Advanced Search
Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents

NI HePing, BI Lei, GUO YuLong, HE ZhongFa, YANG ShouYe. Chemical Phases of Sediments in the Changjiang Estuary and the Indication for the Geomorphological Evolution of Changjiang Estuary[J]. Acta Sedimentologica Sinica, 2023, 41(1): 243-255. doi: 10.14027/j.issn.1000-0550.2021.084
Citation: NI HePing, BI Lei, GUO YuLong, HE ZhongFa, YANG ShouYe. Chemical Phases of Sediments in the Changjiang Estuary and the Indication for the Geomorphological Evolution of Changjiang Estuary[J]. Acta Sedimentologica Sinica, 2023, 41(1): 243-255. doi: 10.14027/j.issn.1000-0550.2021.084

Chemical Phases of Sediments in the Changjiang Estuary and the Indication for the Geomorphological Evolution of Changjiang Estuary

doi: 10.14027/j.issn.1000-0550.2021.084
Funds:

National Natural Science Foundation of China 41730531

National Natural Science Foundation of China 41991324

Shanghai Belt and Road Joint Laboratory of Sunda Shelf Drilling 18230750600

  • Received Date: 2021-03-19
  • Accepted Date: 2021-07-26
  • Rev Recd Date: 2021-06-10
  • Available Online: 2021-07-26
  • Publish Date: 2023-02-10
  • Elemental geochemistry is an important means for provenance discrimination and palaeoenvironmental reconstructing in marine and continental environments. However, a study based on the bulk sedimentary geochemistry is significantly influenced by the complex sedimentary dynamics in estuarine and coastal areas, as well as the influence of human activities. The Changjiang (Yangtze River) Estuary, as an important depocenter for the riverine sediments, is featured by the active hydrodynamic and depositional processes. Due to the combined effects of runoff and tidal currents, erosion and siltation processes interact, which causes the main stream channel to swing frequently, and the sedimentary environment of the estuary is constantly changing. Therefore, it is an ideal place to investigate the geochemical behavior of elements in a complex estuary environment. However, the evolution of geomorphology and sedimentary environment of the Changjiang Estuary in the historical period is mainly based on the studies of estuarine geomorphology and sedimentary dynamics, while few studies focus on the application of sedimentary geochemistry for tracing channel evolution and sedimentary environment. This study collected the suspended sediment samples in the main Changjiang stream, the seafloor sediments on the East China Sea (ECS) shelf, and the sediment samples of core ZK6 drilled from the Changjiang Estuary. In the lab, all of these samples were treated with 1 N HCl, and then the compositions of major and trace elements in the leachates and residues, as well as in the bulk samples, were measured. We then discuss their implications for the evolution of estuarine environment over the last hundred years. The Sr/Ba ratios in the leachates of the sediments in core ZK6 varied from 1.2 to 1.9, which is significantly higher than the average of the suspended samples in the main Changjiang stream (Sr/Ba = 0.25) and significantly lower than the average of the seafloor sediments on the ECS shelf (Sr/Ba = 8.0). The average Sr/Ba ratios in the residues of the above three fractions are similar, with values of 0.19, 0.19, and 0.33, respectively, and do not have an environmental indication. The average Sr/Ba ratios in the above three bulk samples are 0.21, 0.31, and 0.62, respectively, indicating that the environmental response sensitivity is significantly lower than that of the leachates, although it yields the increase from land to sea. Therefore, compared to the traditional bulk composition, the Sr/Ba ratio in the leachates is a more reliable geochemical indicator for paleo-salinity and can well distinguish between terrestrial and marine sedimentary environments. The total rare earth element (ΣREE) concentration in the leachates of the sediments in core ZK6 ranges from 59.9 μg/g to 90.9 μg/g, with an average of 75.2 μg/g. The leachates account for 34%-53% of the bulk REE concentration, with an average of 43%, with the middle REE (MREE) more easily leached than the light REE (LREE) and the heavy REE (HREE). The Upper Continental Crust (UCC)-normalized REE patterns in the leachates of the sediments in core ZK6 are consistent with the composition of the modern Changjiang sediments, with significant enrichment of MREE. The ΣREE concentration is positively correlated with Mn content in the leachates of the sediments in core ZK6 (R2=0.91). We infer that Mn oxides are the main host of acid-leachable REE in core ZK6. The weak positive correlation of the ΣREE concentration in the leachates with the bulk Al/Si of the sediments in core ZK6 indicates the weak grain size effect on REE composition. Mn and ΣREE concentrations and cerium anomaly (Ce/Ce*) are significantly negatively correlated with the palaeo-salinity proxy, Sr/Ba, in the leachates of the sediments in core ZK6 and were significantly higher than that of the seafloor sediments on the ECS shelf. The results indicate that the salinity change and the combined action of runoff and tidal current in the Changjiang Estuary can significantly affect the redox environment of bottom water, the coagulation process, and the intense deposition in the low salinity region, further controlling the contents of Mn oxide and ΣREE in the sediments. Mn and ΣREE concentrations, Ce/Ce*, and Sr/Ba ratios show three-step variations during the period of 1899-2007: from 1899 to 1948, the Sr/Ba ratio in the leachates first decreased and then remained relatively stable after the mid-1920s, while the Mn and ΣREE concentrations and Ce/Ce* increased first and then maintained relatively high values; from 1948 to 1971, the Sr/Ba ratio increased, while Mn and ΣREE concentrations and Ce/Ce* decreased rapidly; after 1971, the Sr/Ba ratio decreased slightly at first, then remained relatively stable; Mn and ΣREE concentrations and Ce/Ce* increased significantly at first and then showed a decreasing trend. The variations of Mn and ΣREE concentrations, Ce/Ce*, and Sr/Ba ratios during the period of 1899-2007 mainly indicate the evolution of the estuarine sedimentary environment caused by the geomorphological evolution in the Changjiang river mouth, which affects the preservation of active elements and authigenic components in the sedimentary strata in the estuarine environment. This study suggests that even in the large estuary where the sedimentary dynamic process is complex and the river-sea interaction is intense, some indicators based on sediment element geochemistry can still indicate the evolution of the estuary environment.
  • [1] Sholkovitz E R. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater[J]. Geochimica et Cosmochimica Acta, 1976, 40(7): 831-845.
    [2] Elderfield H, Upstill-Goddard R, Sholkovitz E R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 971-991.
    [3] Wang Z L, Liu C Q. Geochemistry of rare earth elements in the dissolved, acid-soluble and residual phases in surface waters of the Changjiang Estuary[J]. Journal of Oceanography, 2008, 64(3): 407-416.
    [4] Sun X S, Fan D J, Liu M, et al. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment[J]. Environmental Pollution, 2018, 241: 938-949.
    [5] Sholkovitz E R. The geochemistry of rare earth elements in the Amazon River Estuary[J]. Geochimica et Cosmochimica Acta, 1993, 57(10): 2181-2190.
    [6] 吴明清,王贤觉. 东海沉积物的稀土和微量元素[J]. 地球化学,1991(1):40-46.

