Advanced Search
Volume 39 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

HE PuWei, XU Wang, ZHANG LianJin, FU MeiYan, WU Dong, DENG HuCheng, XU HuiLin, SUN QiMeng. Characteristics and Genetic Mechanism of Qixia Formation Dolomite in Moxi-Gaoshiti Area, Central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1532-1545. doi: 10.14027/j.issn.1000-0550.2021.093
Citation: HE PuWei, XU Wang, ZHANG LianJin, FU MeiYan, WU Dong, DENG HuCheng, XU HuiLin, SUN QiMeng. Characteristics and Genetic Mechanism of Qixia Formation Dolomite in Moxi-Gaoshiti Area, Central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1532-1545. doi: 10.14027/j.issn.1000-0550.2021.093

Characteristics and Genetic Mechanism of Qixia Formation Dolomite in Moxi-Gaoshiti Area, Central Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.093
Funds:

Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) PLC2020023

  • Received Date: 2020-12-04
  • Rev Recd Date: 2021-07-02
  • Publish Date: 2021-12-10
  • The beach facies dolomite in the Qixia Formation is well developed in the Moxi-Gaoshiti area, central Sichuan Basin. At present, the mechanism of differential dolomitization in beach facies is still unclear, which hinders the prediction of high-quality dolomite reservoirs. This study combined an examination of the petrology and stratigraphy, grain type and tectonic background to determine the main controlling factors and genetic models of different types of dolomitization by analyzing the trace elements, carbon, oxygen and strontium isotope characteristics of different types of dolomites. The results show that, in the study area, the Qixia Formation dolomites are predominantly fine crystals, followed by medium crystals and coarse crystals. Most of the crystal forms are semi-automorphic to automorphic. The dolomite has an obvious residual grain structure, indicating that the original lithology was granular limestone. The cathodoluminescence of the fine-grained, and fine-to-medium crystalline dolomite is generally dark red to red in color. The distribution pattern of rare earth elements is similar to that of limestone of the same period. The 87Sr/86Sr ratios of the dolomites lie within the range of Permian seawater, indicating that the diagenetic fluid of the dolomite has the same homology as the limestone deposited in seawater. The δ13C value of dolomite (3.73‰⁃4.19‰) is similar to that of limestone (3.61‰⁃4.93‰) in the same period, indicating that the dolomite and limestone have the same carbon source. The Sr content decreases significantly from limestone to dolomite and Mn content increases, together indicating that the limestone was metasomatized to form dolomite after a particular mode of diagenesis: in this case, by replacement of porous granular limestone with Mg2+-rich fluid in the buried strata. The cathodoluminescence of medium-to-coarse crystalline dolomite is red, with obvious zonal characteristics, and has high Mn content, low Sr/Ba ratio and positive Eu anomaly. The 87Sr/86Sr ratios are higher than for seawater in the same period. The δ18O value is between -8.06‰ and -8.52‰. The higher homogenization temperature of the inclusions and the negative δ18O value together indicate that the buried dolomitization process was also affected by high local temperatures. This type of dolomite is formed from a continuous and sufficient supply of dolomitic fluid during burial. Overall, buried dolomitization was the main cause of the dolomite in this area. Mg2+-rich fluid in the formation migrated under the dual influences of pressure and thermal convection, which promoted the movement of dolomitizing fluid. However, in some areas, the presence of saddle-shaped dolomite indicates that it was subsequently subjected to various degrees of hydrothermal transformation in the later period.
  • [1] 胡安平,潘立银,郝毅,等. 四川盆地二叠系栖霞组、茅口组白云岩储层特征、成因和分布[J]. 海相油气地质,2018,23(2):39-52.

    Hu Anping, Pan Liyin, Hao Yi, et al. Origin, characteristics and distribution of dolostone reservoir in Qixia Formation and Maokou Formation, Sichuan Basin, China[J]. Marine Origin Petroleum Geology, 2018, 23(2): 39-52.
    [2] 张本健,谢继容,尹宏,等. 四川盆地西部龙门山地区中二叠统碳酸盐岩储层特征及勘探方向[J]. 天然气工业,2018,38(2):33-42.

    Zhang Benjian, Xie Jirong, Yin Hong, et al. Characteristics and exploration direction of the Middle Permian carbonate reservoirs in the Longmenshan mountain areas, western Sichuan Basin[J]. Natural Gas Industry, 2018, 38(2): 33-42.
    [3] 杨光,汪华,沈浩,等. 四川盆地中二叠统储层特征与勘探方向[J]. 天然气工业,2015,35(7):10-16.

    Yang Guang, Wang Hua, Shen Hao, et al. Characteristics and exploration prospects of Middle Permian reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2015, 35(7): 10-16.
    [4] 芦飞凡,谭秀成,王利超,等. 川中地区中二叠统栖霞组滩控岩溶型白云岩储层特征及主控因素[J]. 沉积学报,2021,39(2):456-469.

    Lu Feifan, Tan Xiucheng, Wang Lichao, et al. Characteristics and controlling factors of dolomite reservoirs within shoal-controlled karst in the Middle Permian Qixia Formation, central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 456-469.
    [5] 白晓亮,杨跃明,杨雨,等. 川西北栖霞组优质白云岩储层特征及主控因素[J]. 西南石油大学学报(自然科学版),2019,41(1):47-56.

    Bai Xiaoliang, Yang Yueming, Yang Yu, et al. Characteristics and controlling factors of high-quality dolomite reservoirs in the Permian Qixia Formation, northwestern Sichuan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(1): 47-56.
    [6] 娄雪. 四川盆地栖霞组白云岩储层成因机制与分布规律研究[D]. 北京:中国石油大学(北京),2017.

