Advanced Search
Volume 39 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

LAN HaoXiang, FU MeiYan, DENG HuCheng, LEI Tao, WU Dong, XU Wang, LI YiLin. Reservoir Types and Genesis of the Majiagou Formation Daniudi Gas Field, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1609-1621. doi: 10.14027/j.issn.1000-0550.2021.121
Citation: LAN HaoXiang, FU MeiYan, DENG HuCheng, LEI Tao, WU Dong, XU Wang, LI YiLin. Reservoir Types and Genesis of the Majiagou Formation Daniudi Gas Field, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1609-1621. doi: 10.14027/j.issn.1000-0550.2021.121

Reservoir Types and Genesis of the Majiagou Formation Daniudi Gas Field, Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.121
Funds:

Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) PLC2020023

  • Received Date: 2021-06-16
  • Rev Recd Date: 2021-08-31
  • Publish Date: 2021-12-10
  • Oil and gas exploration of the Majiagou Formation in the Daniudi area, Ordos Basin, continues to make breakthroughs. Practice has shown that the whole Fifth member of the Majiagou Formation (Ma5) contains gas, but its multiplicity of reservoir types and complex genetic backgrounds have not been conducive to classification prediction. To systematically summarize the reservoir genetic types in this study, the reservoir space types and main influences on reservoir development were investigated by core observation, thin section identification, cathodoluminescence thin section observation, whole-rock X-ray diffraction analysis and carbon and oxygen isotope analysis. These demonstrate that, in the study area, the Ma5 reservoirs contain intercrystal pores, intercrystal dissolution pores, microcracks, residual intergrain pores and intragrain dissolution pores. The reservoir developed in a confined evaporative platform as a result of seepage-reflux dolomitization. Epigenetic karstification had no obvious influence on the reservoir in the Ma55 submember. Genetic analysis in the study area suggests four types of reservoir: gypsum-dissolved, weakly re-formed fractured dolomite, powder-crystal dolomite and syngenetic dissolution granular reservoirs, with gypsum-dissolved reservoirs and powder-crystal dolomite reservoirs being the main types. Gypsum-dissolved reservoirs are related to the salinity of the sedimentary environment and karstification during the supergene period, and contain mainly gypsum mold pores. Powder-crystal dolomite reservoirs are the result of seepage-reflux dolomitization during the period of sea-level decline, and the reservoir space consists of intercrystal pores. This summary is significant as a guideline for subsequent high-quality reservoir predictions in the Ma5 member in the Ordos Basin.
  • [1] 王雷,史基安,王琪,等. 鄂尔多斯盆地西南缘奥陶系碳酸盐岩储层主控因素分析[J]. 油气地质与采收率,2005,12(4):10-13.

    Wang Lei, Shi Ji’an, Wang Qi, et al. Analyses on main controlling factors of carbonate reservoirs of Ordovician system in the southwest margin of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2005, 12(4): 10-13.
    [2] 何治亮,魏修成,钱一雄,等. 海相碳酸盐岩优质储层形成机理与分布预测[J]. 石油与天然气地质,2011,32(4):489-498.

    He Zhiliang, Wei Xiucheng, Qian Yixiong, et al. Forming mechanism and distribution prediction of quality marine carbonate reservoirs[J]. Oil & Gas Geology, 2011, 32(4): 489-498.
    [3] 李凤杰,杜凌春,赵俊兴,等. 鄂尔多斯盆地苏东地区马家沟组五段5亚段白云岩成因[J]. 石油学报,2016,37(3):328-338.

    Li Fengjie, Du Lingchun, Zhao Junxing, et al. Dolomite genesis in member Ma55 of Majiagou Formation, Sudong area, Ordos Basin[J]. Acta Petrolei Sinica, 2016, 37(3): 328-338.
    [4] 宋磊,宁正福,丁冠阳. 鄂尔多斯盆地苏东地区下古生界马五5亚段白云岩成因及特征[J]. 油气地质与采收率,2017,24(5):34-39.

    Song Lei, Ning Zhengfu, Ding Guanyang. Genesis and characteristics of Lower Palaozoic dolomite of submember Ma55 in Majiagou Formation, Sudong region in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5): 34-39.
    [5] 周进高,邓红婴,郑兴平. 鄂尔多斯盆地马家沟组储集层特征及其预测方法[J]. 石油勘探与开发,2003,30(6):72-74.