    Wu Mingqing, Wang Xianjue. Rare-earth and trace elements in the East China Sea sediments[J]. Geochimica, 1991(1): 40-46.
    [7] Thorpe C L, Lloyd J R, Law G T W, et al. Strontium sorption and precipitation behaviour during bioreduction in nitrate impacted sediments[J]. Chemical Geology, 2012, 306-307: 114-122.
    [8] 刘宝珺. 沉积岩石学[M]. 北京:地质出版社,1980:286-289.

    Liu Baojun. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1980: 286-289.
    [9] Jaraula C M B, Siringan F P, Klingel R, et al. Records and causes of Holocene salinity shifts in Laguna de Bay, Philippines[J]. Quaternary International, 2014, 349: 207-220.
    [10] Wang A H, Wang Z H, Liu J K, et al. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta[J]. Chemical Geology, 2021, 559: 119923.
    [11] Chen Z Y, Chen Z L, Zhang W G. Quaternary stratigraphy and trace-element indices of the Yangtze Delta, eastern China, with special reference to marine transgressions[J]. Quaternary Research, 1997, 47(2): 181-191.
    [12] 魏巍, Algeo T J,陆永潮,等. 古盐度指标与渤海湾盆地古近系海侵事件初探[J]. 沉积学报,2021,39(3):571-592.

    Wei Wei, Algeo T J, Lu Yongchao, et al. Paleosalinity proxies and marine incursions into the Paleogene Bohai Bay Basin lake system, northeastern China[J]. Acta Sedimentologica Sinica, 2021, 39(3): 571-592.
    [13] 王爱华,叶思源,刘建坤,等. 不同选择性提取方法锶钡比的海陆相沉积环境判别探讨:以现代黄河三角洲为例[J]. 沉积学报,2020,38(6):1226-1238.

    Wang Aihua, Ye Siyuan, Liu Jiankun, et al. Discrimination between marine and terrestrial sedimentary environments by the selectively extracted Sr/Ba ratio: A case of sediments in the Yellow River Delta[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1226-1238.
    [14] Yang S Y, Jung H S, Choi M S, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments[J]. Earth and Planetary Science Letters, 2002, 201(2): 407-419.
    [15] Yang S Y, Li C X, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Chinese Science Bulletin, 2003, 48(11): 1135-1139.
    [16] Bayon G, Toucanne S, Skonieczny C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited[J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38.
    [17] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279(5710): 206-210.
    [18] Su N, Yang S Y, Guo Y L, et al. Revisit of rare earth element fractionation during chemical weathering and river sediment transport[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3): 935-955.
    [19] Duddy L R. Redistribution and fractionation of rare-earth and other elements in a weathering profile[J]. Chemical Geology, 1980, 30(4): 363-381.
    [20] Garzanti E, Andó S, France-Lanord C, et al. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh)[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 107-120.
    [21] Garzanti E, Andò S, France-Lanord C, et al. Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga⁃Brahmaputra, Bangladesh)[J]. Earth and Planetary Science Letters, 2010, 299(3/4): 368-381.
    [22] Goldstein S J, Jacobsen S B. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 1988, 89(1): 35-47.
    [23] Sholkovitz E, Szymczak R. The estuarine chemistry of rare earth elements: Comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems[J]. Earth and Planetary Science Letters, 2000, 179(2): 299-309.
    [24] Lawrence M G, Kamber B S. The behaviour of the rare earth elements during estuarine mixing—revisited[J]. Marine Chemistry, 2006, 100(1/2): 147-161.
    [25] 陈吉余,沈焕庭,恽才兴. 长江河口动力过程和地貌演变[M]. 上海:上海科学技术出版社,1988:283-403.

    Chen Jiyu, Shen Huanting, Yun Caixing. Processes of dynamics and geomorphology of the Yangtze Estuary[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1988: 283-403.
    [26] 恽才兴. 长江河口近期演变基本规律[M]. 北京:海洋出版社,2004:1-47.

    Yun Caixing. The recent evolution basic law in the Yangtze River Estuary[M]. Beijing: China Ocean Press, 2004: 1-47.
    [27] 沈焕庭. 长江河口物质通量[M]. 北京:海洋出版社,2001:60-80.

    Shen Huanting. Material flux of the Changjiang Estuary[M]. Beijing: China Ocean Press, 2001: 60-80.
    [28] Obodoefuna D C, Fan D D, Guo X J, et al. Highly accelerated siltation of abandoned distributary channel in the Yangtze Delta under everchanging social-ecological dynamics[J]. Marine Geology, 2020, 429: 106331.
    [29] Wang Y H, Dong P, Oguchi T, et al. Long-term (1842-2006) morphological change and equilibrium state of the Changjiang (Yangtze) Estuary, China[J]. Continental Shelf Research, 2013, 56: 71-81.
    [30] 何中发,杨守业,赵宝成,等. 长江口地区近1500年以来沉积物重金属含量变化及其对流域环境响应[J]. 海洋地质与第四纪地质,2019,39(2):21-30.

    He Zhongfa, Yang Shouye, Zhao Baocheng, et al. Changes in heavy metal elements in the sediments from Changjiang Estuary and their environmental responses in recent 1500 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 21-30.
    [31] 董永宏. 长江口—近岸陆架现代沉积物定年方法的研究探索[D]. 上海:华东师范大学,2010:36-75.

    Dong Yonghong. The comparision and perspective on dating methods of recent sediments in the Yangtze River Estuary and adjacent shelf area[D]. Shanghai: East China Normal University, 2010: 36-75.
    [32] Gao J H, Jia J, Sheng H, et al. Variations in the transport, distribution, and budget of 210Pb in sediment over the estuarine and inner shelf areas of the East China Sea due to Changjiang catchment changes[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(1): 235-247.
    [33] 李军,胡邦琦,窦衍光,等. 中国东部海域泥质沉积区现代沉积速率及其物源控制效应初探[J]. 地质论评,2012,58(4):745-756.

