiang Xiumin, Wang Dezhong, et al. Effect of combustion process on pore structure of oil shale ash[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(5): 1296-1300.
    [39] 孙佰仲,王擎,李少华,等. 桦甸油页岩及半焦孔结构的特性分析[J]. 动力工程,2008,28(1):163-167.

    Sun Baizhong, Wang Qing, Li Shaohua, et al. Analysis of specific area and porous structure of oil shale and semi-coke[J]. Journal of Power Engineering, 2008, 28(1): 163-167.
    [40] 赵迪斐,郭英海,毛潇潇,等. 基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J]. 煤炭学报,2017,42(6):1517-1526.

    Zhao Difei, Guo Yinghai, Mao Xiaoxiao, et al. Characteristics of macro-nanopores in anthracite coal based on mercury injection, nitrogen adsorption and FE-SEM[J]. Journal of China Coal Society, 2017, 42(6): 1517-1526.
    [41] Curtis M E, Cardot B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
    [42] 王中鹏,张金川,孙睿,等. 西页1井龙潭组海陆过渡相页岩含气性分析[J]. 地学前缘,2015,22(2):243-250.

    Wang Zhongpeng, Zhang Jinchuan, Sun Rui, et al. The gas-bearing characteristics analysis of the Longtan Formation transitional shale in well Xiye 1[J]. Earth Science Frontiers, 2015, 22(2): 243-250.
    [43] 包书景,林拓,聂海宽,等. 海陆过渡相页岩气成藏特征初探:以湘中坳陷二叠系为例[J]. 地学前缘,2016,23(1):44-53.

    Bao Shujing, Lin Tuo, Nie Haikuan, et al. Preliminary study of the transitional facies shale gas reservoir characteristics: Taking Permian in the Xiangzhong Depression as an example[J]. Earth Science Frontiers, 2016, 23(1): 44-53.
    [44] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)  / Tables(1)

Article Metrics

Article views(251) PDF downloads(126) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-02-18
  • Revised:  2021-05-10
  • Accepted:  2021-07-08
  • Published:  2023-02-10

Pore Structure and Controlling Factors of Different Lithofacies in Transitional Shale: A case study of the Shanxi Formation Shan23 submember, eastern Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.070
Funds:

Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance 2020CX030101

National Natural Science Foundation of China 51674044

Abstract: Transitional facies shale as present in the Shanxi Formation Shan23 submember in the eastern Ordos Basin is the key target of shale gas exploration in China. It is characterized by many types of lithofacies and rapid lateral change, and has significant resource potential. By systematic analysis using nitrogen adsorption, NMR, image recognition and organic maceral identification techniques, the lithofacies were classed into five divisions: siliceous shale, siliceous-argillaceous shale, calcareous-siliceous shale, siliceous-calcareous shale and argillaceous shale facies. Their pore structures were studied and the main controlling factors are discussed. The results show that: (1) the morphology, connectivity and development degree of organic pores are best in the calcareous-siliceous (or siliceous-calcareous) shale facies, while inorganic pores and microfractures are developed in all facies; (2) the contribution of specific surface area and total pore volume comes mainly from micropores and small mesopores, although the contribution of large mesopores and macropores is also very obvious; (3) TOC and maturity do not control pore structure; (4) the organic matter in the siliceous and siliceous-argillaceous shale is vitrinite, and the morphology, connectivity and development degree of organic pores are poor. Sapropelinite was observed in calcareous-siliceous (or siliceous-calcareous) and argillaceous shale facies, which is the effective component for the development of organic pores. It is considered that the effective organic matter is the predominant factor controlling the pore structure of Shan23 submember transitional shale.