    Zhou Jingao, Deng Hongying, Zheng Xingping. Reservoir types and prediction of Majiagou Formation in the Ordos Basin[J]. Petroleum Exploration and Development, 2003, 30(6): 72-74.
    [6] 侯方浩,方少仙,董兆雄,等. 鄂尔多斯盆地中奥陶统马家沟组沉积环境与岩相发育特征[J]. 沉积学报,2003,21(1):106-112.

    Hou Fanghao, Fang Shaoxian, Dong Zhaoxiong, et al. The developmental characters of sedimentary environments and lithofacies of Middle Ordovician Majiagou Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(1): 106-112.
    [7] 王琪,许勇,刘新社,等. 岩溶背景下的优质天然气储层形成机理及主控因素:以鄂尔多斯盆地奥陶系马家沟组马五41储层为例[J]. 天然气地球科学,2016,27(12):2103-2114.

    Wang Qi, Xu Yong, Liu Xinshe, et al. Forming mechanism and main controlling factors on the high-quality gas reservoirs restricted by paleokarst background: A case from Ordovician M541 carbonate, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(12): 2103-2114.
    [8] 刘占良,石万里,柳洁,等. 鄂尔多斯盆地乌审旗东区马五1-4亚段碳酸盐岩储层孔隙特征与成因[J]. 西北大学学报(自然科学版),2016,46(1):94-104.

    Liu Zhanliang, Shi Wanli, Liu Jie, et al. The characteristics and genetisises of porosity carbonate reservoir from Ma51-4 submember, eastern Wushenqi in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(1): 94-104.
    [9] 贺训云,寿建峰,沈安江,等. 白云岩地球化学特征及成因:以鄂尔多斯盆地靖西马五段中组合为例[J]. 石油勘探与开发,2014,41(3):375-384.

    He Xunyun, Shou Jianfeng, Shen Anjiang, et al. Geochemical characteristics and origin of dolomite: A case study from the middle assemblage of Majiagou Formation member 5 of the west of Jingbian gas field, Ordos Basin, North China[J]. Petroleum Exploration and Development, 2014, 41(3): 375-384.
    [10] 杨西燕,包洪平,任军峰,等. 鄂尔多斯盆地马家沟组马五5亚段白云岩类型及稳定同位素特征[J]. 天然气地球科学,2015,26(4):650-656.

    Yang Xiyan, Bao Hongping, Ren Junfeng, et al. Types of dolomites and characteristics of stable isotope from the Ma 55 sub-member of Ordovician Majiagou Formation in Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(4): 650-656.
    [11] 白晓亮,张哨楠,丁晓琪,等. 鄂尔多斯盆地大牛地奥陶系马五2段储层成岩相[J]. 地质科技情报,2014,33(5):25-33.

    Bai Xiaoliang, Zhang Shaonan, Ding Xiaoqi, et al. Reservoir diagenetic facies of Ma52 submember in Ordovician in Daniudi area, Ordos Basin, western China[J]. Geological Science and Technology Information, 2014, 33(5): 25-33.
    [12] 郭彦如,赵振宇,付金华,等. 鄂尔多斯盆地奥陶纪层序岩相古地理[J]. 石油学报,2012,33(增刊2):95-109.

    Guo Yanru, Zhao Zhenyu, Fu Jinhua, et al. Sequence lithofacies paleogeography of the Ordovician in Ordos Basin, China[J]. Acta Petrolei Sinica, 2012, 33(Suppl.2): 95-109.
    [13] 黄正良,武春英,马占荣,等. 鄂尔多斯盆地中东部奥陶系马家沟组沉积层序及其对储层发育的控制作用[J]. 中国石油勘探,2015,20(5):20-29.

    Huang Zhengliang, Wu Chunying, Ma Zhanrong, et al. Sedimentary sequence of Ordovician Majiagou Formation in central and eastern part of Ordos Basin and its control over reservoir development[J]. China Petroleum Exploration, 2015, 20(5): 20-29.
    [14] 于洲,丁振纯,孙六一,等. 鄂尔多斯盆地中东部奥陶系马五4亚段沉积演化及岩相古地理[J]. 古地理学报,2015,17(6):787-796.

