Advanced Search
Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents

ZHAO Kun, MAN Ling, HE Ran, LI SongZhuo, ZHU ShengXian, LANG XianGuo. Redox Conditions of the Late Ediacaran Dengying Period in Northeastern Sichuan, China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 183-195. doi: 10.14027/j.issn.1000-0550.2021.083
Citation: ZHAO Kun, MAN Ling, HE Ran, LI SongZhuo, ZHU ShengXian, LANG XianGuo. Redox Conditions of the Late Ediacaran Dengying Period in Northeastern Sichuan, China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 183-195. doi: 10.14027/j.issn.1000-0550.2021.083

Redox Conditions of the Late Ediacaran Dengying Period in Northeastern Sichuan, China

doi: 10.14027/j.issn.1000-0550.2021.083
Funds:

Everest Scientific Research Orogram of Chengdu University of Technology ZF11406

  • Received Date: 2021-02-18
  • Accepted Date: 2021-07-30
  • Rev Recd Date: 2021-06-21
  • Available Online: 2021-07-30
  • Publish Date: 2023-02-10
  • Marine anoxia pervasively occurred in the late Ediacaran period, displaying obvious heterogeneity in redox stratification and ocean chemical structure. Such redox conditions directly affected the evolution and distribution of Ediacaran organisms. The Sichuan Basin of the upper Yangtze Platform records complete Ediacaran successions, which are mainly represented by a suit of thick carbonate deposits (the Dengying Formation). However, the redox conditions of these carbonates remain controversial. In order to constrain the seawater chemistry and marine redox in the later Ediacaran, we carried out a detailed sedimentological and geochemical analysis of the Dengying Formation at the Luchi outcrop, northeastern Sichuan Basin. The Dengying Formation is mainly composed of mud-microcrystalline dolostone,bonded dolostone, stromatolitic/laminated dolostone, algae-laminated dolostone, and breccias, suggesting deposition from a carbonate platform. Geochemical data suggest that the Dengying Formation has generally low total rare earth element content (∑REE+Y; ranging from 0.4 to 3.3 μg/g) and Mn/Sr values (ranging from 0.2 to 2.8) but high Fe content (ranging from 55.9 to 1 772.6 μg/g). The REE+Y patterns (Post-Archean Average Shale (PAAS) - normalized) of the Dengying Formation can be divided into four stages, and the Ce anomaly patterns indicate that the seawater of the northeastern Sichuan Basin was transitioned from weak oxic to weak anoxic and ultimately became anoxic during the deposition of the Dengying Formation, indicating that the shallow water may be anoxic in the late Ediacaran period.
  • [1] Xiao S H, Laflamme M. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota[J]. Trends in Ecology & Evolution, 2009, 24(1): 31-40.
    [2] 袁训来. 新元古代陡山沱期瓮安生物群研究概况[J]. 微体古生物学报,1999,16(3):281-286.

    Yuan Xunlai. A review of studies on a Neoproterozoic microfossil assemblage: Weng’an biota at Weng'an, Guizhou, SW China[J]. Acta Micropalaeontologica Sinica, 1999, 16(3): 281-286.
    [3] 周传明,袁训来,肖书海. 扬子地台新元古代陡山沱期磷酸盐化生物群[J]. 科学通报,2002,47(22):1734-1739.

    Zhou Chuanming, Yuan Xunlai, Xiao Shuhai. Phosphatized biotas from the Neoproterozoic Doushantuo Formation on the Yangtze Platform[J]. Chinese Science Bulletin, 2002, 47(22): 1734-1739.
    [4] 尹崇玉,唐烽,刘鹏举,等. 华南埃迪卡拉(震旦)系陡山沱组生物地层学研究的新进展[J]. 地球学报,2009,30(4):421-432.

    Yin Chongyu, Tang Feng, Liu Pengju, et al. New advances in the study of biostratigraphy of the Sinian (Ediacaran) Doushantuo Formation in South China[J]. Acta Geoscientia Sinica, 2009, 30(4): 421-432.
    [5] 刘鹏举,尹崇玉,唐烽,等. 瓮安生物群中后生动物化石研究进展及问题讨论[J]. 地质论评,2007,53(6):728-735.

    Liu Pengju, Yin Chongyu, Tang Feng, et al. Progresses and questions on studying metazoan fossils of the Weng'an biota[J]. Geological Review, 2007, 53(6): 728-735.
    [6] 陈寿铭,尹崇玉,刘鹏举,等. 湖北宜昌樟村坪埃迪卡拉系陡山沱组硅磷质结核中的微体化石[J]. 地质学报,2010,84(1):70-77.

    Chen Shouming, Yin Chongyu, Liu Pengju, et al. Microfossil assemblage from chert nodules of the Ediacaran Doushantuo Formation in Zhangcunping, northern Yichang, South China[J]. Acta Geologica Sinica, 2010, 84(1): 70-77.
    [7] 赵元龙,何明华,陈孟莪,等. 新元古代陡山沱期庙河生物群在贵州江口的发现[J]. 科学通报,2004,49(18):1916-1918.