GU YiFan, CAI GuangYin, LI ShuXin, JIANG YuQiang, QIU Zhen, SUN ShaSha, FU YongHong. Pore Structure and Controlling Factors of Different Lithofacies in Transitional Shale: A case study of the Shanxi Formation Shan23 submember, eastern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 318-332. doi: 10.14027/j.issn.1000-0550.2021.070
Citation: GU YiFan, CAI GuangYin, LI ShuXin, JIANG YuQiang, QIU Zhen, SUN ShaSha, FU YongHong. Pore Structure and Controlling Factors of Different Lithofacies in Transitional Shale: A case study of the Shanxi Formation Shan23 submember, eastern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 318-332. doi: 10.14027/j.issn.1000-0550.2021.070
  • 页岩岩相与有机质富集、形成环境密切相关[1-2],不同岩相在空间分布[3]、储集空间[4]、孔隙结构[5]、烃类富集规律[6]、勘探开发潜力等方面呈显著差异。前人针对海相页岩不同岩相的研究,取得了诸多认识,提出岩相纵向演化序列和横向展布受控于古地貌、沉积环境、陆源碎屑物质供给三个方面[7],而水动力条件则控制了不同岩相纹层结构与有机质丰度[8],认为有机质丰度是控制不同岩相孔隙结构差异的主要因素[9],有学者认为矿物组成和成岩改造程度差异也会造成孔隙结构在不同岩相中的变化[5,10]。作为我国下步非常规油气勘探的重点对象,以鄂尔多斯盆地东缘(简称鄂东缘)山西组23亚段为代表的海陆过渡相页岩,虽具有累计厚度大、有机质类型多、勘探潜力大等特点[11],但相比海相页岩,其沉积环境更为多变,岩相类型更为复杂。因此,在岩相划分基础上,明确不同岩相类型及其孔隙结构,对勘探评价、开发方案制定均具有重要意义。目前海相页岩岩相划分标准不统一[12],绝大多数学者依据矿物组成、有机碳含量、纹层特征等进行划分[6-7,13],也有学者基于测井响应特征进行划分[14-15],同时在划分过程中存在矿物组成和粒度大小混用的现象[4,8,16]。本文基于前人研究成果,对鄂东缘地区山西组23亚段海陆过渡相页岩进行岩相划分,对不同岩相分别进行系统性分析,开展不同岩相孔隙结构表征,探讨造成孔隙结构差异化的主控因素,为下步勘探评价提供依据。

  • 研究区位于鄂尔多斯盆地东缘,地跨山西、陕西两省[17-19]图1a)。本区二叠系山西组与下伏太原组和上覆下石盒子组均呈整合接触[17-18],其中太原组顶部岩性为泥晶生屑灰岩,生物类型、个体大小表明沉积水体为盐度正常的清澈海水,属于浅海陆棚相开阔台地环境,而下石盒子组底部以中砂岩为主[11]图1b),属于陆相辫状河沉积体系[19-20]。进入山西组沉积期,海水从盆地东、西两侧逐渐退出,逐渐由海相环境转换为陆相环境,沉积环境相对稳定[21],期间发生多次海侵事件[17],形成了一套陆相三角洲、近海三角洲与陆表海过渡相的页岩层系[22-23]。该区北部准格尔旗地区靠近北部物源,主要为一套粗粒的砾岩、含砾砂岩冲积扇沉积,向南至保德—兴县地区变为辫状河道、天然堤、河漫沼泽等环境。向南由河流沉积体系过渡到潮控三角洲沉积体系,以成家庄剖面为代表的三交—柳林—石楼地区发育潮控三角洲平原,分流间湾淤积形成平原沼泽环境。大宁—吉县地区是南北物源过渡地带,属于三角洲前缘和滨海环境,为典型的海陆过渡相沉积环境。研究区南部以竹园村剖面为代表的韩城—合阳地区在同一时期发育三角洲沉积,规模较小,主要为三角洲前缘[20]。根据岩性和沉积旋回等特征,可将山西组内部划分为山2段和山1段,其中山2段自下而上又可细分为232221三个亚段[11]图1b)。

    Figure 1.  Geographical location and stratigraphic column diagram of the study area[20]