    Yu Zhou, Ding Zhenchun, Sun Liuyi, et al. Sedimentary evolution and lithofacies palaeogeography of the 4th sub-member of member 5 of Majiagou Formation in Ordovician of central and eastern Ordos Basin[J]. Journal of Palaeogeography, 2015, 17(6): 787-796.
    [15] 包洪平,杨承运. 鄂尔多斯东部奥陶系马家沟组微相分析[J]. 古地理学报,2000,2(1):31-42.

    Bao Hongping, Yang Chengyun. Study on microfacies of Majiagou Formation, Lower Ordovician, eastern Ordos, North China[J]. Journal of Palaeogeography, 2000, 2(1): 31-42.
    [16] 雷涛,邓虎成,吴冬,等. 鄂尔多斯盆地大牛地气田奥陶系马家沟组中下组合沉积模式[J]. 古地理学报,2020,22(3):523-538.

    Lei Tao, Deng Hucheng, Wu Dong, et al. Depositional model of the Lower-Middle Ordovician Majiagou Formation in Daniudi gas field, Ordos Basin[J]. Journal of Palaeogeography, 2020, 22(3): 523-538.
    [17] 包洪平,杨帆,蔡郑红,等. 鄂尔多斯盆地奥陶系白云岩成因及白云岩储层发育特征[J]. 天然气工业,2017,37(1):32-45.

    Bao Hongping, Yang Fan, Cai Zhenghong, et al. Origin and reservoir characteristics of Ordovician dolostones in the Ordos Basin[J]. Natural Gas Industry, 2017, 37(1): 32-45.
    [18] 杨西燕. 鄂尔多斯盆地奥陶系马五5亚段白云岩成因及储层主控因素研究[D]. 成都:成都理工大学,2018.

    Yang Xiyan. Origin of dolomite and controlling factor of dolomite reservoir in Ma55 sub-member of Ordovician Majiagou Formation in Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2018.
    [19] 何江,方少仙,侯方浩,等. 鄂尔多斯盆地中部气田中奥陶统马家沟组岩溶型储层特征[J]. 石油与天然气地质,2009,30(3):350-356.

    He Jiang, Fang Shaoxian, Hou Fanghao, et al. Characteristics of karst reservoirs in the Middle Ordovician Majiagou Formation of gas fields in the central Ordos Basin[J]. Oil & Gas Geology, 2009, 30(3): 350-356.
    [20] 杨华,王宝清,孙六一,等. 鄂尔多斯盆地古隆起周边地区奥陶系马家沟组储层影响因素[J]. 岩性油气藏,2013,25(3):9-16,35.

    Yang Hua, Wang Baoqing, Sun Liuyi, et al. Influencing factors of reservoirs for Ordovician Majiagou Formation in the surrounding area of paleo-uplift in Ordos Basin[J]. Lithologic Reservoirs, 2013, 25(3): 9-16, 35.
    [21] 方继瑶,陈洪德,史云鹤,等. 鄂尔多斯盆地宜川—黄龙地区马家沟组古岩溶储层特征及形成机理[J]. 地球科学与环境学报,2019,41(1):83-95.

    Fang Jiyao, Chen Hongde, Shi Yunhe, et al. Characteristics and forming mechanism of palaeokarst reservoir of Majiagou Formation in Yichuan-Huanglong area of Ordos Basin, China[J]. Journal of Earth Sciences and Environment, 2019, 41(1): 83-95.
    [22] 刘存革,李国蓉,张一伟,等. 锶同位素在古岩溶研究中的应用:以塔河油田奥陶系为例[J]. 地质学报,2007,81(10):1398-1406.

    Liu Cunge, Li Guorong, Zhang Yiwei, et al. Application of strontium isotope to the study of paleokarst: An case from Ordovician in the Tahe oilfield, Tarim Basin[J]. Acta Geologica Sinica, 2007, 81(10): 1398-1406.
    [23] 何江,沈昭国,方少仙,等. 鄂尔多斯盆地中部前石炭纪岩溶古地貌恢复[J]. 海相油气地质,2007,12(2):8-16.

    He Jiang, Shen Zhaoguo, Fang Shaoxian, et al. Restoration of pre-Carboniferous palaeokarst landform in central Ordos Basin[J]. Marine Origin Petroleum Geology, 2007, 12(2): 8-16.
    [24] 黄正良,刘燕,武春英,等. 鄂尔多斯盆地奥陶系马家沟组五段中组合中下段成藏特征[J]. 海相油气地质,2014,19(3):57-65.