    Zhao Yuanlong, He Minghua, Chen Meng’e, et al. Discovery of a miaohe-type biota from the Neoproterozoic Doushantuo Formation in Jiangkou county, Guizhou province, China[J]. Chinese Science Bulletin, 2004, 49(18): 1916-1918.
    [8] Grotzinger J P, Fike D A, Fischer W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history[J]. Nature Geoscience, 2011, 4(5): 285-292.
    [9] Och L M, Shields-zhou G A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 26-57 .
    [10] Sahoo S K, Planavsky N J, Kendall B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417): 546-549.
    [11] Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran ocean[J]. Nature, 2006, 444(7120): 744-747.
    [12] Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186): 456-459.
    [13] Fan H F, Wen H J, Han T, et al. Oceanic redox condition during the Late Ediacaran (551-541 Ma), South China[J]. Geochimica et Cosmochimica Acta, 2018, 238: 343-356.
    [14] Tostevin R, Clarkson M O, Gangl S, et al. Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans[J]. Earth and Planetary Science Letters, 2019, 506: 104-112.
    [15] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83.
    [16] Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952.
    [17] Ding W M, Dong L, Sun Y L, et al. Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats[J]. Scientific Reports, 2019, 9(1): 13628.
    [18] Zhang F F, Xiao S H, Kendall B, et al. Extensive marine anoxia during the terminal Ediacaran Period[J]. Science Advances, 2018, 4(6): eaan8983.
    [19] 侯明才,何亮,徐胜林,等. 镇巴地区灯影组岩石微相研究与沉积环境分析[J]. 西南石油大学学报(自然科学版),2020,42(3):31-42.

    Hou Mingcai, He Liang, Xu Shenglin, et al. Analysis of rock types and sedimentary environment of Dengying Formation, Zhenba area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(3): 31-42.
    [20] 周慧,李伟,张宝民,等. 四川盆地震旦纪末期—寒武纪早期台盆的形成与演化[J]. 石油学报,2015,36(3):310-323.

    Zhou Hui, Li Wei, Zhang Baomin, et al. Formation and evolution of Upper Sinian to Lower Cambrian intraplatformal basin in Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(3): 310-323.
    [21] 李忠雄,陆永潮,王剑,等. 中扬子地区晚震旦世—早寒武世沉积特征及岩相古地理[J]. 古地理学报,2004,6(2):151-162.

    Li Zhongxiong, Lu Yongchao, Wang Jian, et al. Sedimentary characteristics and lithofacies palaeogeography of the Late Sinian and Early Cambrian in Middle Yangtze region[J]. Journal of Palaeogeography, 2004, 6(2): 151-162.
    [22] 周进高,张建勇,邓红婴,等. 四川盆地震旦系灯影组岩相古地理与沉积模式[J]. 天然气工业,2017,37(1):24-31.

    Zhou Jingao, Zhang Jianyong, Deng Hongying, et al. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 24-31.
    [23] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
    [24] Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China[J]. Gondwana Research, 2011, 19(4): 831-849.
    [25] McFadden K A, Xiao S H, Zhou C M, et al. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China[J]. Precambrian Research, 2009, 173(1/2/3/4): 170-190.
    [26] McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3197-3202.
    [27] Kunimitsu Y, Setsuda Y, Furuyama S, et al. Ediacaran chemostratigraphy and paleoceanography at a shallow marine setting in northwestern Hunan province, South China[J]. Precambrian Research, 2011, 191(3/4): 194-208.
    [28] Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 7-61.
    [29] 安志辉,童金南,叶琴,等. 湖北宜昌樟村坪地区陡山沱组地层划分与对比[J]. 地球科学,2018,43(7):2206-2221.

    An Zhihui, Tong Jinnan, Ye Qin, et al. Stratigraphic division and correlation of Ediacaran Doushantuo Formation in Zhangcunping area, Yichang, Hubei province[J]. Earth Science, 2018, 43(7): 2206-2221.
    [30] Liu P J, Chen S M, Zhu M Y, et al. High-resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: Implication for subdivision and global correlation of the Ediacaran System[J]. Precambrian Research, 2014, 249: 199-214.
    [31] Wang J G, Chen D Z, Wang D, et al. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran-Cambrian transition[J]. Sedimentology, 2012, 59(3): 809-829.
    [32] Fan H F, Wen H J, Zhu X K, et al. Hydrothermal activity during Ediacaran-Cambrian transition: Silicon isotopic evidence[J]. Precambrian Research, 2013, 224: 23-35.
    [33] Wang X Q, Shi X Y, Jiang G Q, et al. Organic carbon isotope gradient and ocean stratification across the Late Ediacaran-Early Cambrian Yangtze Platform[J]. Science China Earth Sciences, 2014, 57(5): 919-929.
    [34] Jiang G Q, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ 13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320.
    [35] Wang J B, He Z L, Zhu D Y, et al. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: Constraints on terminal Ediacaran “dolomite seas”[J]. Sedimentary Geology, 2020, 406: 105722.
    [36] Zhao D F, Hu G, Wang L C, et al. Sedimentary characteristics and origin of dolomitic ooids of the terminal Ediacaran Dengying Formation at Yulin (Chongqing, South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 544: 109601.
    [37] 斯春松,郝毅,周进高,等. 四川盆地灯影组储层特征及主控因素[J]. 成都理工大学学报(自然科学版),2014,41(3):266-273.

    Si Chunsong, Hao Yi, Zhou Jingao, et al. Characteristics and controlling factors of reservoir in Sinian Dengying Formation, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(3): 266-273.
    [38] 宋金民,刘树根,李智武,等. 四川盆地上震旦统灯影组微生物碳酸盐岩储层特征与主控因素[J]. 石油与天然气地质,2017,38(4):741-752.

    Song Jinmin, Liu Shugen, Li Zhiwu, et al. Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin, China[J]. Oil & Gas Geology, 2017, 38(4): 741-752.
    [39] 刘怀仁,刘明星,胡登新,等. 川西南上震旦统灯影组沉积期的暴露标志及其意义[J]. 岩相古地理,1991(5):1-10.