    Li Jun, Hu Bangqi, Dou Yanguang, et al. Modern sedimentation rate, budget and supply of the muddy deposits in the East China seas[J]. Geological Review, 2012, 58(4): 745-756.
    [34] Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390: 270-281.
    [35] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
    [36] 陈骏,王洪涛,鹿化煜. 陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究[J]. 地质学报,1996,70(1):61-72.

    Chen Jun, Wang Hongtao, Lu Huayu. Behaviours of REE and other trace elements during pedological weathering—evidence from chemical leaching of loess and paleosol from the Luochuan section in central China[J]. Acta Geologica Sinica, 1996, 70(1): 61-72.
    [37] 邹亮,韦刚健. 顺序提取法探讨沉积物中主量元素在不同相态的分配特征[J]. 海洋地质与第四纪地质,2007,27(2):133-140.

    Zou Liang, Wei Gangjian. Distribution of major elements in sediment by sequential extraction procedures[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 133-140.
    [38] Snape I, Scouller R C, Stark S C, et al. Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments[J]. Chemosphere, 2004, 57(6): 491-504.
    [39] Choi M S, Yi H I, Yang S Y, et al. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios[J]. Marine Chemistry, 2007, 107(2): 255-274.
    [40] 杨守业,王中波. 长江主要支流与干流沉积物的REE组成[J]. 矿物岩石地球化学通报,2011,30(1):31-39.

    Yang Shouye, Wang Zhongbo. Rare earth element compositions of the sediments from the major tributaries and the main stream of the Changjiang River[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 31-39.
    [41] Lim D, Jung H S, Choi J Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance[J]. Marine Geology, 2014, 357: 12-24.
    [42] 何中发. 1.5ka以来长江入海沉积物组成变化及其对流域自然环境演变和人类活动响应[D]. 上海:同济大学,2019:32-177.

    He Zhongfa. Variations in the Yangtze derived sediment compositions and theirresponse to natural environmental changes and human activities over the past 1500 years[D]. Shanghai: Tongji University, 2019: 32-177.
    [43] 杨守业,李从先, Jung H S,等. 黄河沉积物中REE制约与示踪意义再认识[J]. 自然科学进展,2003,13(4):365-371.

    Yang Shouye, Li Congxian, Jung H S, et al. Rerecognize the controlling and tracing implications of REE of Yellow River sediments[J]. Progress in Nature Science, 2003, 13(4): 365-371.
    [44] Banner J L, Hanson G N, Meyers W J. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis[J]. Journal of Sedimentary Research, 1988, 58(3): 415-432.
    [45] Hannigan R E, Sholkovitz E R. The development of middle rare earth element enrichments in freshwaters: Weathering of phosphate minerals[J]. Chemical Geology, 2001, 175(3/4): 495-508.
    [46] Johannesson K H, Lyons W B, Yelken M A, et al. Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare-earth element enrichments[J]. Chemical Geology, 1996, 133(1/2/3/4): 125-144.
    [47] Freslon N, Bayon G, Toucanne S, et al. Rare earth elements and neodymium isotopes in sedimentary organic matter[J]. Geochimica et Cosmochimica Acta, 2014, 140: 177-198.
    [48] Galy V, France-Lanord C, Lartiges B. Loading and fate of particulate organic carbon from the Himalaya to the Ganga-Brahmaputra delta[J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1767-1787.
    [49] Bouchez J, Gaillardet J, Lupker M, et al. Floodplains of large rivers: Weathering reactors or simple silos?[J]. Chemical Geology, 2012, 332-333: 166-184.
    [50] Lupker M, France-Lanord C, Galy V, et al. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga Basin)[J]. Geochimica et Cosmochimica Acta, 2012, 84: 410-432.
    [51] Bouchez J, Gaillardet J, France-Lanord C, et al. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03008.
    [52] Laceby J P, Evrard O, Smith H G, et al. The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: A review[J]. Earth-Science Reviews, 2017, 169: 85-103.
    [53] Cullers R L, Barrett T, Carlson R, et al. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A.[J]. Chemical Geology, 1987, 63(3/4): 275-297.
    [54] Nesbitt H W, Macrae N D, Kronberg B I. Amazon deep-sea fan muds: Light REE enriched products of extreme chemical weathering[J]. Earth and Planetary Science Letters, 1990, 100(1/2/3): 118-123.
    [55] Bayon G, German C R, Burton K W, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 477-492.
    [56] Moflett J W. The relationship between cerium and manganese oxidation in the marine environment[J]. Limnology and Oceanography, 1994, 39(6): 1309-1318.
    [57] Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579.
    [58] 李俊,弓振斌,李云春,等. 长江口稀土元素地球化学特征[J]. 海洋学报,2005,27(5):164-172.

    Li Jun, Gong Zhenbin, Li Yunchun, et al. Geochemical behaviors of rare earth elements in the estuary of Changjiang River in China[J]. Acta Oceanologica Sinica, 2005, 27(5): 164-172.
    [59] Sholkovitz E R. The aquatic chemistry of rare earth elements in rivers and estuaries[J]. Aquatic Geochemistry, 1995, 1(1): 1-34.
    [60] Sholkovitz E R, Elderfield H, Szymczak R, et al. Island weathering: River sources of rare earth elements to the western Pacific Ocean[J]. Marine Chemistry, 1999, 68(1/2): 39-57.
    [61] 杨作升,陈晓辉. 百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨[J]. 第四纪研究,2007,27(5):690-699.

    Yang Zuosheng, Chen Xiaohui. Centurial high resolution records of sediment grain-size variation in the mud area off the Changjiang (Yangtze River) Estuary and its influencial factors[J]. Quaternary Sciences, 2007, 27(5): 690-699.
    [62] 沈焕庭,徐海根,马相奇. 长江河口入海航道治理研究[J]. 海洋科学,1983(4):5-9.

    Shen Huanting, Xu Haigen, Ma Xiangqi. On harnessing the sea-entering waterway of the Changjiang Estuary[J]. Marine Sciences, 1983(4): 5-9.
    [63] 沈焕庭,李九发,肖成猷. 人类活动对长江河口过程的影响[J]. 气候与环境研究,1997,2(1):49-55.