    Lou Xue. The origin and distribution of dolomite reservoir in the Qixia Formation of Lower Permain, Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2017.
    [7] 陈明启. 川西南下二叠阳新统白云岩成因探讨[J]. 沉积学报,1989,7(2):45-50.

    Chen Mingqi. A discussion of the origin of Yangxin dolomite of Lower Permian in southwest Sichuan[J]. Acta Sedimentologica Sinica, 1989, 7(2): 45-50.
    [8] 王运生,金以钟. 四川盆地下二叠统白云岩及古岩溶的形成与峨眉地裂运动的关系[J]. 成都理工学院学报,1997,24(1):8-16.

    Wang Yunsheng, Jin Yizhong. The formation of dolomite and paleokarst of the Lower Permian series in Sichuan Basin and the relation to the Emei Taphrogenesis[J]. Journal of Chengdu University of Technology, 1997, 24(1): 8-16.
    [9] 何幼斌,冯增昭. 四川盆地及其周缘下二叠统细—粗晶白云岩成因探讨[J]. 江汉石油学院学报,1996,18(4):15-20.

    He Youbin, Feng Zengzhao. Origin of fine- to coarse-grained dolostones of Lower Permian in Sichuan Basin and its peripheral regions[J]. Journal of Jianghan Petroleum Institute, 1996, 18(4): 15-20.
    [10] 张荫本. 四川盆地二迭系中的白云岩化[J]. 石油学报,1982,3(1):29-33.

    Zhang Yinben. Dolomitization in Permian rocks in Sichuan Basin[J]. Acta Petrolei Sinica, 1982, 3(1): 29-33.
    [11] 赵娟,曾德铭,梁锋,等. 川中南部地区下二叠统栖霞组白云岩储层成因研究[J]. 地质力学学报,2018,24(2):212-219.

    Zhao Juan, Zeng Deming, Liang Feng, et al. The genesis of the dolomitic reservoirs of the Lower Permian Qixia Formation in the south central Sichuan Basin[J]. Journal of Geomechanics, 2018, 24(2): 212-219.
    [12] 舒晓辉,张军涛,李国蓉,等. 四川盆地北部栖霞组—茅口组热液白云岩特征与成因[J]. 石油与天然气地质,2012,33(3):442-448,458.

    Shu Xiaohui, Zhang Juntao, Li Guorong, et al. Characteristics and genesis of hydrothermal dolomites of Qixia and Maokou Formations in northern Sichuan Basin[J]. Oil & Gas Geology, 2012, 33(3): 442-448, 458.
    [13] 田景春,林小兵,张翔,等. 四川盆地中二叠统栖霞组滩相白云岩多重成因机理及叠加效应[J]. 岩石学报,2014,30(3):679-686.

    Tian Jingchun, Lin Xiaobing, Zhang Xiang, et al. The genetic mechanism of shoal facies dolomite and its additive effect of Permian Qixia Formation in Sichuan Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 679-686.
    [14] 周进高,郝毅,邓红婴,等. 四川盆地中西部栖霞组—茅口组孔洞型白云岩储层成因与分布[J]. 海相油气地质,2019,24(4):67-78.

    Zhou Jingao, Hao Yi, Deng Hongying, et al. Genesis and distribution of vuggy dolomite reservoirs of the Lower Permian Qixia Formation and Maokou Formation, western-central Sichuan Basin[J]. Marine Origin Petroleum Geology, 2019, 24(4): 67-78.
    [15] 曾德铭,石新,王兴志,等. 川西北地区下二叠统栖霞组滩相储层特征及其分布[J]. 天然气工业,2010,30(12):25-28.

    Zeng Deming, Shi Xin, Wang Xingzhi, et al. Features and distribution of shoal facies reservoirs in the Lower Permian Qixia Formation, northwest Sichuan Basin[J]. Natural Gas Industry, 2010, 30(12): 25-28.
    [16] 张健,周刚,张光荣,等. 四川盆地中二叠统天然气地质特征与勘探方向[J]. 天然气工业,2018,38(1):10-20.

    Zhang Jian, Zhou Gang, Zhang Guangrong, et al. Geological characteristics and exploration orientation of Mid-Permian natural gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(1): 10-20.
    [17] 陈轩,赵文智,张利萍,等. 川中地区中二叠统构造热液白云岩的发现及其勘探意义[J]. 石油学报,2012,33(4):562-569.

    Chen Xuan, Zhao Wenzhi, Zhang Liping, et al. Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan Basin[J]. Acta Petrolei Sinica, 2012, 33(4): 562-569.
    [18] 马德波,汪泽成,段书府,等. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义[J]. 石油勘探与开发,2018,45(5):795-805.

    Ma Debo, Wang Zecheng, Duan Shufu, et al. Strike-slip faults and their significance for hydrocarbon accumulation in Gaoshiti-Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 795-805.
    [19] 彭军,褚江天,陈友莲,等. 四川盆地高石梯—磨溪地区下寒武统沧浪铺组沉积特征[J]. 岩性油气藏,2020,32(4):12-22.

    Peng Jun, Chu Jiangtian, Chen Youlian, et al. Sedimentary characteristics of Lower Cambrian Canglangpu Formation in Gaoshiti-Moxi area, Sichuan Basin[J]. Lithologic Reservoirs, 2020, 32(4): 12-22.
    [20] 田艳红,刘树根,赵异华,等. 四川盆地高石梯—磨溪构造龙王庙组储层差异性及气水分布[J]. 西安石油大学学报(自然科学版),2015,30(5):1-9.