  • A井、B井、C井三口取心井位于大宁—吉县地区[11]图1a),该区23亚段为典型的障壁岛—潟湖沉积模式[24],选取23亚段海陆过渡相页岩岩心样品共计175块,首先进行薄片磨制和鉴定,并配套开展全岩—黏土矿物X衍射、主量—微量元素、TOC测试。全岩—黏土矿物X衍射、主量—微量元素分析均由中国石油勘探开发研究院完成,分别利用日本理学X射线衍射仪和高分辨等离子体质谱仪(ICP-MS)完成。TOC测试采用CS744-MHPC碳硫分析仪,由中海油能源发展有限公司非常规实验中心完成;选取其中3块样品进行全岩有机显微组分测试,12块样品进行干酪根提取后的有机显微组分分析,分别由中国石油勘探开发研究院和四川省科源工程技术测试中心完成。在岩相划分基础上,钻取9个不同岩相柱塞样,开展干燥状态、饱和流体状态(包括正十二烷和盐水)的核磁共振测试,采用苏州纽迈公司生产NMRc12-010V型低场核磁共振仪。剩余样品粉碎成60~80目,置于110 °C的烘箱中干燥12 h后放置于美国康塔公司Autosorb-IQ3型全自动比表面及孔径分布分析仪中,在110 °C真空条件下脱气12 h完成前处理,而后进行氮气吸附实验。实验完成后,利用BET模型计算比表面积,利用BJH模型得到孔径分布与孔容。根据国际理论和应用化学协会(IUPAC)的孔隙分类[25],将孔隙大小划分为微孔(<2 nm)、介孔(2~50 nm)、宏孔(>50 nm)。由于实验样品的吸附—脱附曲线均在相对压力P/Po=0.5左右产生滞后环,说明在这个压力前后的孔隙在大小和形态上存在较大差异,同时造成了在此压力前后存在不同的吸附行为。以P/Po=0.5为界,本区海陆过渡相页岩孔隙存在两段不同的分形特征,P/Po=0~0.5代表了受范德华力控制的单层—多层吸附过程,而P/Po=0.5~1.0代表了受表面张力控制的毛细管凝缩吸附过程[26-27]。利用FHH模型分别计算两段分形维数,将P/Po=0~0.5范围内的孔隙分形维数记为D2,P/Po=0.5~1.0范围内的孔隙分形维数记为D1。剩下的块状样品进行氩离子抛光后,开展场发射扫描电子显微镜实验,观察抛光面形貌特征。

  • 岩相指沉积岩中所有岩性特征的总和,包括矿物组成、颜色、颗粒大小、分布规律等[28],对分析沉积过程、沉积环境至关重要[29-30]。以黏土、碳酸盐和硅质(石英+长石)的矿物含量作为三端元,按以下步骤进行岩相划分:1)黏土含量大于75%,划分出I黏土质页岩相;2)依据硅质矿物含量、碳酸盐矿物含量和RQC(硅质含量/碳酸盐矿物含量)3个参数[14],再将黏土矿物含量小于75%的岩相划分出II硅质黏土质页岩相、III钙质黏土质页岩相、IV硅质页岩相、V钙质硅质页岩相、VI硅质钙质页岩相,而非页岩相则分别为VIII硅质岩相和IX碳酸盐岩相[14]图2)。研究区23亚段页岩层段主要发育5类岩相:黏土质页岩相、硅质黏土质页岩相、硅质页岩相、钙质硅质页岩相和硅质钙质页岩相。黏土矿物、硅质矿物与TOC含量关系显示(图3),不同岩相中硅质矿物含量与TOC含量未见明显正相关关系,黏土矿物含量与TOC也未呈负相关关系,表明区内23亚段硅质并非主要来源于生物成因硅[9,31]

    Figure 2.  Triangular diagram of lithofacies division of transitional facies shale in Shanxi Formation Shan23 submember

    Figure 3.  Correlations between shale constituents and TOC content of transitional facies shale in Shanxi Formation Shan23 submember