    Shen Huanting, Li Jiufa, Xiao Chengyou. Impacts of human activities on the processes of Changjiang Estuary[J]. Climatic and Environmental Research, 1997, 2(1): 49-55.
    [64] Zhao J, Guo L C, He Q, et al. An analysis on half century morphological changes in the Changjiang Estuary: Spatial variability under natural processes and human intervention[J]. Journal of Marine Systems, 2018, 181: 25-36.
    [65] Yang Y P, Li Y T, Sun Z H, et al. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary: The trends and causes[J]. Journal of Geographical Sciences, 2014, 24(1): 129-142.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(105) PDF downloads(63) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-03-19
  • Revised:  2021-06-10
  • Accepted:  2021-07-26
  • Published:  2023-02-10

Chemical Phases of Sediments in the Changjiang Estuary and the Indication for the Geomorphological Evolution of Changjiang Estuary

doi: 10.14027/j.issn.1000-0550.2021.084
Funds:

National Natural Science Foundation of China 41730531

National Natural Science Foundation of China 41991324

Shanghai Belt and Road Joint Laboratory of Sunda Shelf Drilling 18230750600

Abstract: Elemental geochemistry is an important means for provenance discrimination and palaeoenvironmental reconstructing in marine and continental environments. However, a study based on the bulk sedimentary geochemistry is significantly influenced by the complex sedimentary dynamics in estuarine and coastal areas, as well as the influence of human activities. The Changjiang (Yangtze River) Estuary, as an important depocenter for the riverine sediments, is featured by the active hydrodynamic and depositional processes. Due to the combined effects of runoff and tidal currents, erosion and siltation processes interact, which causes the main stream channel to swing frequently, and the sedimentary environment of the estuary is constantly changing. Therefore, it is an ideal place to investigate the geochemical behavior of elements in a complex estuary environment. However, the evolution of geomorphology and sedimentary environment of the Changjiang Estuary in the historical period is mainly based on the studies of estuarine geomorphology and sedimentary dynamics, while few studies focus on the application of sedimentary geochemistry for tracing channel evolution and sedimentary environment. This study collected the suspended sediment samples in the main Changjiang stream, the seafloor sediments on the East China Sea (ECS) shelf, and the sediment samples of core ZK6 drilled from the Changjiang Estuary. In the lab, all of these samples were treated with 1 N HCl, and then the compositions of major and trace elements in the leachates and residues, as well as in the bulk samples, were measured. We then discuss their implications for the evolution of estuarine environment over the last hundred years. The Sr/Ba ratios in the leachates of the sediments in core ZK6 varied from 1.2 to 1.9, which is significantly higher than the average of the suspended samples in the main Changjiang stream (Sr/Ba = 0.25) and significantly lower than the average of the seafloor sediments on the ECS shelf (Sr/Ba = 8.0). The average Sr/Ba ratios in the residues of the above three fractions are similar, with values of 0.19, 0.19, and 0.33, respectively, and do not have an environmental indication. The average Sr/Ba ratios in the above three bulk samples are 0.21, 0.31, and 0.62, respectively, indicating that the environmental response sensitivity is significantly lower than that of the leachates, although it yields the increase from land to sea. Therefore, compared to the traditional bulk composition, the Sr/Ba ratio in the leachates is a more reliable geochemical indicator for paleo-salinity and can well distinguish between terrestrial and marine sedimentary environments. The total rare earth element (ΣREE) concentration in the leachates of the sediments in core ZK6 ranges from 59.9 μg/g to 90.9 μg/g, with an average of 75.2 μg/g. The leachates account for 34%-53% of the bulk REE concentration, with an average of 43%, with the middle REE (MREE) more easily leached than the light REE (LREE) and the heavy REE (HREE). The Upper Continental Crust (UCC)-normalized REE patterns in the leachates of the sediments in core ZK6 are consistent with the composition of the modern Changjiang sediments, with significant enrichment of MREE. The ΣREE concentration is positively correlated with Mn content in the leachates of the sediments in core ZK6 (R2=0.91). We infer that Mn oxides are the main host of acid-leachable REE in core ZK6. The weak positive correlation of the ΣREE concentration in the leachates with the bulk Al/Si of the sediments in core ZK6 indicates the weak grain size effect on REE composition. Mn and ΣREE concentrations and cerium anomaly (Ce/Ce*) are significantly negatively correlated with the palaeo-salinity proxy, Sr/Ba, in the leachates of the sediments in core ZK6 and were significantly higher than that of the seafloor sediments on the ECS shelf. The results indicate that the salinity change and the combined action of runoff and tidal current in the Changjiang Estuary can significantly affect the redox environment of bottom water, the coagulation process, and the intense deposition in the low salinity region, further controlling the contents of Mn oxide and ΣREE in the sediments. Mn and ΣREE concentrations, Ce/Ce*, and Sr/Ba ratios show three-step variations during the period of 1899-2007: from 1899 to 1948, the Sr/Ba ratio in the leachates first decreased and then remained relatively stable after the mid-1920s, while the Mn and ΣREE concentrations and Ce/Ce* increased first and then maintained relatively high values; from 1948 to 1971, the Sr/Ba ratio increased, while Mn and ΣREE concentrations and Ce/Ce* decreased rapidly; after 1971, the Sr/Ba ratio decreased slightly at first, then remained relatively stable; Mn and ΣREE concentrations and Ce/Ce* increased significantly at first and then showed a decreasing trend. The variations of Mn and ΣREE concentrations, Ce/Ce*, and Sr/Ba ratios during the period of 1899-2007 mainly indicate the evolution of the estuarine sedimentary environment caused by the geomorphological evolution in the Changjiang river mouth, which affects the preservation of active elements and authigenic components in the sedimentary strata in the estuarine environment. This study suggests that even in the large estuary where the sedimentary dynamic process is complex and the river-sea interaction is intense, some indicators based on sediment element geochemistry can still indicate the evolution of the estuary environment.