    Tian Yanhong, Liu Shugen, Zhao Yihua, et al. Reservoir difference and gas-water distribution of Longwangmiao Formation in Gaoshiti-Moxi structure, Sichuan Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(5): 1-9.
    [21] 苏劲,张水昌,杨海军,等. 断裂系统对碳酸盐岩有效储层的控制及其成藏规律[J]. 石油学报,2010,31(2):196-203.

    Su Jin, Zhang Shuichang, Yang Haijun, et al. Control of fault system to formation of effective carbonate reservoir and the rules of petroleum accumulation[J]. Acta Petrolei Sinica, 2010, 31(2): 196-203.
    [22] Shellnutt J G. The Emeishan large igneous province: A synthesis[J]. Geoscience Frontiers, 2014, 5(3): 369-394.
    [23] 黎荣,胡明毅,潘仁芳,等. 川中地区中二叠统断溶体发育特征及形成机制[J]. 中国石油勘探,2019,24(1):105-114.

    Li Rong, Hu Mingyi, Pan Renfang, et al. Development characteristics and forming mechanism of Middle Permian fault-karst carbonate reservoirs in the central Sichuan Basin[J]. China Petroleum Exploration, 2019, 24(1): 105-114.
    [24] 胡明毅,魏国齐,胡忠贵,等. 四川盆地中二叠统栖霞组层序—岩相古地理[J]. 古地理学报,2010,12(5):515-526.

    Hu Mingyi, Wei Guoqi, Hu Zhonggui, et al. Sequence -lithofacies palaeogeography of the Middle Permian Qixia Formation in Sichuan Basin[J]. Journal of Palaeogeography, 2010, 12(5): 515-526.
    [25] 王海真,池英柳,赵宗举,等. 四川盆地栖霞组岩溶储层及勘探选区[J]. 石油学报,2013,34(5):833-842.

    Wang Haizhen, Chi Yingliu, Zhao Zongju, et al. Karst reservoirs developed in the Middle Permian Qixia Formation of Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2013, 34(5): 833-842.
    [26] Xiao D, Zhang B J, Tan X C, et al. Discovery of a shoal-controlled karst dolomite reservoir in the Middle Permian Qixia Formation, northwestern Sichuan Basin, Southwest China[J]. Energy Exploration & Exploitation, 2018, 36(4): 686-704.
    [27] 郝毅,谷明峰,韦东晓,等. 四川盆地二叠系栖霞组沉积特征及储层分布规律[J]. 海相油气地质,2020,25(3):193-201.

    Hao Yi, Gu Mingfeng, Wei Dongxiao, et al. Sedimentary characteristics and reservoir distribution of the Permian Qixia Formation in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(3): 193-201.
    [28] 黄思静. 碳酸盐矿物的阴极发光性与其Fe,Mn含量的关系[J]. 矿物岩石,1992,12(4):74-79.

    Huang Sijing. Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals[J]. Journal of Mineralogy and Petrology, 1992, 12(4): 74-79.
    [29] 刘洁,皇甫红英. 碳酸盐矿物的阴极发光性与微量元素的关系[J]. 沉积与特提斯地质,2000,20(3):71-76.

    Liu Jie, Huangfu Hongying. The cathodoluminescence and trace elements in carbonate minerals[J]. Sedimentary Geology and Tethyan Geology, 2000, 20(3): 71-76.
    [30] 孙靖,黄小平,金振奎,等. 碳酸盐矿物阴极发光性的控制因素分析[J]. 沉积与特提斯地质,2009,29(1):102-108.

    Sun Jing, Huang Xiaoping, Jin Zhenkui, et al. Controlling factors of cathodoluminescence of carbonate minerals[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(1): 102-108.
    [31] Tucker M E, Wright V P. Carbonate sedimentology[M]. Oxford: Blackwell Scientific Publication, 2008: 314-400.
    [32] 刘建清,陈文斌,杨平,等. 羌塘盆地中央隆起带南侧隆额尼—昂达尔错古油藏白云岩地球化学特征及成因意义[J]. 岩石学报,2008,24(6):1379-1389.

    Liu Jianqing, Chen Wenbin, Yang Ping, et al. The Longeni-Angdanrco paelo-oil dolomite geochemical characteristics in southern part of the central uplift zone of Qiangtang Basin and it’s significance[J]. Acta Petrologica Sinica, 2008, 24(6): 1379-1389.
    [33] 黄思静. 上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J]. 地质学报,1997,71(1):45-53.

    Huang Sijing. A study on carbon and strontium isotopes of Late Paleozoic carbonate rocks in the Upper Yangtze platform[J]. Acta Geologica Sinica, 1997, 71(1): 45-53.
    [34] 韩晓涛,鲍征宇,谢淑云. 四川盆地西南中二叠统白云岩的地球化学特征及其成因[J]. 地球科学,2016,41(1):167-176.

    Han Xiaotao, Bao Zhengyu, Xie Shuyun. Origin and geochemical characteristics of dolomites in the Middle Permian Formation, SW Sichuan Basin, China[J]. Earth Science, 2016, 41(1): 167-176.
    [35] 董翼昕. 四川盆地中二叠统白云岩成因机理研究[D]. 成都:成都理工大学,2020.

    Dong Yixin. Genetic mechanism of the Middle Permian dolomite in the Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2020.
    [36] 蒋裕强,谷一凡,李开鸿,等. 四川盆地中部中二叠统热液白云岩储渗空间类型及成因[J]. 天然气工业,2018,38(2):16-24.

    Jiang Yuqiang, Gu Yifan, Li Kaihong, et al. Space types and origins of hydrothermal dolomite reservoirs in the Middle Permian strata, central Sichuan Basin[J]. Natural Gas Industry, 2018, 38(2): 16-24.
    [37] 王泽宇. 四川盆地中二叠统白云岩成因[D]. 北京:中国地质大学(北京),2019.