  • 硅质页岩相岩心呈浅灰色,可见暗色富有机质纹层(图4a),内部植物碎屑发育(图4b),硅质矿物含量高,一般大于45%。石英主要为粉砂级陆源碎屑石英,分选好,磨圆差,未见海绵骨针、放射虫等海相生物碎屑(图4b)。硅质页岩相TOC含量分布范围介于0.3%~9.9%,平均值为2.2%,有机质主要呈长条状赋存在石英颗粒间(图4c)。

    Figure 4.  Macroscopic⁃microscopic petrological characteristics of siliceous shale lithofacies and siliceous⁃argillaceous shale lithofacies in Shanxi Formation Shan23 submember

  • 硅质黏土质页岩相在23亚段纵向上各部位均有分布。硅质矿物含量低于硅质页岩相,介于21%~51%,平均含量38%(表1),主要由陆源粉砂构成。黏土含量较高,介于47%~74%,平均值高达60%(表1)。薄片上可见亮色微弱的粉砂质纹层与暗色富有机质纹层相间(图4d),陆源碎屑颗粒主要由石英构成(图4e),不含或仅含极少量长石,石英呈连续纹层状产出,分选较好,磨圆较差,呈次棱角状(图4e)。岩心上,可见长条形植物碎片极发育(图4f)。硅质黏土质页岩相的不同样品有机质丰度差异大,造成TOC含量分布范围在0.1%~9.9%,但整体TOC含量较低,平均值仅1.7%。全岩显微组分分析表明,硅质黏土质页岩相中有机质类型以镜质组为主,呈片状分布在暗色富有机质纹层中(图4g)。

    样号井号深度/m页岩岩相类型TOC/%硅质矿物/%黏土矿物/%比表面积/(m2/g)总孔容/(cm3/kg)有机孔占比/%无机孔占比/%微裂缝占比/%D1D2
    1A2 290.71钙质硅质页岩相1.1453.0032.004.9813.0031.3055.4013.302.702.55
    2A2 292.10钙质硅质页岩相6.2270.0023.005.0414.0034.8059.106.102.702.40
    3A2 293.08钙质硅质页岩相8.5769.0027.002.899.0032.9058.408.702.672.24
    4A2 294.89硅质钙质页岩相6.5128.0032.003.1211.0031.8057.2011.002.692.24
    5A2 296.34黏土质页岩相0.279.0091.008.4917.0028.6046.3025.102.752.60
    6A2 300.50硅质黏土质页岩相1.8428.0062.005.3814.0026.5058.8014.702.712.51
    7A2 297.40硅质黏土质页岩相7.4544.0055.002.388.0024.3056.9018.802.672.48
    8A2 297.78硅质页岩相6.0161.0037.000.683.0024.8063.2012.002.592.21
    9A2 299.00硅质黏土质页岩相2.0246.0049.003.9013.0026.4057.5016.102.672.54
    10B2 118.70硅质黏土质页岩相1.0546.0050.003.345.0023.8056.8019.402.672.59
    11B2 123.30硅质页岩相2.9053.0042.005.035.0025.7058.7015.602.752.60
    12B2 124.40硅质页岩相1.5451.0049.003.895.0022.9058.7018.402.722.57
    13B2 149.00硅质页岩相6.2167.0032.003.484.0023.8063.2013.002.712.59
    14B2 154.65硅质页岩相1.7646.0044.005.486.0024.5062.5013.002.752.59
    15B2 156.60硅质页岩相1.3322.0026.005.065.0023.8058.6017.602.752.62
    16B2 157.50硅质页岩相1.5344.0042.005.096.0026.2059.3014.502.752.57
    17B2 161.23硅质黏土质页岩相1.9137.0048.007.167.0025.2056.8018.002.812.59
    18B2 162.08硅质页岩相1.6636.0038.005.546.0025.7059.4014.902.772.59
  • 黏土质页岩相在23亚段上部呈深灰色(图5a),而在该亚段中部和下部,黏土质页岩相呈灰黑色,但均未见明显的植物碎片(图5b),层理结构不发育(图5c),有机质类型以镜质组为主(图5d)。黏土矿物含量极高,介于70%~80%,平均值高达73%,碳酸盐矿物含量极低(表1),页理不发育。在黏土矿物中石英粒度一般为粉砂级或黏土级,硅质矿物含量低(图5c),介于2%~24%,平均值14%(表1)。黏土质页岩相的TOC含量在23亚段不同位置差异明显,该亚段下部一般为0.27%~2.75%,平均值1.52%;该亚段中部的黏土质页岩有机质含量较高,介于4.07%~6.46%,平均值高达5.66%;该亚段上部的黏土质页岩有机质含量低,分布在0.27%~0.87%,平均值仅0.50%。