    Huang Zhengliang, Liu Yan, Wu Chunying, et al. Characteristics of hydrocarbon accumulation in the middle and lower sections of middle assemblages of Lower Ordovician Majiagou member-5, Ordos Basin[J]. Marine Origin Petroleum Geology, 2014, 19(3): 57-65.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)  / Tables(2)

Article Metrics

Article views(455) PDF downloads(118) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-06-16
  • Revised:  2021-08-31
  • Published:  2021-12-10

Reservoir Types and Genesis of the Majiagou Formation Daniudi Gas Field, Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.121
Funds:

Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology) PLC2020023

Abstract: Oil and gas exploration of the Majiagou Formation in the Daniudi area, Ordos Basin, continues to make breakthroughs. Practice has shown that the whole Fifth member of the Majiagou Formation (Ma5) contains gas, but its multiplicity of reservoir types and complex genetic backgrounds have not been conducive to classification prediction. To systematically summarize the reservoir genetic types in this study, the reservoir space types and main influences on reservoir development were investigated by core observation, thin section identification, cathodoluminescence thin section observation, whole-rock X-ray diffraction analysis and carbon and oxygen isotope analysis. These demonstrate that, in the study area, the Ma5 reservoirs contain intercrystal pores, intercrystal dissolution pores, microcracks, residual intergrain pores and intragrain dissolution pores. The reservoir developed in a confined evaporative platform as a result of seepage-reflux dolomitization. Epigenetic karstification had no obvious influence on the reservoir in the Ma55 submember. Genetic analysis in the study area suggests four types of reservoir: gypsum-dissolved, weakly re-formed fractured dolomite, powder-crystal dolomite and syngenetic dissolution granular reservoirs, with gypsum-dissolved reservoirs and powder-crystal dolomite reservoirs being the main types. Gypsum-dissolved reservoirs are related to the salinity of the sedimentary environment and karstification during the supergene period, and contain mainly gypsum mold pores. Powder-crystal dolomite reservoirs are the result of seepage-reflux dolomitization during the period of sea-level decline, and the reservoir space consists of intercrystal pores. This summary is significant as a guideline for subsequent high-quality reservoir predictions in the Ma5 member in the Ordos Basin.

LAN HaoXiang, FU MeiYan, DENG HuCheng, LEI Tao, WU Dong, XU Wang, LI YiLin. Reservoir Types and Genesis of the Majiagou Formation Daniudi Gas Field, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1609-1621. doi: 10.14027/j.issn.1000-0550.2021.121
Citation: LAN HaoXiang, FU MeiYan, DENG HuCheng, LEI Tao, WU Dong, XU Wang, LI YiLin. Reservoir Types and Genesis of the Majiagou Formation Daniudi Gas Field, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1609-1621. doi: 10.14027/j.issn.1000-0550.2021.121
  • 碳酸盐岩储层成因研究是储层分类评价的基础,包含沉积、成岩作用和破裂等地质因素及其综合作用等[1-2]。21世纪以来,前人也做了一系列有关白云岩储层成因的研究,研究多集中在白云岩化[3-4]、沉积环境及沉积相[5-6]、岩溶作用[7-8]等方面,同时也通过同位素研究[9-10]及成岩相分析[11]对白云岩储层成因进行分析。本次研究的鄂尔多斯盆地大牛地地区奥陶系马家沟组发育碳酸盐岩和蒸发岩互层的地层[12-14],发育晶粒白云岩、颗粒白云岩以及含膏云岩等多种储集岩。研究区位于盆地东北部,马五段是该地区主要的天然气产层,该区普遍缺失马五1-3亚段,主要的开发层系为马五5亚段白云岩,获得了高产气量(近2.4×104 m3/d)。近年来,马五6-10亚段也显示出良好的开发前景。笔者结合研究区地质背景,利用岩心分析、薄片鉴定、阴极发光薄片观察、X射线衍射分析、碳氧同位素测定等方法分析马五5至马一段的储集空间类型及其储层发育的控制因素,探讨储层的形成原因,建立相应的成因模式。