    Wang Zeyu. The genesis of Middle Permian dolomite in Sichuan Basin[D]. Beijing: China University of Geosciences (Beijing), 2019.
    [38] 刘树根,邓宾,李智武,等. 盆山结构与油气分布:以四川盆地为例[J]. 岩石学报,2011,27(3):621-635.

    Liu Shugen, Deng Bin, Li Zhiwu, et al. The texture of sedimentary basin-orogenic belt system and its influence on oil/gas distribution: A case study from Sichuan Basin[J]. Acta Petrologica Sinica, 2011, 27(3): 621-635.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)  / Tables(3)

Article Metrics

Article views(525) PDF downloads(115) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-12-04
  • Revised:  2021-07-02
  • Published:  2021-12-10

Characteristics and Genetic Mechanism of Qixia Formation Dolomite in Moxi-Gaoshiti Area, Central Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.093
Funds:

Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) PLC2020023

Abstract: The beach facies dolomite in the Qixia Formation is well developed in the Moxi-Gaoshiti area, central Sichuan Basin. At present, the mechanism of differential dolomitization in beach facies is still unclear, which hinders the prediction of high-quality dolomite reservoirs. This study combined an examination of the petrology and stratigraphy, grain type and tectonic background to determine the main controlling factors and genetic models of different types of dolomitization by analyzing the trace elements, carbon, oxygen and strontium isotope characteristics of different types of dolomites. The results show that, in the study area, the Qixia Formation dolomites are predominantly fine crystals, followed by medium crystals and coarse crystals. Most of the crystal forms are semi-automorphic to automorphic. The dolomite has an obvious residual grain structure, indicating that the original lithology was granular limestone. The cathodoluminescence of the fine-grained, and fine-to-medium crystalline dolomite is generally dark red to red in color. The distribution pattern of rare earth elements is similar to that of limestone of the same period. The 87Sr/86Sr ratios of the dolomites lie within the range of Permian seawater, indicating that the diagenetic fluid of the dolomite has the same homology as the limestone deposited in seawater. The δ13C value of dolomite (3.73‰⁃4.19‰) is similar to that of limestone (3.61‰⁃4.93‰) in the same period, indicating that the dolomite and limestone have the same carbon source. The Sr content decreases significantly from limestone to dolomite and Mn content increases, together indicating that the limestone was metasomatized to form dolomite after a particular mode of diagenesis: in this case, by replacement of porous granular limestone with Mg2+-rich fluid in the buried strata. The cathodoluminescence of medium-to-coarse crystalline dolomite is red, with obvious zonal characteristics, and has high Mn content, low Sr/Ba ratio and positive Eu anomaly. The 87Sr/86Sr ratios are higher than for seawater in the same period. The δ18O value is between -8.06‰ and -8.52‰. The higher homogenization temperature of the inclusions and the negative δ18O value together indicate that the buried dolomitization process was also affected by high local temperatures. This type of dolomite is formed from a continuous and sufficient supply of dolomitic fluid during burial. Overall, buried dolomitization was the main cause of the dolomite in this area. Mg2+-rich fluid in the formation migrated under the dual influences of pressure and thermal convection, which promoted the movement of dolomitizing fluid. However, in some areas, the presence of saddle-shaped dolomite indicates that it was subsequently subjected to various degrees of hydrothermal transformation in the later period.

HE PuWei, XU Wang, ZHANG LianJin, FU MeiYan, WU Dong, DENG HuCheng, XU HuiLin, SUN QiMeng. Characteristics and Genetic Mechanism of Qixia Formation Dolomite in Moxi-Gaoshiti Area, Central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1532-1545. doi: 10.14027/j.issn.1000-0550.2021.093
Citation: HE PuWei, XU Wang, ZHANG LianJin, FU MeiYan, WU Dong, DENG HuCheng, XU HuiLin, SUN QiMeng. Characteristics and Genetic Mechanism of Qixia Formation Dolomite in Moxi-Gaoshiti Area, Central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1532-1545. doi: 10.14027/j.issn.1000-0550.2021.093
  • 四川盆地中二叠统栖霞组白云岩储层是盆地天然气勘探开发的一个重要领域[1-2],目前已经在川西地区栖霞组钻获高产工业气流[3]。近期在川中磨溪—高石梯地区栖霞组也取得了良好的试气效果,显示栖霞组具有极大的勘探开发潜力。川中磨溪—高石梯地区栖霞组发育滩相白云岩[4-5],为优质储层的形成提供了必要的物质基础。前人对四川盆地不同区域中二叠统栖霞组滩相白云岩的成因及储层发育特征做了大量研究[6-15],同时也提出了多种白云岩化成因观点,主要包括三大类:1)埋藏白云岩化成因[7-8],以及局部叠加后期热事件影响[9-10];2)混合水白云岩化成因[7,10];3)构造—热液白云岩化成因[1-2,11-12]。也有学者从全盆的角度对栖霞组滩相白云岩成因机理及其叠加效应进行了深入研究[13]。总体而言,由于不同区域栖霞组沉积背景、白云岩化条件等有差异,导致其白云岩成因机理不同,进而影响了不同地区栖霞组白云岩储集物性的差异。同时,盆地内部不同沉积相带白云岩储层厚度存在差异,台地边缘白云岩储层厚10~30 m,台内滩相白云岩储层介于5~20 m[16]。目前对川中地区栖霞组白云岩成因缺乏系统的认识,尤其是对滩相中差异白云石化机理不明确,导致难以预测优质白云岩储层的分布。本文通过系统分析磨溪—高石梯地区栖霞组滩相不同类型白云岩的微量元素、碳氧同位素、锶同位素等地球化学特征,对白云石化流体的来源和白云石化机制进行研究,并根据白云石化程度差异和白云岩的结构类型,结合海平面变化、颗粒滩类型和沉积环境,明确白云石化的主控因素,建立该区白云石化成因模式,为研究区白云岩优质储层预测及评价提供可靠的理论依据。