    Figure 5.  Macroscopic⁃microscopic petrological characteristics of argillaceous shale lithofacies and calcareous⁃siliceous shale lithofacies in Shanxi Formation Shan23 submember

  • 钙质硅质与硅质钙质页岩相是本区山西组23亚段测试产气层段的主要岩相类型,两类岩相在岩石学特征、矿物组成等方面几乎一致,在野外露头和岩心上均呈黑色,样品染手,未见明显的植物碎屑(图5e)。碳酸盐岩含量在各类岩相中最高,介于2%~44%,平均值13%。硅质矿物含量较高,分布在21%~70%,平均值可达54%。石英呈微晶、不定形结构,表现出似球粒结构(图5f),似球状石英可能为成岩早期硅质充填藻类的囊孢,后期经压实形成[1,32]。可见海绵骨针、介形虫等海相生物碎屑,陆源碎屑石英在钙质硅质(硅质钙质)页岩相中含量少,明显区别于硅质黏土质页岩相和硅质页岩相,发育水平页理(图5f)。钙质硅质(硅质钙质)页岩相有机质含量高,平均值可达6.65%,有机质显微组分中可见大量腐泥组无定形体(图5g)。

  • 有机质孔隙是发育在有机质内部的粒内孔[33]。本区山西组23亚段海陆过渡相页岩的有机质孔隙形态和发育程度在不同岩相中差别较大。硅质页岩相中发育极少量的有机质孔隙,主要呈狭缝形,形状不规则(图6a),其孔隙孔径主要分布在数百纳米到几微米之间(图6b)。硅质黏土质页岩相中有机质孔隙发育程度相对硅质页岩较高,呈新月形,孔径主要分布在50~90 nm之间,少数呈椭圆形,孔径可达100~1 000 nm(图6c)。黏土质页岩相中有机孔发育程度有所改善,主要呈椭圆形,孔径在数百纳米之间,少数呈新月形,孔径仅几十纳米(图6d)。钙质硅质(或硅质钙质)页岩相的有机孔发育程度最高(图6e),可见气泡状有机质孔隙成串分布,孔径大小集中在数百纳米(图6f),也可与黏土矿物晶间孔以复合体形式出现,孔径可达3~7 μm(图6e)。

    Figure 6.  SEM images of organic pores in transitional facies shale of Shanxi Formation Shan23 submember

    无机孔在不同岩相中均较为发育,可分为三种类型:1)粒间孔,主要是经沉积作用或后期成岩作用改造后矿物颗粒间的剩余空间[33]23亚段页岩粒间孔较发育,散布于黏土矿物、脆性矿物与有机质之间(图7a),或在黏土矿物与脆性矿物间,孔隙形态多样,受矿物形态、矿物间接触关系、排列方式的影响,主要呈三角形、多角形(图7b)。研究区常见一些黏土矿物、脆性矿物与有机质间大量的粒间孔构成集合体(图7a)。通常页岩中粒间孔连通性较好,这些孔隙可为甲烷提供较好的渗流通道[33]。2)层间孔,主要形成于矿物内部(图7c),23亚段层间孔发育程度较高,形态大部分呈一定规则,主要为絮状伊利石层间孔和书页状绿泥石层间孔(图7c,d),两种形态层间孔通常共同出现,而其他矿物中发育较少。层间孔可以为气体提供较大的赋存空间,同时小于50 nm的层间孔在理论上对比表面积及吸附性贡献显著[34]。3)晶间孔,主要是指矿物集合体内部晶粒之间的孔隙,由于黄铁矿的普遍发育,且多以微球粒和草莓状晶簇出现(图7e),这些草莓状集合体直径为5~300 μm,内部由许多黄铁矿晶粒组成,这些晶粒间往往发育一定数量的纳米级孔隙,为晶体生长过程中不紧密堆积形成,内部具有一定的连通性(图7f),尤其是直径超过10 μm的黄铁矿中晶间孔极发育(图7e)。区别于海相页岩[10,29],区内黄铁矿晶间孔隙间未被有机质充填(图7f)。