NI HePing, BI Lei, GUO YuLong, HE ZhongFa, YANG ShouYe. Chemical Phases of Sediments in the Changjiang Estuary and the Indication for the Geomorphological Evolution of Changjiang Estuary[J]. Acta Sedimentologica Sinica, 2023, 41(1): 243-255. doi: 10.14027/j.issn.1000-0550.2021.084
Citation: NI HePing, BI Lei, GUO YuLong, HE ZhongFa, YANG ShouYe. Chemical Phases of Sediments in the Changjiang Estuary and the Indication for the Geomorphological Evolution of Changjiang Estuary[J]. Acta Sedimentologica Sinica, 2023, 41(1): 243-255. doi: 10.14027/j.issn.1000-0550.2021.084
  • 河口海陆交互作用强烈,沉积环境复杂,不同元素在河口过程中的地球化学行为存在差异,进而影响河流入海物质的地球化学组成及一些元素地球化学指标的示踪应用[15]。例如,Ba与Sr相比具有较大的离子半径和较低的水合能,在淡水环境中易被黏土矿物、胶体和有机质吸附,并且在河口盐淡水混合过程中易与SO42-结合形成BaSO4沉淀,使得陆相和海陆过渡相沉积物中Ba的含量较高;而Sr具有较强的活动性,水体中游离态的Sr更易被搬运入海;此外,受矿物结构和离子半径的影响,Sr和Ba的生物累积行为也存在差异,钙质生物组分中Sr浓度显著高于Ba[67]。研究表明,沉积物的Sr/Ba比由陆向海随盐度的升高而显著增大,因此可以作为海陆相沉积环境判别指标[812]。但该指标在实际应用过程中却一直存在物源干扰和环境示踪灵敏性可靠性的争议,如黄河三角洲ZK5孔全岩Sr/Ba比均介于0.45~0.5,无法有效地区分不同亚相和沉积环境[13]。选择性化学提取实验结果显示,黄河三角洲沉积物中的Sr与Ba主要赋存于陆源碎屑矿物中,而不受沉积环境变化的影响[10,13]。因此,提取沉积物中Sr、Ba的环境活性形态,可以更可靠地应用Sr/Ba比指示古盐度和海陆相沉积环境变化。

    稀土元素(REE)在表生环境中具有相对稳定的地球化学性质,早期研究认为河流沉积物REE组成基本继承了流域源岩的平均组成,可以用于物源的示踪[1416]。但是近年来不少研究证实,REE在风化过程中具有活动性,主要受原生矿物的稳定性和风化条件控制[14,1619]。此外,沉积动力分选也可改变河流沉积物的碎屑矿物组成,进而导致REE组成发生分异[2021]。河口海陆交互作用强烈,复杂的河口过程可以改变入海河流输入的溶解态和颗粒态REE组成,进而影响海区环境中REE示踪应用[2,2224]

    长江口作为长江入海物质的重要沉积中心,是研究河口复杂环境下元素地球化学行为的理想场所。现代长江口是径流、潮流相互消长的多级分汊沙岛型中等潮汐河口,在徐六泾以下被崇明岛、长兴岛、横沙岛和九段沙分割形成“三级分汊、四口入海”的河口地貌形式[2526]。长江口沉积过程活跃,活动性较强,在径流与潮流共同作用下,河床蚀此积彼,主泓摆动频繁,河口沉积环境多变[2629]。但是目前学术界主要从河口地貌学和沉积动力学等角度研究历史时期长江口地貌和沉积环境的演化,运用沉积地球化学手段的河道演变和沉积环境研究还非常薄弱。本研究选择长江下游干流悬浮物、东海陆架表层沉积物以及长江口泥质区具有一百多年沉积记录的ZK6孔,开展化学相态分析,重点讨论酸溶态中微量元素的赋存形态、控制因素及其对近百年来长江主泓改道的沉积响应。

  • ZK6孔(30.896 85° N, 122.147 52° E)于2007年7月采自长江口泥质沉积区(图1),水深9.5 m,孔深10 m。钻孔上部2 m按照5~10 cm的间隔共采集32个样品,在华东师范大学河口海岸国家重点实验室使用美国EG&GORTEC公司高纯锗井型探头(GWL-120210-S)进行210Pb和137Cs的分析测试[30]。由于137Cs浓度总体较低,最高约2.0 Bq/kg,与之前报道接近[31],未能检测出一些具有时标意义的沉降峰值,本文仅采用210Pb结果估算岩心沉积速率。ZK6孔的210Pbex比活度范围为11.4~123.8 Bq/kg,在岩心中波动变化但总体呈指数衰减,在0~50 cm段与150 cm附近变化较大,推测同河口动力环境变化导致部分沉积层混合有关。与前人报道的长江口地区210Pbex比活度变化相比[3132],ZK6孔沉积物210Pbex比活度整体呈现明显的向下衰减趋势,依据初始恒定活度CIC模式对沉积物进行线性拟合,得到平均沉积速率约1.85 cm/a(图2),这与前人对于该区域近百年来沉积速率的研究结果相吻合[3134],据此推测研究岩心沉积时间为1899—2007年[30]。长江口地区水动力复杂,沉积环境相对不稳定,受到生物扰动、洪水、台风、风暴潮及人类活动等显著影响,近百年尺度的定年一直是个挑战;前人研究也揭示,137Cs因为活度低而总体不可信,根据CIC模式得到210Pb的年龄结果相对恒定补给速率(CRS)模式更可信[3132]

    Figure 1.  Topographical map of the modern Changjiang Estuary and sampling locations

    Figure 2.  Down⁃core changes in 210Pbex and 137Cs activities in core ZK6(modified from reference [30])

    ZK6孔0~1.85 m为黄灰色泥夹深灰色粉砂纹层,纹层毫米级,1 m以下纹层密集,且多见虫孔,粉砂中常见贝壳碎片;1.85~2 m为灰色泥夹深灰色粉砂纹层[30]。沉积物粒度在垂向上也波动变化,以黏土质粉砂为主,部分层位砂含量相对较高,平均粒径介于4.2~6.9 Φ图3)。值得注意的是,几个砂含量较高层位(0.6 m,1.2 m以及2.0 m附近)的210Pbex比活度未见明显的异常,上下呈现较好的指数衰减趋势,没有观察到显著的混合沉积和沉积年代倒转的现象。1.5 m附近210Pbex比活度波动较大,而该层为细粒沉积,可能同生物扰动(虫孔)导致沉积混合有关;但粒度和210Pbex比活度分析结果都表明该异常沉积影响较小,研究岩心沉积记录整体具有较好的连续性。综上,考虑历史水文资料获取及定年准确性,本研究选取钻孔上部2 m,按照10 cm间隔采集钻孔沉积物样品共20个进行微量元素测试。