    Liu Huairen, Liu Mingxing, Hu Dengxin, et al. The exposure indicators formed during the deposition of the Upper Sinian Dengying Formation in southwestern Sichuan and their significance[J]. Sedimentary Geology and Tethyan Geology, 1991(5): 1-10.
    [40] 罗平,王石,李朋威,等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报,2013,31(5):807-823.

    Luo Ping, Wang Shi, Li Pengwei, et al. Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2013, 31(5): 807-823.
    [41] 梅冥相. 从凝块石概念的演变论微生物碳酸盐岩的研究进展[J]. 地质科技情报,2007,26(6):1-9.

    Mei Mingxiang. Discussion on advances of microbial carbonates from the terminological change of thrombolites[J]. Geological Science and Technology Information, 2007, 26(6): 1-9.
    [42] 梅冥相,孟庆芬,刘智荣. 微生物形成的原生沉积构造研究进展综述[J]. 古地理学报,2007,9(4):353-367.

    Mei Mingxiang, Meng Qingfen, Liu Zhirong. Overview of advances in studies of primary sedimentary structures formed by microbes[J]. Journal of Palaeogeography, 2007, 9(4): 353-367.
    [43] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
    [44] Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214.
    [45] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
    [46] Riding R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4): 299-316.
    [47] Grotzinger J, Al-Rawahi Z. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian ara group, sultanate of Oman[J]. AAPG Bulletin, 2014, 98(8): 1453-1494.
    [48] Arvidson R S, Mackenzie F T. The dolomite problem: Control of precipitation kinetics by temperature and saturation state[J]. American Journal of Science, 1999, 299(4): 257-288.
    [49] van Smeerdijk Hood A, Wallace M W. Neoproterozoic marine carbonates and their paleoceanographic significance[J]. Global and Planetary Change, 2018, 160: 28-45.
    [50] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
    [51] Ling H F, Feng H Z, Pan J Y, et al. Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: Implications for chemostratigraphy and paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 158-174.
    [52] Halverson G P, Wade B P, Hurtgen M T, et al. Neoproterozoic chemostratigraphy[J]. Precambrian Research, 2010, 18(4): 337-350.
    [53] Bolhar R, van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3/4): 229-250.
    [54] Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
    [55] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.
    [56] 黄思静,张雪花,刘丽红,等. 碳酸盐成岩作用研究现状与前瞻[J]. 地学前缘,2009,16(5):219-231.

    Huang Sijing, Zhang Xuehua, Liu Lihong, et al. Progress of research on carbonate diagenesis[J]. Earth Science Frontiers, 2009, 16(5): 219-231.
    [57] Kaufman A J, Jacobsen S B, Knoll A H. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 409-430.
    [58] Brasier M D, Shields G, Kuleshov V N, et al. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-Early Cambrian of southwest Mongolia[J]. Geological Magazine, 1996, 133(4): 445-485.
    [59] Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system - 1: Trace elements[J]. SEPM Journal of Sedimentary Research, 1980, 50(4): 1219-1236.
    [60] Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127.
    [61] Ward J F, Verdel C, Campbell M J, et al. Rare earth element geochemistry of Australian Neoproterozoic carbonate: Constraints on the Neoproterozoic oxygenation events[J]. Precambrian Research, 2019, 335: 105471.
    [62] Tostevin R, Wood R A, Shields G A, et al. Low-oxygen waters limited habitable space for early animals[J]. Nature Communications, 2016, 7: 12818.
    [63] Zhang P, Hua H, Liu W G. Isotopic and REE evidence for the paleoenvironmental evolution of the Late Ediacaran Dengying Section, Ningqiang of Shaanxi province, China[J]. Precambrian Research, 2014, 242: 96-111.
    [64] Haley B A, Klinkhammer G P, McManus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1265-1279.
    [65] Sholkovitz E R, Elderfield H, Szymczak R, et al. Island weathering: River sources of rare earth elements to the western Pacific Ocean[J]. Marine Chemistry, 1999, 68(1/2): 39-57.
    [66] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725.
    [67] Cui H, Kaufman A J, Xiao S, et al. Environmental context for the terminal Ediacaran biomineralization of animals[J]. Geobiology, 2016, 14(4): 344-363.
    [68] Babcock L E, Peng S C, Brett C E, et al. Global climate, sea level cycles, and biotic events in the Cambrian Period[J]. Palaeoworld, 2015, 24(1/2): 5-15.
    [69] Guo Q J, Shields G A, Liu C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.
    [70] Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193.
    [71] Schröder S, Grotzinger J P. Evidence for anoxia at the Ediacaran -Cambrian boundary: The record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society, 2007, 164: 175-187.
    [72] Jiang G Q, Wang X Q, Shi X Y, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze platform[J]. Earth and Planetary Science Letters, 2012, 317-318: 96-110.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(1)

Article Metrics

Article views(155) PDF downloads(111) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-02-18
  • Revised:  2021-06-21
  • Accepted:  2021-07-30
  • Published:  2023-02-10

Redox Conditions of the Late Ediacaran Dengying Period in Northeastern Sichuan, China

doi: 10.14027/j.issn.1000-0550.2021.083
Funds:

Everest Scientific Research Orogram of Chengdu University of Technology ZF11406

Abstract: Marine anoxia pervasively occurred in the late Ediacaran period, displaying obvious heterogeneity in redox stratification and ocean chemical structure. Such redox conditions directly affected the evolution and distribution of Ediacaran organisms. The Sichuan Basin of the upper Yangtze Platform records complete Ediacaran successions, which are mainly represented by a suit of thick carbonate deposits (the Dengying Formation). However, the redox conditions of these carbonates remain controversial. In order to constrain the seawater chemistry and marine redox in the later Ediacaran, we carried out a detailed sedimentological and geochemical analysis of the Dengying Formation at the Luchi outcrop, northeastern Sichuan Basin. The Dengying Formation is mainly composed of mud-microcrystalline dolostone,bonded dolostone, stromatolitic/laminated dolostone, algae-laminated dolostone, and breccias, suggesting deposition from a carbonate platform. Geochemical data suggest that the Dengying Formation has generally low total rare earth element content (∑REE+Y; ranging from 0.4 to 3.3 μg/g) and Mn/Sr values (ranging from 0.2 to 2.8) but high Fe content (ranging from 55.9 to 1 772.6 μg/g). The REE+Y patterns (Post-Archean Average Shale (PAAS) - normalized) of the Dengying Formation can be divided into four stages, and the Ce anomaly patterns indicate that the seawater of the northeastern Sichuan Basin was transitioned from weak oxic to weak anoxic and ultimately became anoxic during the deposition of the Dengying Formation, indicating that the shallow water may be anoxic in the late Ediacaran period.

ZHAO Kun, MAN Ling, HE Ran, LI SongZhuo, ZHU ShengXian, LANG XianGuo. Redox Conditions of the Late Ediacaran Dengying Period in Northeastern Sichuan, China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 183-195. doi: 10.14027/j.issn.1000-0550.2021.083
Citation: ZHAO Kun, MAN Ling, HE Ran, LI SongZhuo, ZHU ShengXian, LANG XianGuo. Redox Conditions of the Late Ediacaran Dengying Period in Northeastern Sichuan, China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 183-195. doi: 10.14027/j.issn.1000-0550.2021.083
  • 埃迪卡拉纪(635~541 Ma)是宜居地球演化中的关键转折期,全球生物、大气和海洋等圈层均发生了显著改变。雪球地球结束后,多细胞藻类、大型带刺疑源类以及可能的动物胚胎迅速繁盛和出现[1]。在华南地区,以蓝田生物群、瓮安生物群、庙河生物群、石板滩生物群和高家山生物群为代表的埃迪卡拉生物群的相继出现[27],表明埃迪卡拉纪的生物圈开始由简单向复杂,由低等到高等,由单细胞向多细胞发生逐步转变。与此同时,埃迪卡拉纪大气圈组分也发生了变化,大气氧气含量迅速升高,以真核生物为主导的初级生产者开始取代原核为主的初级生产者,导致有机碳具有了更高的埋藏效率,全球碳循环发生明显的波动,出现了地质历史时期最大的碳同位素负偏事件[8]

    埃迪卡拉纪,大气氧气含量的迅速升高,诱发深部海洋发生间歇性氧化。根据估计,埃迪卡拉纪时期的大气氧含量由10%逐步升高接近现代大气氧水平[910],部分地球化学证据揭示在551 Ma后大洋完全氧化[1012]。然而,区域性的缺氧仍是埃迪卡拉纪的主要特点,特别是在深水盆地区域,存在以缺氧富铁为主导,夹间歇性的硫化环境[1316]。全球海洋结构呈显著的化学分层,以“三明治”模型为特征的硫化楔是埃迪卡拉纪海洋化学结构的最主要特点。除此之外,埃迪卡拉纪晚期还发生了生物矿化现象,被认为是海洋化学与生命演化紧密耦合相关的结果。因此认识该时期的海洋环境变化,对于理解E-C转折期的地球系统和早期生命演化具有重要意义。

    四川盆地灯影组地层发育巨厚的碳酸盐岩,是研究埃迪卡拉纪晚期海洋环境的重要素材。该套地层以微生物白云岩为主,且是四川盆地重要的油气储层之一。来自灯影组碳酸盐岩组分的Fe元素含量研究认为,藻纹层发育的碳酸盐岩具有较低的Fe含量,反映的是水体富氧环境,海底大量微生物藻席的发育,大大降低了孔隙水Fe扩散对碳酸盐岩沉积的影响,进而为后生动物的出现提供了很好的富氧条件[17]。然而,灯影组碳酸盐岩的U同位素证据显示,在埃迪卡拉纪晚期,全球海洋缺氧面积发生显著扩张,并且提出缺氧可能是导致埃迪卡拉型生物发生灭绝最主要的控制因素[18]。由此可见,灯影组古海洋环境的研究仍然存在争议。基于此,在前人对灯影组岩相古地理研究充分的条件下[1922],本文选取灯影组发育完整的四川盆地东北部地区的鹿池剖面,结合沉积学和稀土元素地球化学对该时期碳酸盐岩沉积和古海洋环境进行系统研究。

  • 华南板块包括扬子地块和华夏地块,始于~820 Ma新元古代罗迪尼亚超大陆的裂解与聚合[23],经历多期次的陆内裂解与凹陷。华南埃迪卡拉系地层在整个扬子地块均有沉积,在早埃迪卡拉纪沉积陡山沱组地层,台地相沉积厚度为40~180 m,而盆地相沉积厚度通常小于100 m[24]。陡山沱组地层以湖北峡东地区最为典型,自下而上可以划分为四段[2530]。第一段普遍沉积盖帽碳酸盐岩(3~5 m),具板状裂缝、帐篷构造和重晶石;第二段为黑色富有机质页岩(~80 m),夹薄层含燧石结核白云岩;第三段由块状、薄层含燧石的白云岩与含灰质/白云质泥岩组成(~60 m);第四段为黑色富有机质页岩、泥岩(~10 m)。埃迪卡拉纪晚期,在扬子东南缘的深水地区(斜坡、盆地)沉积一套以硅质岩为主的地层[3132],被称为留茶坡组或老堡组,其厚度可超过100 m[13]。在浅水地区,即扬子台地,广泛沉积以碳酸盐岩为主的灯影组地层,碳酸盐岩从几十米到几百米不等[27,3334],发育叠层石、鲕粒白云岩,以及葡萄花边状的藻白云岩[3536]。目前在国内普遍将四川盆地及周缘的灯影组碳酸盐岩地层进行四段划分[3739]:灯一段为贫藻的泥微晶白云岩;灯二段为富藻白云岩,葡萄状花边发育;灯三段以碎屑岩为主,贫藻;灯四段为含硅质条带的泥微晶白云岩,偶见藻纹层发育。且普遍认为以蓝细菌为主导的微生物的发育是富藻白云岩形成的重要因素[4042]