    Figure 7.  SEM images of inorganic pores and microfractures in transitional facies shale of Shanxi Formation Shan23 submember

  • 研究区山西组23亚段微裂缝的形成往往与黏土矿物、有机质的后期成岩作用有关。黏土矿物间普遍发育层间微裂缝(图7g),是成岩过程中在上覆地层压力下黏土矿物失水、均匀收缩、干裂以及重结晶等作用产生内应力形成的裂缝,成因上与层间孔相似(图7h),其形态平直光滑或略有弯曲,延伸性较好,长度可达10 μm以上,宽度多在200 nm以下(图7g)。此外,有机质颗粒内部发育少量的生烃热解产生的微裂缝以及在与矿物接触边界发育收缩缝,而有机孔发育很差(图7i),可归结于有机显微组分以镜质组为主[35]。这类微裂缝较宽,一般在500~1 000 nm,延伸性略差,长度一般在几个微米(图7i)。微裂缝一般为开放型,将其他类型孔隙相互连通,组成错综复杂的立体孔隙网络,不仅有利于游离气的富集,同时还是页岩气渗流运移的主要通道,对页岩气的开发起到关键性作用。

  • 基于页岩中有机孔和无机孔润湿性差异,即有机孔为强烈油润湿性,而无机孔为强烈水润湿性[36],分别在饱和水、油条件下进行核磁共振实验,观测信号特征,明确亲油孔隙(有机孔)和亲水孔隙(无机孔)横向弛豫时间(T2)分布谱。结果表明,所有样品亲油孔隙T2谱均具有“一强两弱”的“三峰”形态,表明亲油孔隙可分为三类,一类为小孔径(T2时间较短),占据绝对主体,一类为大孔径(T2时间较长),另一类为有机质中发育的微裂缝(图8),但三类亲油孔隙的发育程度在不同岩相中差异明显。小孔径与大孔径有机孔在钙质硅质(硅质钙质)页岩相、黏土质页岩相中发育程度均优于硅质页岩相与硅质黏土质页岩相,微裂缝也具有这一特点。亲水孔隙主要分布在0.5 ms左右,次要分布峰对应微裂缝分布位置,总体反映微裂缝孔径大、体积占比小的分布特征,但在不同岩相中发育程度不同(图8)。硅质页岩相中无机成因的微裂缝发育程度最低,而硅质黏土质页岩相最高。利用Image J图像处理软件识别扫描电镜照片中不同孔隙类型,结果表明,钙质硅质(或硅质钙质)页岩相有机孔比例最高,平均值为32.7%,其余岩相有机孔占比分布范围为24.8%~28.6%;硅质页岩相无机孔最为发育,占比平均值达63.2%,其余岩相的无机孔占比介于46.3%~57.7%(表1)。

    Figure 8.  NMR T2 spectra of different lithofacies in transitional facies shale of Shanxi Formation Shan23 submember

  • 低温氮气吸附—脱附曲线特征表明,不同页岩岩相的吸附—脱附等温线在形态上差异明显(图9)。相同点是所有样品直到接近饱和蒸汽压也未出现吸附饱和现象,表明不同岩相中均含有一定量的大孔隙[33]。根据国际理论化学与应用化学协会(IUPAC)的分类方案[25],研究区山西组23亚段硅质页岩相的氮气吸附—脱附滞后回环不明显(图9a),与H4型相似,吸附、脱附曲线在宽压力范围内是水平且相互平行的,反映该岩相以墨水瓶状的大孔隙为主,但孔隙较为封闭,连通性差[37]。其余岩相类型均产生了滞后回环(图8),表面孔隙形态呈开放状态[37]