  • 大牛地气田坐落于陕西榆林和内蒙古鄂尔多斯市的交界区域,处在鄂尔多斯盆地东北部,其面积近2 000 km2。在鄂尔多斯盆地构造分区中,大牛地气田属陕北斜坡北部(图1)。鄂尔多斯盆地奥陶系马家沟组是在一套广阔的碳酸盐岩内陆棚的蒸发岩沉积,发育碳酸盐岩为主,夹蒸发岩的地层。纵向上马家沟组可划分为六段,分别为马一段至马六段,其中马五段可以划分为十个亚段(图2)。马家沟组沉积期发生过多次海进和海退,马一段、马三段和马五段时期为海退沉积,马二段、马四段和马六段时期为海进沉积,其中马四段沉积时海侵范围最大。马家沟组沉积相可划分为6个微相系列,包括开阔海、滩相、生物礁(丘)、隐藻席、局限—强烈蒸发相、次生晶粒结构微相[15]。整个研究区马家沟组的岩相以泥晶白云岩、泥—粉晶白云岩、粉晶白云岩和含膏云岩为主,局部分布少量颗粒白云岩和鲕粒灰岩。

    Figure 1.  Tectonic unit and well location

    Figure 2.  Stratigraphic development of Majiagou Formation

  • 岩心及薄片资料分析发现,大牛地气田马家沟组以白云岩为主,灰岩次之,泥岩、膏岩、盐岩在不同层段局部发育(图3)。这5种主要岩性相互组合,形成5大类主要岩相类型,包含15类岩相,包括泥晶白云岩、泥—粉晶白云岩、粉晶白云岩、颗粒白云岩、颗粒灰岩、泥晶灰岩、膏岩、盐岩、白云质灰岩、灰质白云岩、含膏/膏质白云岩、含盐白云岩、泥质白云岩、含膏灰岩和泥质灰岩,部分岩性孔隙并不发育,可作为储层的岩相主要为泥—粉晶白云岩、粉晶白云岩、颗粒白云岩/灰岩和含膏/膏质白云岩。

    Figure 3.  Main lithofacies in Majiagou Formation, Daniudi area

  • 通过显微观察和定量统计,马五5亚段至马一段的储集空间包括晶间孔,晶间溶孔,膏模孔、粒间孔,粒内溶孔和微裂缝。晶间孔主要发育在泥—粉晶白云岩中(图4a),主要分布在马家沟组马五5亚段(面孔率3%~4%,最高可达5%),马二段储层仅发育少量晶间孔。在角砾状白云岩中晶间溶孔较为发育(图4b),主要分布在马五6亚段和马五7亚段。颗粒灰岩中,可见粒间孔及粒内溶孔(图4c),分布在马三段。膏溶孔(图4d)发育在含膏白云岩中,部分被方解石充填,有效的孔隙空间有限,主要分布在马五6亚段。马一段几乎不发育有效的储集空间。

    Figure 4.  Reservoir rock types and main pore spaces of Majiagou Formation in the Daniudi area

    裂缝的分布较广泛,但方解石和泥质充填程度高(图4e),裂缝多为无效缝。相对而言,研究区马家沟组储层的有效裂缝为微裂缝(图4f)。马家沟组各层的微裂缝普遍发育,面孔率介于0.5%~2%。马二段、马三段、马四段的储集空间主要为微裂缝。

  • 含膏/膏质白云岩形成膏溶型储层,储集空间为溶孔—裂缝,沉积在膏云坪,受表生岩溶作用控制(图5)。膏溶型储层主要分布在马五6和马五7亚段。根据原始石膏含量,该类型储层可分为两个亚类,即膏溶孔保留型和角砾化粒间孔型。

    Figure 5.  Genetic model of gypsum⁃dissolved reservoir

    膏溶孔保留型储层由含膏泥—粉晶白云岩经表生岩溶作用后,石膏溶蚀形成膏溶孔。经表生期胶结后部分膏溶孔被充填,晚期胶结使膏溶孔进一步减少,最终形成膏溶孔保留型储层,膏溶孔为主要储集空间。该亚类主要受表生期溶蚀控制,膏溶孔局部发育,部分被充填。角砾化粒间孔型则是膏质白云岩在表生期发生顺裂缝溶蚀,石膏强烈溶蚀后发生垮塌形成裂纹镶嵌岩溶角砾岩,经历多期方解石胶结,发育砾间溶缝。这类储层的自然伽马值分布在12~60 API,补偿密度分布在2.6~2.9 g/cm3,声波时差为160~190 μs/m。