    鹿池剖面位于四川盆地东北缘(图1),地处陕西镇巴县、陕西紫阳县和四川万源市三地交界的地方,GPS坐标为32°17′11″ N,108°9′60″ E。该地区埃迪卡拉纪地层发育齐全,自下而上依次出露陡山沱组(~37 m)、灯影组地层(~330 m)。其中,灯影组与陡山沱组地层为整合接触,与上覆寒武系石牌组地层平行不整合接触。鹿池剖面陡山沱组表现为碳酸盐岩—碎屑岩混积体系,以粉砂质泥岩、泥质粉砂岩和泥—粉晶白云岩为主。灯影组地层(~180 m)以白云岩为主,偶见溶蚀角砾白云岩(图2a),微生物白云岩发育(图2b)。在灯影组中部可见似葡萄状花边的藻白云岩(图2c),以及纹层状白云岩(图2d)。

    Figure 1.  Geographical background of the Luchi profile (modified from reference [24])

    Figure 2.  Field sedimentological characteristics of the Dengying Formation in the Luchi profile

  • 所有的碳酸盐岩样品做薄片和激光厚片处理,薄片与激光厚片一一对应,使用微区激光剥蚀系统(LA-ICP-MS)在激光厚片上进行测试分析。碳酸盐的原位微量元素测试分析在西安矿谱地质勘查技术有限公司完成,所用仪器为Agilent 7500 ICP-MS及与之配套的GeolasPro 193 nm准分子激光剥蚀系统。激光剥蚀所用斑束直径为120 μm,频率为5 Hz,以高纯度氦气为载气。测试前先用NIST 610进行调试仪器,使之达到最优状态。LA-ICP-MS激光剥蚀采样采用单点剥蚀的方式,测试过程中首先进行空白背景采集20 s,然后进行样品连续剥蚀采集45 s,停止剥蚀后继续吹扫20 s清洗进样系统,单点测试分析时间为85 s。每隔10个剥蚀点插入一组NIST 610、NIST 612、MACS-3,以对元素含量进行定量计算。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量计算)采用软件ICPMSDataCal完成,常量元素的测试精度优于1%,微量元素的测试精度优于0.1%。

  • 碳酸盐岩的微区激光剥蚀测试分析结果表明(见附表1),碳酸盐岩的稀土总量很低,24个样品的∑REE值介于0.3~2.5 μg/g(平均值为0.9 μg/g,n=24),∑REE+Y值介于0.4~3.3 μg/g(平均值为1.2 μg/g,n=24)。其中轻稀土含量(LREE)介于0.3~2.3 μg/g(平均值为0.8 μg/g,n=24),重稀土含量(HREE)介于0~0.3 μg/g(平均值为0.1 μg/g,n=24),轻重稀土比值LREE/HREE为4.9~14.1(平均值为7.9,n=24),指示相对重稀土,轻稀土富集。常量元素中,碳酸盐岩样品的CaO、MgO含量较高,分别为17.9%~42.1%(平均值为28.7%,n=24)、6.2%~25.0%(平均值为17.0%,n=24);Al2O3含量极低,平均值不到0.1%(为0.02%,n=24)。除此之外,一些微量元素,如Mn、Sr含量比较低,分别为5.9~94.5 μg/g(平均值为37.4 μg/g,n=24)、22.1~71.7 μg/g(平均值为41.7 μg/g,n=24),而Fe含量较高,为55.9~1 772.6 μg/g(平均值为350.9 μg/g,n=24)。Ce和Eu的异常值计算方法分别是Ce/Ce*=CeN/(PrN2/NdN),Eu/Eu*=EuN/[(SmN2×TbN)13][43]