    Figure 9.  N2 gas adsorption properties of different lithofacies in transitional facies shale of Shanxi Formation Shan23 submember

    硅质黏土质页岩相滞后回环与典型H3型接近,兼有H4型特征(图9b),表明该岩相的孔隙主要由纳米孔组成,且结构具有一定的无规则(无定形)孔特征,颗粒内部孔结构具有平行壁的狭缝状孔特征,且含有多形态的其他孔,狭缝状孔与黏土矿物的片状结构特征有关[38-39]。黏土质页岩相滞后回环呈H3型,兼具H2型回线特征(图9c),结合扫描电镜观察结果,反映该岩相不仅发育狭缝状黏土矿物层间孔,同时也发育一定数量的裂缝型、新月形有机孔[40]。钙质硅质(或硅质钙质)页岩相则同时兼具H1、H3型回线特征(图9d),表明狭缝型黏土矿物层间孔较发育,同时发育圆柱形有机孔,孔隙形态呈开放状态。

  • 根据BET模型计算不同页岩岩相样品的比表面积(表1),硅质页岩相样品比表面积仅为0.68 m²/g,硅质黏土质页岩相的比表面积介于2.38~5.38 m²/g,平均为3.89 m²/g;钙质硅质(或硅质钙质)页岩相的比表面积介于2.89~5.04 m²/g,平均为4.01 m²/g;黏土质页岩相比表面积最高,为8.49~10.50 m²/g,平均为9.07 m²/g。BJH模型计算出的总孔容显示,本区23亚段总孔容介于3~17 cm3/kg,平均值13.2 cm3/kg。其中硅质页岩相最低,其余岩相的总孔容平均值均在10 cm3/kg以上(表1)。分形特征表明,比表面积与D1相关性极好,而与D2相关性也较强(图10a),总孔容与两种分形维数的关系未见相关性(图10b)。因此认为微孔和小孔径介孔对比表面积起主要贡献,大孔径介孔和宏孔对比表面积贡献小。总孔容的贡献作用未集中在某个区间的孔径。

    Figure 10.  Correlations between surface area, total pore volume and fractal dimension in transitional facies shale of Shanxi Formation Shan23 submember

  • 研究区23亚段海陆过渡相页岩孔径范围为1.9~126.8 nm,平均为13.6 nm,孔隙以2~50 nm介孔为主,占87.32%(图11)。硅质页岩相中,不同孔径的孔隙对比表面积的贡献程度相近,而对总孔容的贡献主要来自13.2~257.6 nm大小的孔隙。其他岩相类型在孔隙大小对比表面积、总孔容的贡献方面具有相似性,孔径集中在3.4~4.8 nm的小孔径介孔对硅质黏土质页岩相、钙质硅质(或硅质钙质)页岩相、黏土质页岩相比表面积的贡献作用显著,而3.4~4.8 nm与13.6~262.2 nm的孔隙对总孔容的贡献明显,表现为“双峰”特征(图12)。

    Figure 11.  Distribution of pore size diameter in transitional facies shale of Shanxi Formation Shan23 submember

    Figure 12.  Correlations between pore size diameter, surface area, and total pore volume in transitional facies shale of Shanxi Formation Shan23 submember

  • 富有机质页岩中孔隙类型复杂,因此页岩储层中微—纳米孔隙发育特征受沉积成岩作用、矿物组成、有机碳含量、有机质热演化程度等因素的综合控制。然而区内23亚段海陆过渡相页岩已进入高过成熟阶段,Ro介于2.58%~2.69%,达到了有机孔大量发育的成熟度条件[41],由此可见成熟度不是23亚段有机孔发育的控制因素。