  • 研究区磨溪—高石梯区块位于川中平缓褶皱带(图1),属于川中磨溪—龙女寺北斜坡[19]。该斜坡形成于震旦纪晚期桐湾运动,志留纪末期受加里东运动的影响,古隆起基本定型,在燕山晚期由于构造快速抬升,古隆起西段发生强烈变形[18]。从二叠纪开始,随着峨眉地裂运动由盆地周边向盆地内发展,使得第一次海侵形成的碳酸盐台地破裂、离散[8]。同时,峨眉地裂运动造成地壳拉张、断块差异抬升,并使深大断裂活化,从而形成大量高角度裂缝,为构造热液的活动提供了通道[20-21]。地裂运动也使研究区普遍发育贯穿基底的走滑断层,这些走滑断层在平面上表现为北东向的张扭性质[21]。在中二叠世后期,北方劳亚大陆与南方冈瓦纳大陆逐渐汇聚并发生碰撞,同时伴随中国南方大范围的火山活动,从而为四川盆地中二叠统地层中的热液活动提供了大地构造背景[8,21-24]

    Figure 1.  Structural location, well location and stratigraphic characteristics of study area (modified from references[17⁃18])

    川中磨溪—高石梯地区栖霞组底部与下伏梁山组整合接触,顶部与上覆茅口组呈整合接触。梁山组为一套厚度较薄的铝土质风化壳层,向上逐渐过渡为滨海沼泽相沉积的黑色碳质页岩。随后,在大规模海侵背景下,川中栖霞组早期沉积环境以深水开阔台地相为主,中晚期以开阔台地相沉积为主,顶部为一套生屑灰岩或颗粒白云岩[25]。受全球海平面下降的影响,四川盆地栖霞组末期迅速海退,使得川中地区地层发生区域性暴露[26-27]。同时,栖霞组沉积受川中古隆起残余地貌的控制,其中古隆起大部分地区发育浅缓坡,古隆起东缘呈“S”形,向东南方向逐渐演化为中—深缓坡[28]。基于前人对四川盆地栖霞组层序地层特征的研究,栖霞组对应一个三级层序,层序内部由海侵体系域(TST)和高位体系域(HST)构成,总体经历了快速海侵、缓慢海退的过程[13,25,28]。栖霞组从下到上可以分为栖一、栖二两段(图1)。研究区颗粒滩以台内滩为主,主要发育于栖一段顶部和栖二段。颗粒滩分布主要受古微地貌高地控制,滩体沿北西—南东向展布,北东—南西向颗粒滩和开阔海(或滩间海)相间展布[4,25]

  • 通过选取研究区内典型取心井磨溪42和磨溪108井,以及高石梯地区高石001-X45和高石128两口岩屑井(井位分布见图1),从宏观和微观角度系统分析栖霞组白云岩的分布特征、岩性特征及显微结构特征。

    磨溪42井栖霞组取心段主要为栖二段,栖二段岩心特征表现为白云岩与生屑灰岩互层(图2),白云岩段发育大量溶孔、溶洞,洞中见沥青,且栖二段底部见鞍状白云石。铸体薄片显示栖二段白云岩以细晶为主,其次为细—中晶和中粗晶白云岩。细晶白云岩呈它形—半自形,发育晶间孔(图3a);中—细晶白云岩呈半自形,发育少量晶间孔,见明显的残余生屑结构(图3b);粗—中晶白云岩呈自形,发育晶间溶孔和微裂隙(图3c)。

    Figure 2.  Lithological histogram of cored section, well MX42

    Figure 3.  Core and chip thin sections of Qixia Formation dolomites in study area

    磨溪108井白云岩主要发育在栖二段中上部和底部(图4),底部白云岩发育大量针状孔和溶洞,溶洞中见沥青。白云岩铸体薄片显示,细—中晶白云岩呈半自形,发育晶间溶孔和微裂隙(图3d);中晶白云岩呈半自形—自形,局部见粒屑白云石,发育晶间溶孔(图3e);粗—中晶白云岩,具残余颗粒结构,发育晶间孔和晶间溶孔(图3f)。

    Figure 4.  Lithological histogram of cored section, well MX108

    高石梯地区栖霞组无取心,本次研究借助岩屑样品进行分析。高石001-X45井栖霞组白云岩主要发育在栖一段顶部(深度分别为4 160~4 168 m,4 171~4 178 m)。镜下晶粒白云岩以粗粉晶、细晶为主,部分达到中晶,半自形镶嵌结构(图3g,h)。基质中见自形程度高的白云石晶体,具浅埋藏白云石化特征。高石128井栖霞组白云岩主要发育在栖一段顶部(深度为4 271~4 277 m)和栖二段中部(深度为4 239~4 248 m)。见晶粒白云岩,含球粒泥晶灰岩的溶洞中可见鞍状白云石充填(图3i),可能为热液成因标志。根据研究区白云岩的晶形、晶面、晶粒大小等可以反映白云石成因的显微结构特征,并依据《中华人民共和国石油天然气行业标准》中岩石薄片鉴定部分(SY/T 5368—2000)关于碳酸盐岩的晶粒大小分级方案,研究区白云岩以细晶和细—中晶为主,在所统计的岩屑薄片中占晶粒白云岩的90%,粗晶白云岩次之。其中细晶白云岩多为半自形镶嵌结构,较致密,少见晶间孔,细—中晶和中粗晶白云岩晶间孔和晶间溶孔发育,鞍形白云石在岩心上呈巨晶状,颜色为白色,主要发育在裂缝和溶蚀孔洞内,镜下晶体表面较干净,晶面弯曲,正交光下具波状消光特征。