    样品Stage厚度/m岩性Al2O3/%MgO/%CaO/%Mn/(μg/g)Fe/(μg/g)Sr/(μg/g)Y/(μg/g)La/(μg/g)Ce/(μg/g)Pr/(μg/g)Nd/(μg/g)Sm/(μg/g)Eu/(μg/g)Gd/(μg/g)Tb/(μg/g)Dy/(μg/g)Ho/(μg/g)Er/(μg/g)Tm/(μg/g)Yb/(μg/g)Lu/(μg/g)
    54MMD0.0918.429.538.1407.551.20.2520.1840.3680.0440.1790.0320.0100.0340.0060.0350.0070.0210.0030.0240.003
    87BD0.0218.929.469.3289.345.40.1860.1020.1440.0160.0800.0130.0040.0200.0030.0230.0040.0130.0020.0110.001
    1010B0.0621.533.947.3441.941.60.2220.0870.1770.0210.1210.0320.0070.0300.0040.0280.0060.0130.0020.0100.002
    1220BD0.0316.425.022.2200.131.60.2500.1000.1720.0270.1400.0340.0070.0310.0050.0330.0070.0130.0020.0110.001
    1430MMD0.0417.825.760.51 284.428.70.3700.0820.2670.0440.2300.0550.0180.0560.0080.0480.0100.0210.0020.0130.003
    1535MMD0.0416.224.637.4580.738.80.8080.2580.8620.1190.6630.1690.0500.1690.0200.1020.0210.0480.0040.0200.004
    2359MMD0.0518.427.074.0395.231.10.3370.1620.2410.0310.1660.0400.0100.0510.0070.0520.0090.0250.0020.0160.002
    2763MMD0.0511.918.017.8105.522.10.2510.2880.1890.0510.2250.0460.0080.0380.0070.0380.0060.0230.0030.0140.003
    3171MMD0.0716.525.622.3212.036.70.1110.0890.2150.0200.1040.0190.0040.0170.0030.0130.0040.0070.0010.0100.001
    3478MMD0.0316.826.510.4131.132.40.1370.1570.3580.0350.1170.0250.0050.0260.0030.0220.0040.0120.0010.0080.002
    3785MMD0.1825.037.529.9259.471.70.3600.2740.5500.0560.2310.0480.0130.0500.0080.0540.0110.0340.0050.0310.006
    4093MMD0.0418.229.670.6237.038.40.2200.1530.3430.0310.1260.0320.0070.0270.0040.0330.0080.0200.0020.0180.003
    4196MMD0.0218.530.194.5258.033.70.1290.0820.1800.0190.0960.0180.0050.0180.0030.0240.0030.0090.0020.0120.003
    47100MMD0.0718.529.953.0221.257.50.3980.3130.7010.0810.3450.0760.0140.0720.0120.0730.0150.0350.0040.0310.004
    54116AD0.0119.433.423.7121.436.50.1860.0370.1780.0140.0610.0150.0050.0230.0030.0180.0050.0120.0010.0090.001
    58118.9BD0.0320.034.45.977.331.70.0800.0220.1040.0100.0700.0180.0040.0260.0030.0170.0020.0060.0010.0050.001
    59119.1MD0.0113.924.036.9411.666.20.3170.1120.5320.0410.1940.0460.0120.0480.0080.0500.0090.0240.0040.0200.003
    67130MD0.0115.731.123.1109.437.60.1880.0540.2770.0220.1240.0270.0050.0330.0060.0280.0050.0140.0020.0100.002
    69139MD0.0314.928.717.4127.842.80.6380.1050.6970.0520.2830.0970.0230.0930.0170.1030.0210.0600.0080.0420.008
    75152MD0.1115.529.529.5261.635.90.5410.1850.9480.0990.4720.1010.0200.0960.0130.0940.0170.0370.0040.0280.005
    78161MD0.0316.732.748.2131.854.50.2550.0640.3610.0300.1560.0360.0090.0360.0080.0420.0080.0240.0030.0190.003
    82170MD0.016.217.913.055.951.20.1750.0300.2210.0140.0870.0210.0050.0270.0030.0260.0050.0130.0020.0110.002
    84175MD0.027.622.226.31 772.641.60.1970.0350.1630.0220.1360.0370.0080.0340.0050.0340.0070.0190.0020.0200.003
    注:MMD.泥微晶白云岩;BD.黏连白云岩;B.溶蚀角砾白云岩;AD.藻白云岩;MD.泥晶白云岩。
  • 针对扬子西北缘的岩相古地理分析指出,研究区的灯影组地层在埃迪卡拉纪晚期整体处于开阔碳酸盐台地相[19]。沉积岩石学分析表明,鹿池剖面发育的碳酸盐岩类型多样,包括泥微晶白云岩、黏连云岩(图2b),以及叠层/层纹云岩(图2c,d),局部发育溶蚀角砾白云岩(图2a)。在部分泥微晶白云岩中,可见大量的自型晶黄铁矿(图3a)。整个剖面白云岩化程度较高,重结晶作用明显,显微结构丰富。

    Figure 3.  Petrological characteristics of argillaceous microcrystalline dolomite from the Dengying Formation

  • 泥微晶白云岩在鹿池剖面灯影组中普遍发育,在剖面的中下部和上部均有分布,总体以上部分布较多,即灯影组后期。显微镜下白云石分布均一,泥—微晶结构,且灯影组下部的样品白云石粒径相对较大(图3a~c),灯影组上部白云石粒径较小(图3d)。此外,在灯影组下部的泥微晶白云岩中,可见较多的自型晶黄铁矿呈分散状随机分布(图3a),个别的黄铁矿晶粒可达100 μm。

  • 四川盆地灯影组中普遍发育黏连组构,与埃迪卡拉纪晚期四川盆地独特的古地理和水体沉积环境相关。黏连云岩的普遍发育是鹿池剖面灯影组的特点。形态特征有团块状(图4a,b)、絮状和不规则条带状(图4c,d)等,甚至部分样品有残余凝块结构。胶结物主要为亮晶白云石,晶粒较小。凝块的形成与蓝细菌等菌落生长作用有一定联系[44],且不同的水体环境会造成凝块形态的差异,可以在一定程度上反映不同的水体环境[19]:分散状的凝块往往指示水动力条件较弱,顺层状的反映中等的水动力条件;而以团块、斑状链接呈格架的表明较强的水动力条件。在鹿池剖面中,大多数的黏连云岩在显微镜下多为絮状或不规则条带状(图4c,d),且残余凝块结构较发育,表明该地区灯影组沉积期水动力条件中等。

    Figure 4.  Petrological characteristics of boundstone from the Dengying Formation