    Figure 3.  Vertical distributions of sediment grain size parameters for core ZK6

    长江下游干流悬浮物共51个样品于2008年4月至2009年4月间每周一次采集于南通狼山附近的长江主航道,每个采样点利用酸洗后的25 L水桶采集表层1 m以下河水,随后在实验室利用0.45 μm醋酸纤维滤膜过滤悬浮物,并在40 °C条件下低温烘干;东海陆架表层沉积物共8个样品采集于2011年6月国家自然科学基金委2011年东海共享航次,使用箱式抓斗在设计站位取样,用干净的特氟龙小铲取5 cm以上的表层样进行保存(图1)。

    最经典的沉积物的化学相态提取方法是Tessier et al.[35]提出的五步顺序提取法。然而其化学前处理过程复杂,人为产生和反应过程的误差不易控制,因此很多学者简化前处理方法,提出盐酸或醋酸的一步浸取实验[18,3637]。研究表明,1 N的HCl可以有效地提取沉积物中元素的环境活性形态[3839]。因此,本研究样品经洗盐,低温烘干并研磨至200目后,选择1 N的高纯HCl作为反应试剂,于水浴锅中60 ℃振荡6 h,离心,上清液倒入定容瓶,剩余残渣用超纯水反复清洗直至pH达中性,洗液一并汇入清液,稀释3倍后待测。残渣经烘干研磨后,于马弗炉中600 ℃灼烧2 h,去除有机质,采用HNO3-HF混合酸消解,稀释后待测。在同济大学海洋地质国家重点实验室分别采用电感耦合等离子体发射光谱仪(ICP-OES,IRIS Advantage)和电感耦合等离子体质谱仪(ICP-MS,Anglian 7900)进行主微量元素分析。主量元素分析过程中使用国家标样(GSR-5,GSR-6,GSR-9)和空白样进行数据监测,测试结果显示分析误差在5%~10%之间。微量元素分析过程中使用标准物质BCR-2、重复样、空白样进行数据监测。重复样测试结果显示仪器分析精度优于5%。标准物质BCR-2分析结果显示分析误差低于10%。

  • 酸淋滤实验结果显示(图4),ZK6孔沉积物中Sr总量为108.27~148.74 µg/g,平均131.4 µg/g,其中酸溶态中Sr含量为52.6~61.6 µg/g,平均56.6 µg/g,平均淋出率43%,高于长江悬浮物(31%)而低于东海陆架表层沉积物(46%)。ZK6孔沉积物全岩Ba含量为358.1~507.8 µg/g,平均424.9 µg/g,但在酸溶态中Ba的含量仅28.5~44.5 µg/g,平均35.5 µg/g,平均淋出率仅8%,显著低于长江悬浮物(27%)而高于东海陆架表层沉积物(4%)。ZK6沉积物全岩Mn的含量为676.9~1 033.4 µg/g,平均881.0 µg/g,酸溶态Mn含量534.3~914.3 µg/g,平均743.1 µg/g,平均淋出率高达84%,高于长江悬浮物与东海陆架表层沉积物的淋出率(平均分别为81%,65%)。

    Figure 4.  Relative percentages of trace elements in the leachates and residues of the sediments in core ZK6

    ZK6孔沉积物中总稀土元素(ΣREE)含量为136.7~198.8 µg/g,平均174.6 µg/g,其中酸溶态ΣREE含量为59.9~90.9 µg/g,平均75.2 µg/g,占全岩的34%~53%,平均43%,高于长江悬浮物与东海陆架表层沉积物(平均淋出率分别为41%,27%)。各REE之间的淋出率也存在差异(图4),长江悬浮物、ZK6孔以及东海陆架表层沉积物具有类似的特征,均为中稀土元素(MREE:Eu-Dy)相对最易淋出,ZK6孔沉积物ΣMREE淋出率在44%~59%,平均52%,其中Gd的淋出率最高,平均达54%;轻稀土元素(LREE:La-Nd)与重稀土元素(HREE:Er-Lu)的淋出率相对较低,平均分别为42%与36%。从La到Nd淋出率依次升高,即LREE更趋于富集于酸溶态中;而HREE逐渐富集于残渣态中,与前人对于现代长江沉积物的相态分析结果吻合[14,4041]

  • ZK6孔沉积物酸溶态的Mn、ΣREE含量以及经上陆壳标准化的Ce异常(Ce/Ce*)具有相似的垂向变化趋势(图5),Mn和ΣREE含量整体在东海陆架表层沉积物与长江悬浮物酸溶态平均含量之间,波动较大,Ce/Ce*的变化范围为0.95~1.03,呈现较弱的异常。ZK6孔沉积物酸溶态Sr/Ba比垂向变化趋势整体与其他参数相反,显著高于长江悬浮物却显著低于东海陆架表层沉积物酸溶态平均组成。根据各参数垂向变化特征将ZK6孔沉积划分为三个单元:Unit 1(2.0~1.1 m),Unit 2(1.1~0.7 m),Unit 3(0.7~0 m):Unit 1(2.0~1.1 m)酸溶态Mn、ΣREE含量以及Ce/Ce*自底部向上逐渐波动升高,而Sr/Ba比向上呈降低的趋势;Unit 2(1.1~0.7 m)酸溶态Mn、ΣREE含量以及Ce/Ce*迅速降低,而Sr/Ba比相反,向上迅速升高;钻孔顶部Unit 3(0.7~0 m)酸溶态Mn、ΣREE含量以及Ce/Ce*向上先增大后减小,酸溶组分Sr/Ba比向上呈缓慢降低的趋势。

    Figure 5.  Al/Si of bulk samples, Mn, total rare earth element (ΣREE) concentrations, Ce/Ce* and Sr/Ba ratios in leachates of the sediments in core ZK6 since 1899 (solid and dotted lines represent the averages of leachates for seafloor sediments on the East China Sea (ECS) shelf and suspended samples in the main Changjiang stream, respectively)

  • ZK6孔各沉积物样品酸溶态REE虽然在含量上存在较大差异,但上陆壳(UCC)标准化配分模式十分相似(图6),且与现代长江悬浮物的组成基本一致,均呈现MREE的明显富集,并具有显著的Gd正异常,而明显区别于黄河沉积物相对平坦的REE配分模式[43]。此外,ZK6孔沉积物酸溶态REE的轻重分异程度显著高于残渣态(ΣLREE/ΣHREE平均分别为28.7和22.1),酸溶态Ce/Ce*也相对高于残渣态(平均分别为0.99和0.94)。