  • 前人研究表明,碳酸盐岩矿物的阴极发光特征主要受晶格中Mn、Fe含量的控制,Mn是主要的激发剂,Fe是主要的猝灭剂[28-29]。正常海水中的Mn、Fe含量较低,而成岩流体中Mn、Fe含量更高,在开放环境中Fe2+易被氧化成Fe3+而失去对阴极发光的淬灭作用,因此混合水白云化和淡水作用形成的白云石发光主要呈现亮橘黄色。相对封闭环境中形成的毛细管浓缩白云岩、渗透回流白云岩、埋藏白云岩、热液白云岩等阴极发光强度整体不强[11,29-30]

    研究区栖霞组白云岩的阴极发光特征可以分为3大类,第一类白云岩阴极发光呈暗红色,主要为细晶白云岩(图5a,b);第二类白云岩阴极发光呈红色,且白云石晶体边缘发斑驳状亮红色光,主要为细—中晶和中晶白云岩(图5c,d);第三类白云岩阴极发光呈红色,白云石晶体具有明显的环带特征,主要为中—粗晶白云岩(图5e,f)。阴极发光整体较弱,可以排除混合水白云化和淡水作用成因。因为Mn2+含量制约了碳酸盐矿物的阴极发光性,所以白云岩的阴极发光强度可以在一定程度上反映白云石形成时的流体Mn2+含量。海水中Mn2+含量偏低,所以推测阴极发光呈暗红色的细晶白云岩的云化流体很可能是海源流体,并且在近地表海水条件下,锰离子还未进入白云石晶格,反映白云石形成于早期低温阶段。而阴极发光呈红色的中晶和中—粗晶白云岩表现出埋藏成因特征,且阴极发光环带特征指示白云岩存在多期重结晶作用。斑状白云岩的灰质部分为云化残余,阴极发光为暗橘红色,保留原始海水特征。白云石阴极发光呈亮红色,为还原的高Mn环境中形成,与萤石伴生,指示与热液作用有关。灰质云岩的方解石为晚期溶蚀后充填成因,发暗红色光,为高Fe还原环境形成。

    Figure 5.  Cathodoluminescence characteristics of dolomite from Qixia Formation in Moxi⁃Gaoshi area

  • 通过对研究区细晶白云岩、细—中晶白云岩、中—粗晶白云岩和代表同期海水的泥晶灰岩微量元素进行对比分析,可以有效判断白云岩的成岩流体性质和成岩蚀变强度。前人研究表明,海相碳酸盐岩的早期白云岩化将导致较富Sr的白云石,而相对稳定的海相碳酸盐的晚期白云石化将形成贫Sr的白云石[31]

    研究区不同类型白云岩和泥晶灰岩的Sr、Mn元素含量及Sr/Ba比值见表1。与泥晶灰岩相比,晶粒白云岩的Sr含量明显偏低。一方面,低的Sr含量和Sr/Ba比反映成岩流体的盐度较低,另一方面也指示随白云岩化作用的进行,岩石中Sr含量有降低的趋势。经过成岩作用改造稳定后的碳酸盐岩具有较低的Sr含量,这种成岩过程中对应的元素迁移和缺失关系,反映了成岩蚀变的强度和成岩环境的变迁[32]。晶粒白云岩中Mn含量明显高于泥晶灰岩。Mn含量越高,指示埋藏越深,成岩强度越高。所以高的Mn含量、低的Sr/Ba比值反映白云石化可能形成于埋藏成岩环境。

    岩性 Sr/×10-6 Mn/×10-6 Sr/Ba
    细晶白云岩 97~122 142~382 0.1~1.6
    细—中晶白云岩 90~132 265~411 0.04~1.9
    中—粗晶白云岩 104~225 115~166 0.04~1.2
    泥晶灰岩 349~514 37~132 2.0~5.7

    Table 1.  Chemical compositions of dolomite and limestone in study area

    研究区栖霞组白云岩、灰岩和未遭受明显成岩流体改造的灰岩[11]稀土元素配分模式显示(图67),细晶、细—中晶白云岩的稀土元素配分模式与灰岩相似,表明白云岩继承了灰岩特征,指示白云石化流体以海水来源为主。灰岩的稀土元素总量高于白云岩,表明在白云岩化过程中稀土总量明显减少,但稀土配分模式均表现出平坦型,未发生明显的轻重稀土分异。大部分细晶白云岩表现出铕的正异常,指示成岩环境为相对封闭的还原环境。中—粗晶白云岩的稀土元素配分模式与灰岩相比表现出一定的分异性,重稀土表现出富集趋势,且具有明显铕的正异常(图7),指示其形成于强还原环境,可能为埋藏环境或有热液流体的参与。

    Figure 6.  Rare earth element distribution patterns of fine⁃grained, fine⁃ to medium⁃grained dolomites and limestones of Qixia Formation in study area (data for limestones 1 and 2 from reference[11])

    Figure 7.  Rare earth element distribution patterns in coarse⁃grained dolomite and limestone in Qixia Formation