  • 鹿池剖面灯影组叠层/层纹结构明显,明暗相间,纹层形态多样,有不规则波状(图5a)、近平行状(图5b)、缓坡状(图5c)、水平状(图5d),横向上连续展布,且单层厚度在50~500 μm之间,反映不同的微生物藻丝体对藻纹层的贡献。纹层状白云岩中的亮层主要为白云石,以他形—半自形为主(图5a,c),白云石的纤维柱状结构特征不明显,亮层的白云石晶粒最大可以达到400 μm(图5c),以粉—细晶白云石为主(图5a,c)。部分叠层/层纹白云岩的亮层,以微晶白云石为主(图5b,d)。鹿池剖面的叠层/层纹白云岩纹层结构特征表明主要发育在静水的沉积环境,其成因可能与微生物席的黏结增长和诱导矿化作用密切相关[4445]

    Figure 5.  Petrological characteristics of alga dolomite from the Dengying Formation

    在鹿池剖面的灯影组白云岩中可见藻纹层(图6a),以及在泥晶白云岩中有残余的藻丝体(图6b)。从显微镜下看,残余藻丝体特征明显,有三种不同形态的藻丝体特征可以清晰的辨识,也可能是同一类藻丝体的不同聚集体形式。第一种是藻纹层平行状分布在白云岩中,藻纹层之间充填他形—半自形的白云石,且白云石有一定程度的泥晶化(图6a),此外藻纹层也受重结晶作用改造,仅仅有外观形态保存下来;第二种是似水滴状的残余藻丝体碎片(图6b,黄线区域),藻丝体互相交错、环绕,局部可见残余藻丝体的管状横切面(图6b,黄色箭头所指),藻丝体受白云岩化程度影响,仅保留藻丝体的形态学特征;第三种是片状的残余藻丝体结构,藻体上可见长条管状的藻丝体平行排列(图6b,红色箭头指示区域),残余藻丝体碎片可能是原地堆积,也可能是近源搬运过来沉积的,能够代表该地区灯影组沉积时期的藻类活动。此外,片状藻丝体的泥晶化程度较高,且残余藻丝体碎片之间充填亮晶白云石,白云石以微晶为主。不同的残余藻丝体结构的存在表明灯影组在该时期以高能的水体环境为主,部分残余藻丝体碎片杂乱分选(图6b),同时也反映藻白云岩的形成是藻微生物共同作用的结果[4647]

    Figure 6.  Petrological characteristics of microbial dolomite from the Dengying Formation

  • 元古代在全球不同地区的台地相发育巨厚的碳酸盐岩沉积[4849],是探索早期古海洋环境变化、生物地球化学循环的重要素材[5052]。目前针对古代或者现代的碳酸盐岩的沉积环境,稀土元素中的Ce/Ce*异常分析在其中扮演越来越重要的角色[5355],然而,碳酸盐岩在沉积过程中或沉积之后不可避免地受到成岩作用的影响,导致碳酸盐岩的微量元素和稀土地球化学意义失效。因此,需要筛选出没有受到明显的成岩作用或较小的成岩作用影响的微量元素和稀土元素数据,才能真实地反映碳酸盐岩沉积期的海水地球化学信号。通常,在碳酸盐岩的成岩作用过程中,元素表现为Sr、Na、Mg的丢失和Zn、Fe、Mn的获取[56]。因此,Mn/Sr值被广泛用来判定碳酸盐岩所经历的成岩作用强度,未受成岩作用影响的Mn/Sr值为小于2[5758]

    在鹿池剖面,所有地球化学分析数据均是在白云石矿物上采用激光原位剥蚀,相较于全岩测试已尽可能地规避陆源碎屑和样品处理过程中可能的污染。所有的碳酸盐岩样品具有较低的Mn(平均值为37.4 μg/g)和Mn/Sr值(平均值为1.0),相对较高的Fe含量(平均值为350.9 μg/g),指示较弱的成岩作用影响[59]。稀土中的轻稀土含量(LREE)和稀土总量(∑REE)与陆源相关的元素Al显示较弱的线性关系(图7a),表明碳酸盐岩的稀土主要来源于海水,而非陆源。同时,Ce/Ce*异常作为碳酸盐岩评估古海洋环境的重要参数[43,55,6061],其与LREE和∑REE也没有明显的线性关系(图7b)。除此之外,碳酸盐岩的Y/Ho值、Mn的氧化物等也会影响Ce/Ce*异常[54],造成Ce/Ce*异常信号的变化,不能准确反映海水特征。而鹿池剖面碳酸盐岩中Ce/Ce*与Mn、Y/Ho,甚至是Fe,均没有相关性(图7c,d),反映Ce/Ce*的信号没有遭受后期成岩作用影响。在岩石学镜下观察,白云石多为早期白云岩化作用结果,并未有明显的后期成岩流体活动迹象(图3~6),同时稀土元素地球化学数据也采用激光原位剥蚀,已最大程度地规避成岩作用的影响,样品的数据可靠,能够用于沉积环境的分析。

    Figure 7.  Cross⁃plots of rare earth element (REE) geochemistry of dolomite in the Dengying Formation, Luchi profile

  • 应用稀土元素中的Ce在示踪碳酸盐岩沉积环境的时候,主要通过判断Ce的异常情况来推测沉积水体的环境[43]。本文采用Tostevin et al.[62]的标准来识别鹿池剖面灯影组碳酸盐岩的Ce异常,即Ce/Ce*值小于0.9,代表负异常;Ce/Ce*值为0.9~1.3,代表无明显异常;Ce/Ce*值大于1.3,代表正异常。基于这个判别方法,灯影组下部大部分的样品是无明显异常或弱的Ce/Ce*负异常(图8),而灯影组上部样品为显著的Ce正异常(图8)。特别的,由于文石或者方解石的早期白云岩化作用并不会改变海水的Ce异常信号,且在对鹿池剖面灯影组碳酸盐岩的岩石学薄片镜下观察中,也并未有明显的后期成岩作用(图3~6)。此外,海水的REE信号不易受成岩作用的影响,特别是对于古代海相非骨骼碳酸盐岩更是如此[55]