    前人研究认为,TOC是控制龙马溪组海相页岩孔隙结构的主要因素,有机质为总孔隙贡献了大量微孔、介孔,而黏土矿物等其他矿物类型主要控制了介孔、宏孔的发育[4-5,7-10]。通过对研究区山23亚段海陆过渡相页岩孔隙结构参数与TOC、黏土矿物含量的相关性分析发现,TOC与比表面积、总孔容的相关性不明显,与分形维数D1之间呈微弱负相关(判定系数R2为0.31),与D2之间也存在明显反向关系(判定系数R2为0.58),表明TOC对构成比表面积、总孔容主体的微孔、小孔径介孔发育无明显控制作用(图13)。从芜湖地区龙潭组、川东地区龙潭组、黔西北地区龙潭组、湘中地区龙潭组、北美Atoka页岩等海陆过渡相页岩研究实例来看[35,42-44],伴随陆源植物碎屑大量注入而富集的镜质组、惰质组,可以使得硅质页岩相、硅质黏土质页岩相的TOC呈现高值(大于2%),但即使在成熟度适宜的条件下,其内部并不发育有机孔,而是在内部与边缘发育一些收缩成因微裂缝(图7i)。本区硅质页岩相、硅质黏土质页岩相中,可见大量高等植物碎屑(图4f),但未见海相生物碎屑,有机质组分由镜质组、惰质组构成(图4g);黏土质页岩相中虽未见明显的植物碎屑,但显微组分鉴定表明其有机质也由镜质组、惰质组构成(图5d),这两种有机组分的大量存在,导致上述岩相中TOC虽然大于2%,但对孔隙结构的改善不明显。同时,镜质组、惰质组及其周缘微裂缝较发育,生烃期形成的天然气沿微裂缝运移,也会导致有机孔变小甚至闭合(图6a)。而在钙质硅质(硅质钙质)页岩相和黏土质页岩相中可以观察到内部发育大量气泡状有机孔的腐泥组有机质,其周缘不发育微裂缝(图6e),生烃期形成的天然气随即在有机孔中赋存,导致有机孔保存好,腐泥组的大量存在导致这两类岩相孔隙结构明显优于其他岩相。

    Figure 13.  Correlations between TOC, clay content, surface area, total pore volume and fractal dimension in transitional facies shale of Shanxi Formation Shan23 submember

    相比海相页岩,研究区23亚段海陆过渡相页岩的黏土矿物含量普遍较高,无机孔类型更为多样,发育程度也明显较高(图7),黏土矿物含量与比表面积存在微弱正相关性(判定系数R2为0.22),与总孔容无明显相关性,同时与分形维数D1、D2均未见相关性,表明黏土矿物含量不是影响孔隙结构的主要因素。本区过渡相页岩的孔隙结构复杂性表现在有机质含量、各类矿物含量的主控作用均不明显。

  • (1) 鄂尔多斯盆地东缘山西组23亚段海陆过渡相页岩TOC分布在0.14%~11.68%,黏土含量整体较高,硅质来源主要为陆源石英。根据硅质矿物、黏土矿物、碳酸盐岩矿物含量三端元,可将山23亚段海陆过渡相页岩划分为5类岩相,分别为硅质页岩相、硅质黏土质页岩相、黏土质页岩相、钙质硅质页岩相和硅质钙质页岩相。

    (2) 钙质硅质(或硅质钙质)页岩相在有机孔形态、连通性和发育程度等方面表现最优,其次是黏土质页岩相,而硅质页岩表现最差;无机孔、微裂缝在各岩相均较为发育。比表面积、总孔容主要贡献来自微孔(<2 nm)和小孔径介孔(3.4~4.8 nm),大孔径介孔(4.8~50 nm)与宏孔(>50 nm)的贡献也十分明显。

    (3) TOC和成熟度与孔隙结构参数相关性差,对孔隙结构控制作用不明显。硅质与硅质黏土质页岩相中有机显微组分为镜质组,有机孔形态、连通性、发育程度均较差,钙质硅质(或硅质钙质)页岩相、黏土质页岩相中可观察到腐泥组,是发育有机孔的有效组分,有效有机显微组分是控制孔隙结构的重要因素。

Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return