    Figure 6.  REE patterns in the leachates of sediments in core ZK6 and comparison with the modern Changjiang and Huanghe Rivers

  • 模拟实验结果显示,盐度的变化能够显著影响沉积物中可交换态与碳酸盐结合态的Sr、Ba含量,可交换态Sr/Ba比与盐度呈显著的正相关关系,碳酸盐结合态Sr/Ba比同样随盐度的升高而升高,但是残渣态与全岩Sr/Ba比和盐度之间却没有明显的相关性[10]。因此,对沉积物中元素的环境活性形态进行选择性提取是解决传统的全样Sr/Ba比判别效果不佳问题的有效手段[10,13]

    1 N HCl能够提取沉积物在表生环境中形成的次生组分,主要包括碳酸盐[44]与磷酸盐矿物[4546]、Fe-Mn氧化物[14,39,46]、以及有机质[47]与部分黏土矿物吸附物质[14],但同时也会淋出碎屑碳酸盐,可能影响Sr/Ba比的应用。长江悬浮物可用于评估碎屑碳酸盐信号,其酸溶态Sr/Ba比平均值0.25,显著低于ZK6孔沉积物(1.6),认为碎屑碳酸盐的影响可能较有限。但长江悬浮物与ZK6孔沉积物还存在粒度的差异,研究表明,粒度对沉积物可交换态、碳酸盐态Sr/Ba比存在一定的影响:在盐度不变的情况下,粗颗粒沉积物中可交换态、碳酸盐态Sr含量较低,Sr/Ba比也因此较低[10]。Al/Si是沉积物粒度分选的良好指标,研究表明Al2O3趋向于在黏土矿物等细粒级组分中富集,而SiO2主要赋存于石英、长石等粗颗粒组分中,相较于粒度参数,Al/Si能更好地反映由水动力分选引起的矿物分异[4850]。本研究中,长江悬浮物、ZK6孔沉积物以及东海陆架表层沉积物Al/Si平均值分别为0.33,0.28和0.08,即粒度逐渐变粗,特别是东海陆架表层沉积物样品为残留砂,粒度明显较粗,可导致酸溶态Sr/Ba比偏低,影响其环境指相性。然而三者酸溶态Sr/Ba比平均值分别为0.25,1.6和8.0,即陆相、海陆过渡相与海相沉积物三者能够很好地被区分而受粒度的影响较小。前人针对长江三角洲表层沉积物的研究同样发现,尽管浅海残留砂粒度较粗导致其可交换态与碳酸盐态Sr/Ba比相对偏低,但仍远高于海陆过渡相细颗粒沉积物[10]。同时可知,ZK6孔沉积物相对长江悬浮物较高的酸溶态Sr/Ba比不可能由粒度差异造成,而应是受沉积环境和盐度的主控,进一步证实了碎屑碳酸盐的影响有限。综上所述,酸溶态Sr/Ba比具有较好的沉积环境指相性(图7)。

    Figure 7.  Concentrations of Sr and Ba in the leachates of suspended fractions of sediments from the main Changjiang stream, core ZK6, and seafloor of the ECS shelf

    与酸溶态相比,三者的残渣态Sr/Ba比平均值则十分相近,分别为0.19、0.19和0.33,不具备环境指相性。残渣态中大量碎屑态Sr、Ba(主要富集在碎屑长石类矿物)的存在,使得全岩Sr/Ba比难以区分海陆沉积环境。长江悬浮物、ZK6孔沉积物及东海陆架表层沉积物三者全岩样品的Sr/Ba比分别为0.21,0.31和0.62,虽然从陆到海趋于升高,但环境响应灵敏度显著低于酸溶态。显然,本研究也证实沉积物酸溶态Sr/Ba比更适用于古盐度的指示和海陆相沉积环境的判别。

  • 沉积物的地球化学组成易受粒度控制[5152],河流及河口的水动力分选可能导致不同粒级沉积物中矿物组成存在差异,进而引起REE组成的分异[2021],即细粒沉积物中相对富集REE,特别是LREE[5354]。ZK6孔沉积物Al/Si[42]与酸溶态ΣREE和ΣLREE含量均呈弱的正相关性(图8),表明存在一定的粒度效应。富含黏土高Al/Si比的细粒组分增多,导致ΣREE含量尤其是ΣLREE含量升高;但它们相关性很弱,表明粒度不是ZK6孔沉积物酸溶态REE组成变化的主控因素。

    Figure 8.  Correlations of bulk Al/Si with ΣREE and ΣLREE concentrations in the leachates of the sediments in core ZK6

    Fe-Mn氧化物是沉积物酸溶态REE的重要来源,且一般富集MREE[14,41,46,55]。ZK6孔沉积物酸溶态显著富集MREE,且与Mn含量呈显著正相关(R2=0.91),显著高于残渣态的MREE与Mn含量的相关性(图9),表明Mn氧化物是岩心沉积物酸溶态REE的主要赋存形态。Ce作为变价元素,其氧化过程与Mn氧化物的形成具有密切的关系[5,5657]。酸溶态Ce/Ce*与Mn的含量呈正相关性(R2=0.57),Mn氧化物含量的增加可能导致酸溶组分Ce异常偏正。

    Figure 9.  Correlations of Mn concentration with ΣREE concentration and Ce/Ce* in the leachates and residues of the sediments in core ZK6

    前人研究表明,长江口表层沉积物REE含量在低盐度区存在最高值,而向海随盐度的升高,REE含量逐渐降低[58];同样,长江口悬浮物的酸溶态(盐酸提取,pH≈1.5)在低盐度区REE含量具有最高值[3]。低盐度区REE的富集可能与该区域主要为细粒沉积,Mn氧化物富集有关[4]。河流进入河口区后,随着水动力的减弱和底层水pH、盐度和悬浮颗粒物浓度的升高,大量悬浮细颗粒物质和Fe-Mn胶体快速絮凝沉降[3,2426,58]。长江口盐水楔异重流的存在为细颗粒泥沙的絮凝沉降创造了极为有利的条件,在低盐度区形成一个粒度相对较细而Al、Mn含量较高的沉积区[4]。这一盐水楔作用下的絮凝沉积带往往随径流量和潮流量的变化而位移,径流量增大,盐水楔下退,絮凝带外推[25]。而在中高盐度区,强烈的水—沉积物相互作用导致溶解与解吸附,即河口中高盐度区沉积物ΣREE含量随盐度的升高而降低[3,24,5960]