    Figure 8.  Stratigraphic distribution of Ce/Ce*, Mn/Sr, Mn, and Fe contents from the Dengying Formation in the Luchi profile

    与Ce异常的两种情况不同,该剖面的灯影组样品中,经PAAS(Post-Archean Average Shale)标准化后的REE+Y显示出四种不同的配分模式(图9)。在Ⅰ阶段,REE+Y配分模式表现为典型的MREE富集、LREE亏损,异常不明显或Ce正异常,Y正异常和Eu正异常(图9a)。显著的MREE富集特征同样也在高家山剖面灯影组下部的高家山段被观察到[63],两者不同的是,高家山剖面中配分模式具有明显的Ce负异常特征,而鹿池剖面灯影组Ⅰ阶段为异常不明显或Ce正异常(图9a)。通常,碳酸盐岩中具有较高的∑REE含量和MREE特征是因为磷酸盐矿物的风化和铁氧化物的还原[6465],且在高家山剖面的高家山段碳酸盐岩中,Fe的含量占比较高,因此高家山段碳酸盐岩中的MREE富集特征被认为是铁氧化物的还原造成的[63]。而在鹿池剖面灯影组Ⅰ阶段,碳酸盐岩具有极低的∑REE含量(0.4~2.5 μg/g,平均值为1.0 μg/g)和较低的Mn/Sr值(0.7~2.1,平均值为1.2),较高的Y/Ho值(36~46,平均值为39)和Fe含量(200.1~1 284.4 μg/g,平均值为534 μg/g),造成其MREE富集特征的因素可能是有河流的淡水输入,引起孔隙水中的铁氧化物相对升高。

    Figure 9.  Post⁃Archean Average Shale (PAAS)⁃normalized REE+Y distribution patterns of the Dengying Formation carbonate in the Luchi profile

    在Ⅱ阶段,REE+Y配分模式表现为LREE亏损,HREE富集,Y正异常,及Ce负异常和La正异常(图9b),与现代氧化大洋的REE+Y配分模式类似[62,66],而在Ⅱ阶段的碳酸盐岩具有较低的Mn/Sr值(0.8~2.4,平均值为1.6)、较高的Y/Ho值(38~42,平均值为40),没有受到明显的成岩作用(图7),Ce负异常指示Ⅱ阶段碳酸盐岩为弱氧化的沉积环境。在Ⅲ阶段,REE+Y配分模式表现为整体相对平坦,异常不明显或Ce正异常,较弱的Y正异常(图9c),结合其岩石学特征主要为黏连白云岩(图4a)和层纹白云岩(图5d),认为该时期沉积环境主要为含氧量较低的弱还原环境。而Ⅳ阶段,REE+Y配分模式表现为LREE亏损,HREE轻度富集,具有明显的La负异常,以及较弱的Y正异常(图9d),显著的Ce正异常指示其沉积环境以缺氧为主。同时,碳酸盐岩中纹层发育(图5d、图6a),也表明该时期处于相对静水的沉积环境。总体来看,鹿池剖面灯影组早期以弱氧化环境为主,晚期随着水体逐渐加深,沉积环境以缺氧还原为主。

    对四川盆地及周缘的埃迪卡拉纪晚期地层(如灯影组、老堡组、留茶坡组)氧化还原研究指出,浅水地区偏氧化[60],深水地区以缺氧富铁为主[13,16,67]的分层氧化还原环境是这一时期主要的特征。且在鹿池剖面,从Ⅰ阶段到Ⅳ阶段,灯影组沉积水体环境从弱氧化到弱还原再到缺氧(图8,9),反映伴随着埃迪卡拉纪晚期—早寒武世海平面的脉动式变化[68],灯影期的沉积环境也由弱氧化向缺氧转变。并且已有证据表明埃迪卡拉纪晚期海水是一种低氧特征[61],浅水地区并未充分氧化,与U同位素(238U)结果揭示的埃迪卡拉纪晚期深水地区表现为缺氧环境是一致的[14,18]。而海水的加深势必会引起深部缺氧水体的扩张,可能也是早寒武世在不同地区广泛发育黑色页岩的一个重要原因[6972]

  • (1) 川东北鹿池剖面灯影组沉积了巨厚的碳酸盐岩地层,沉积岩石学分析表明碳酸盐岩主要为黏连白云岩、叠层/层纹白云岩和泥微晶白云岩,偶见溶蚀白云岩。纵向上的沉积学特征表明灯影组经历了早期浅水高能向晚期深水低能环境的转变。

    (2) 经成岩作用判别,鹿池剖面灯影组碳酸盐岩受成岩作用影响较小,碳酸盐岩普遍具有较低的Mn/Sr值。经PAAS标准化后的REE+Y配分模式呈现四个典型特征:Ⅰ阶段表现为典型的MREE富集,LREE亏损,具有正的Y异常和Eu异常,较弱的Ce异常;Ⅱ阶段表现为典型的现代海水稀土特征,LREE亏损,Ce负异常和正的Y异常;Ⅲ阶段表现为平坦的配分模式,较弱的偏正的Ce异常和Y异常;Ⅳ阶段表现为典型的LREE亏损,且Ce显著负异常。REE+Y配分模式纵向上的变化表明鹿池剖面灯影组沉积环境经历了弱氧化到弱还原再到缺氧还原,揭示扬子台地埃迪卡拉纪晚期海水环境以缺氧为主。

Reference (72)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return