    通过对阴极发光具环带特征的单颗粒白云石不同部位微量元素组成进行分析(图8),从环带内部到外部选择8个测点,各测点详细微量元素含量见表2。单颗粒白云石不同部位的MgCO3和CaCO3含量基本相似,然而不同部位微量元素含量有差异。白云石环带发亮部位Mn含量高,相应的Fe含量低,Th、U含量从晶体内部向边缘逐渐增加。微量元素的以上变化特征指示研究区白云岩形成过程中成岩流体存在差异。

    Figure 8.  Point selection map for in situ element analysis of dolomite micro area

    点位 MgCO3 CaCO3 Mn Fe Cu Zn Sr Ba Th U
    1 44.6 55.2 93.10 29.30 0.50 1.69 137.00 2.71 0.002
    2 42.5 57.1 106.00 68.60 0.31 0.39 130.00 4.83 0.013 0.002
    3 41.7 57.5 94.60 56.40 0.45 0.97 93.60 1.78 0.015 0.008
    4 43.9 55.4 128.00 55.20 0.65 107.00 24.60 0.029 0.086
    5 42.7 56.8 71.60 120.00 0.37 0.96 142.00 13.70 0.041 0.034
    6 43.6 55.7 65.60 41.00 0.52 0.74 82.10 2.41 0.110 0.160
    7 43.8 55.6 73.30 146.00 1.02 1.28 90.70 2.50 0.054 0.021
    8 43.0 56.2 259.00 84.50 0.15 0.28 85.50 0.77 0.060 0.280

    Table 2.  Trace element composition of dolomite in study area

  • 锶同位素组成可以有效反映成岩流体的来源。通过与同期海水的锶同位素分布范围进行对比(图9),栖霞组灰岩、云质灰岩和细晶白云岩的87Sr/86Sr比值大部分落于同期海水Sr同位素组成范围之内,说明海水是主要的白云石化流体来源。栖霞组中晶和中—粗晶白云岩的87Sr/86Sr比值整体高于灰岩、云质灰岩的87Sr/86Sr比值。中晶白云岩和中—粗晶白云岩较高的87Sr/86Sr比值指示白云石化过程中存在外源流体的输入,推测可能有热液流体的参与。

    Figure 9.  Sr isotopic composition in carbonate rocks instudy area (Sr isotopic range for seawater after references[33⁃34])

    对研究区代表同期海水的灰岩、不同粒径白云岩的碳氧稳定同位素进行对比分析(图10),其中灰岩的δ 18O值为-5.25‰~-7.26‰,δ 13C值为3.61‰~4.93‰,细晶白云岩的δ 18O值为-8.35‰,δ 13C值为4.19‰,细—中晶白云岩的δ 18O值-8.64‰,δ 13C值为3.73‰,中—粗晶白云岩的δ 18O值在-8.06‰~-8.52‰,δ 13C值为4.58‰~4.99‰。不同类型白云岩的碳同位素值均接近于同期海相灰岩的碳同位素值,说明二者具有一致的碳源,具有继承性关系。并且δ 13C值均为正值,指示白云石形成时很少有大气淡水或有机质的参与。用碳氧同位素值计算出的Z值介于131~133,均大于120,反映其形成于海相环境而非淡水环境[9]。研究区白云岩的氧同位素值明显偏负,排除大气淡水的影响。氧同位素偏负可能受热液作用的影响,存在热液白云石化。

    Figure 10.  Distribution of C and O isotopes for carbonate rocks in study area

  • 通过对磨溪108井栖霞组不同深度岩心样品中方解石脉的包裹体均一温度进行测试,研究可能存在的热液期次,详细测点均一温度数据见表3。方解石脉的包裹体均一温度存在3个明显的温度区间,分别为90 ℃~100 ℃、140 ℃~150 ℃、160 ℃~170 ℃(图11),显示在成岩过程中可能存在三期不同温度的流体,且后两期均一温度明显较高,超过正常地温梯度下的埋藏温度,指示可能受到局部高温条件或特殊热事件的影响。结合区域构造背景,早二叠世茅口晚期至晚二叠世早期峨眉山玄武岩强烈喷发[8,23],因此,这种局部高温条件可能与峨眉山玄武岩的喷发活动密切相关。

    井号 深度/m 测点 温度/℃
    磨溪108 4 673.39 测点1 100
    磨溪108 4 673.39 测点2 98.3
    磨溪108 4 673.39 测点3 97
    磨溪108 4 673.39 测点4 99
    磨溪108 4 673.39 测点5 105
    磨溪108 4 673.39 测点6 116
    磨溪108 4 673.39 测点7 158
    磨溪108 4 673.39 测点8 175
    磨溪108 4 673.39 测点9 168
    磨溪108 4 673.39 测点10 174
    磨溪108 4 678.74 测点1 150
    磨溪108 4 678.74 测点2 160
    磨溪108 4 678.74 测点3 162
    磨溪108 4 678.74 测点4 143
    磨溪108 4 678.74 测点5 167
    磨溪108 4 678.74 测点6 155
    磨溪108 4 678.74 测点7 139
    磨溪108 4 678.74 测点8 141
    磨溪108 4 678.74 测点9 180
    磨溪108 4 678.74 测点10 125

    Table 3.  Homogenization temperature of inclusions in calcite veins from Qixia Formation at well MX108

    Figure 11.  Homogenization temperature distribution of calcite veins in core samples from Qixia Formation in well MX108

  • 川中磨溪—高石梯地区栖霞组滩相白云岩的发育与颗粒滩类型及构造事件等密切相关。总体而言,研究区栖二段白云岩纵向上厚度变化大,且横向不连续(图12)。栖一段顶部存在两层厚度较稳定的白云岩,主要为细晶、细—中晶白云岩,纵向有一定厚度,横向连续性好。横向连续的白云岩发育层段位于高位体系域的顶部,沉积微相与砂屑滩、生屑滩相对应。由此可见,成层性较好的白云岩与颗粒滩的发育密切相关,其分布受沉积相的控制。