    ZK6孔沉积物酸溶态Mn、ΣREE含量均与古盐度指标酸溶态Sr/Ba比呈显著负相关,且均显著高于东海陆架表层沉积物(图10),表明长江口盐度变化、径流与潮流动力复合影响能够显著影响底层水氧化还原环境和低盐度区的絮凝沉积,控制沉积物Mn氧化物和ΣREE的含量。推测当径流量增大或潮流减弱时,盐淡水交汇地带外移,ZK6站位盐度相对降低,酸溶态Sr/Ba比减小;同时絮凝沉积带外移,更靠近ZK6站位,导致该站位沉积物中Mn氧化物和细粒组分相对增多,酸溶态ΣREE含量升高。反之,当径流量减小或潮流增强,盐水楔上移,絮凝沉积带相对远离ZK6站位,沉积物酸溶态Mn、ΣREE含量随之降低。

    Figure 10.  Correlations of Sr/Ba with Mn and ΣREE concentration in leachates of the sediments in core ZK6 and seafloor sediments on the ECS shelf

  • 长江河口段河床冲淤多变,主泓摆动频繁。北支河道曾是长江径流下泄的主泓道,18世纪主泓由北支改走南支入海,1915年北支尚可下泄25%的长江来水,但至1950年代末,经北支的径流量只占总径流量的1%~2%,现代长江来水基本由南支河道泄出[25]。南支河道主要受落潮流的控制,多水下沙洲,下连南港和北港,分流口不稳定,近百年来长江主泓在南北港之间几经变易(图11[2629]。长江入海主泓的迁移直接导致长江口盐度、水动力条件的变化和絮凝沉积带的位移,ZK6孔沉积物酸溶态微量元素组成特征的变化清晰反映了长江河口流路分汊和主泓改道的历史(图12)。

    Figure 11.  Schematic drawings of the geomorphological evolution of the Changjiang Estuary over the last hundred years (after Yun[26], Obodoefuna et al.[28], Wang et al.[29])

    Figure 12.  Sr/Ba ratios, Mn, and ΣREE concentrations and Ce/Ce* in the leachates of sediments in core ZK6 indicate the geomorphological evolution of the Changjiang Estuary(after Chen et al.[25], Obodoefuna et al.[28], Yang et al.[61]

    1899—1948年前后,岩心沉积物酸溶态Sr/Ba比先波动降低至1920年代中期后在低值区保持相对稳定;而Mn、ΣREE含量及Ce/Ce*先波动升高后保持相对高值,反映了长江主泓自1899年起至1920年代中期逐渐南移,河口盐度降低,低盐度区絮凝区逐渐靠近ZK6站位,并在其后的近20年中保持相对稳定(图12)。19世纪60年代长江主泓改由北港入海,分流水道为崇明水道,该水道于20世纪初开始萎缩淤浅,而1900年、1905年、1911年的洪水事件使得主流改走白茆沙南水道,主泓逐渐南移,北港逐渐淤积,20世纪20年代,主泓转入南港。崇明水道于1927年消亡,北港上口出现封堵现象,其后直至1948年前后长江主泓均走南港[2526,29]

    1948—1971年前后,酸溶态Sr/Ba比的升高反映了长江口盐水楔的内推和盐度的升高,而Mn、ΣREE含量及Ce/Ce*迅速波动降低,反映了絮凝沉积带相对远离ZK6站位(图12)。对应于主泓改道的历史:20世纪40—50年代中央沙北水道不断发展,南支通过该水道向北港泄水,致使主泓逐渐北移,1949年和1954年的大洪水又加快了这一进程[25]。1958年的海图显示南港上口封堵,长江主泓重走北港,而南港在1959—1971年发生淤积[25]

    1971年后,酸溶态Sr/Ba比略有降低,但在1971—2007年期间整体变化不大,反映了长江口盐度与河势演变趋于稳定(图12)。对应于主泓改道的历史:1971年前主泓走北港,1980年前后南港入海水沙量超过北港,随后南北港分水、分沙达到波动平衡,北港分水、分沙比占南支径流总量的50%~60%,延续至今[26,61]。而Mn、ΣREE含量及Ce/Ce*在1971—2007年期间呈先明显升高后不同程度降低的趋势,可能反映絮凝沉积带于1971—1989年前后逐渐靠近研究站位,而在1989年后相对远离研究站位。1975年,长江口深水航道疏浚工程的实施使得南槽航道增深至7 m,其后每年维护挖泥量约1.8×107 m3[6263],抛泥产生大量絮凝泥沙颗粒靠近ZK6站位。而在1983年后,因南槽淤积严重,通海航道由南槽改为北槽[63],相对远离研究站位,可能是引起研究岩心沉积物酸溶态Mn、ΣREE含量和Ce/Ce*近年来降低的原因之一。此外,20世纪80年代中期至今,由于葛洲坝与三峡大坝的相继建设,长江携带的泥沙含量逐年下降[64]。研究表明,三峡大坝建设前后,长江口悬浮物平均浓度下降了约25%,最大浑浊带的中心向口内移动近20 km[65],絮凝沉积带也随之向口内移动,也可能导致ZK6站位沉积物酸溶态Mn、ΣREE含量和Ce/Ce*的降低。而大坝建设对于长江径流量几乎没有影响[64],因此酸溶态Sr/Ba比并没有发生显著变化。

  • (1) 长江口ZK6孔沉积物酸溶态的Sr/Ba比变化范围为1.2~1.9,在现代长江和东海陆架沉积物之间,具有可靠的环境指相性;ZK6孔沉积物酸溶态REE含量占全岩比为34%~53%,主要赋存于Mn氧化物结合态,配分模式与现代长江沉积物基本一致;Ce/Ce*范围为0.95~1.03,呈较弱的异常,Mn氧化物含量基本控制Ce/Ce*

    (2) ZK6孔沉积物酸溶态Sr/Ba比、Mn、ΣREE含量以及Ce/Ce*在1899—2007年期间呈三段式波动变化,主要受控于长江河口流路分汊和主泓位置迁移导致的水动力条件和盐度变化,以及河口絮凝沉积带位移引起的沉积环境变化。

    (3) 虽然河口沉积动力环境复杂多变,但河口沉积物化学相态结合元素地球化学深入分析,可以揭示河口沉积环境演变历史。

Reference (65)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return