    Figure 12.  Dolomite thickness profile for well GS001⁃X45-GS128 in Gaoshiti area, Qixia Formation

    同时,研究区存在鞍形白云石和萤石等典型热液矿物,局部发育的连续性较差的白云岩,其分布可能受构造、热液的控制。断裂活动是形成热液白云岩的关键,以断裂为通道的热流体可以与盆地中的灰岩发生反应,为其提供成岩流体及成岩所需的能量[35]。研究区断裂主要表现为高角度小断距,以走滑断裂为主,这些断裂一方面对四川盆地峨眉山玄武岩岩浆喷涌提供了快速通道,使得断裂带及周缘地区的岩浆活动相对增加,另一方面促进了热液流体的运移,为白云岩化提供了通道[36]

  • 基于前人资料,研究区富Mg2+流体的供应可能有以下来源[9,35]:1)富含高镁方解石质的生物(镜下见棘皮类)在埋藏成岩过程中可以析出Mg2+;2)残留地层水中可能含有较多的Mg2+;3)峨眉山玄武岩喷发有可能增加与火山岩体有连通性的断裂附近地层水中的Mg2+浓度。结合当时峨眉山玄武岩喷发的构造背景[37],推测玄武岩喷发所形成的上扬地台整体的热异常为白云岩化提供了能量与温度,地层中的残余海水为白云岩化作用提供Mg2+,富镁的流体在压力和热对流的双重影响下进行迁移,促进白云岩化流体的运移。

    与此同时,地球化学数据显示埋藏白云石化过程可能还受到局部高温的影响。由于峨眉山地幔柱的活动,一系列基底断裂被重新活化,尤其是贯穿四川盆地中部北东向基底深大断裂带发育,在紧邻磨溪108井发现有多条根部断至基底的深大走滑断层[23,38]。深部富镁流体沿深大断裂进入栖霞组地层时优先选择作用于孔隙性较好的滩相颗粒灰岩,产生热液白云石化。

  • 磨溪—高石梯地区栖霞组沉积环境为碳酸盐岩开阔台地,未见暴露环境[4]。同时,研究区白云岩中缺乏蒸发环境标志,因此其白云岩化流体不能用蒸发泵作用或渗透回流白云岩化来解释。另外,地球化学证据显示白云岩未受大气淡水的影响,排除混合水白云岩化模式。根据前述白云岩的岩石学和地球化学特征,结合白云岩化过程中不同的控制因素,研究区细晶、细—中晶白云岩、灰质云岩的白云石化流体为海水来源,从灰岩到白云岩Sr含量明显减少,且Mn含量有所增加,说明灰岩经过一定的成岩作用被交代形成白云岩,是埋藏条件下地层中富Mg2+的流体交代孔隙型颗粒灰岩而成,为埋藏成因白云岩化。鞍状白云岩是由深源热液流体上涌提供能量,由海水提供镁离子来发生白云石化作用。

    基于研究区不同类型白云岩的成因特征,并结合区内中二叠统的地质背景和断裂构造发育特征,可以将川中磨溪—高石梯地区白云岩成因概括为以埋藏云化为主,局部地区鞍形白云石的形成遭受了后期不同程度的热液改造作用(图13)。栖霞组早期沉积的孔隙度较高的生物碎屑颗粒灰岩为埋藏期白云岩化提供了物质基础和流体渗流的通道,白云石化流体主要来自埋藏地层中保存的二叠纪海水,并且是灰岩经过一段时间的成岩作用形成。另外,在基底断裂发育部位,深源热液在峨眉地裂运动中沿高角度裂缝上涌并充填在裂缝与溶洞缝隙之间,形成热液白云石化。

    Figure 13.  Genetic model of dolomitization in the study area

  • 通过系统分析川中磨溪—高石梯地区栖霞组滩相不同类型白云岩的岩石学和地球化学特征,并结合颗粒滩类型、构造背景等特征,总结研究区滩相中差异白云石化机理,得出以下认识。

    (1) 磨溪—高石梯地区栖霞组白云岩中白云石以细晶为主,中晶和粗晶次之,存在部分云化不彻底的灰质云岩以及热液成因的鞍状白云石。白云石晶形多为半自形—自形,部分具有明显的残余颗粒结构,表明原始岩性为颗粒灰岩。

    (2) 细晶、细—中晶白云岩、灰质云岩的阴极发光整体较暗,呈暗红色至红色,白云石晶体边缘呈斑驳状亮红色。白云岩的稀土元素配分模式、87Sr/86Sr比值、δ 13C值均表明白云石化流体为海水来源,从灰岩到白云岩Sr含量明显减少且Mn含量有所增加,说明灰岩经过一定的成岩作用被交代形成白云岩,该类白云岩为埋藏条件下地层中富Mg2+的流体交代孔隙型颗粒灰岩而成。

    (3) 中—粗晶白云岩的阴极发光呈红色,具明显环带特征,且具高的Mn含量、低Sr/Ba比值及明显铕的正异常,87Sr/86Sr比值高于同期海水值,δ 18O值在-8.06‰~-8.52‰,为颗粒灰岩在埋藏期受持续、充足的云化流体供给而成。较高的包裹体均一温度和δ 18O值偏负均指示埋藏白云岩化作用过程还受到局部高温的影响,局部地区鞍形白云石的形成遭受了后期不同程度的热液改造作用。

Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return