  • 泥—粉晶白云岩发育弱改造破裂型云岩储层,储集空间为晶间孔—裂缝,沉积在泥云坪微相,受准同生白云石化及破裂作用控制(图6)。这类白云岩储层的成岩变化较弱,分布层位较多。根据成岩改造的程度,泥—粉晶白云岩储层可分为原生型、破裂型、充填型三个亚类。原生型储层由泥—粉晶白云岩经浅埋藏后,未受到破裂作用直至中—深埋藏形成,有效孔隙空间为晶间孔;破裂型储层是泥—粉晶白云岩经历浅埋藏后,晚期发育构造裂缝,有效孔隙空间为晶间孔和裂缝;充填型储层是泥—粉晶白云岩在表生期受到岩溶及破裂作用,产生风化裂缝,在表生期和埋藏期晶间孔和裂缝被部分充填,面孔率最低。这类储层的自然伽马值分布在22~43 API,补偿密度值分布在2.5~3.0 g/cm3,声波时差为141~190 μs/m。

    Figure 6.  Genetic model of powder⁃crystal dolomite reservoir and weakly reformed fractured dolomite reservoir

  • 颗粒灰岩和颗粒白云岩可形成同生溶蚀颗粒型储层,储集空间为晶间孔、粒间孔和粒内溶孔,沉积在颗粒滩(图7)。这类储层分布非常局限,仅在研究区西南部的马三和马五7亚段中,厚度极薄。原始颗粒滩沉积物在浅埋藏期经历白云石化作用形成颗粒白云岩,发育粒间孔和晶间孔。未经历白云石化的颗粒滩沉积物在成岩早期受到海底胶结作用和同生溶蚀作用,从而发育粒间孔和粒内溶孔。这类储层的自然伽马分布在15~30 API,补偿密度为2.7~2.85 g/cm3,声波时差为160~170 μs/m。

    Figure 7.  Genetic model of syngenetic dissolution granular reservoir

  • 粉晶白云岩储层是研究区马五5亚段的储层类型,孔隙空间为晶间孔和少量微裂缝,沉积相为藻云坪,受到白云石化作用控制(图6)。根据成岩演化的差异,可分为原生型、破裂型和充填型三个亚类。原生型储层是由粉晶白云岩经浅埋藏后直接进入中—深埋藏阶段进而形成,储集空间为晶间孔;破裂型储层是粉晶白云岩经历浅埋藏阶段后在燕山—喜山期受到破裂作用而发育较多构造裂缝而形成,储集空间为晶间孔和裂缝;充填型储层由粉晶白云岩在经历表生岩溶作用后形成,发育溶蚀孔洞,但被方解石全充填,残留部分晶间孔。这类储层的自然伽马为22~43 API,补偿密度分布在2.5~3.0 g/cm3,声波时差为141~190 μs/m。

  • 沉积相控制沉积地层岩性,对后期储层的发育和分布存在明显地影响。在大牛地地区,马家沟组沉积在碳酸盐岩台地,亚相为蒸发台地、开阔台地和局限台地,微相包括藻云坪、灰坪、膏湖、盐湖、泥灰坪、泥云坪、膏云坪和台内滩[16]。马一段至马三段沉积期,研究区处于蒸发台地;马四段沉积期海侵达到最大,研究区沉积相演化为开阔台地。马五段沉积期海平面再次下降,形成局限环境,发育局限台地至蒸发台地。蒸发台地主要发育膏溶型储层,局限台地泥云坪发育弱改造破裂型白云岩储层,藻云坪发育粉晶白云岩储层,在研究区西南部马三段和马五7亚段还存在零星的滩相,发育同生溶蚀颗粒型储层。

  • 白云石化作用对储层晶间孔的发育具有显著影响,不同白云石化控制下的白云岩孔隙发育程度存在差异,研究区存在高盐度环境的蒸发泵白云石化、中等盐度的渗透回流白云石化和埋藏白云石化作用。高盐度环境下蒸发泵机理形成的泥晶白云岩(图8a,b),有序度相对较低(约0.65)(表1),晶间孔几乎不发育,储集性差。渗透回流白云石化控制的粉晶白云岩晶间孔发育,储集性能较好,白云石有序度相对更高(0.73~0.91)(表1),在阴极发光下粉晶白云岩呈暗红色(图8c,d)。通过对两种晶粒白云岩的C、O同位素特征对比(图9),发现白云石δ 13C值总体接近同时期的灰岩数值,而δ 18O值相比之下偏正,且泥晶白云岩整体偏正程度略高,表明其受蒸发环境影响流体盐度高[17-18];粉晶白云岩白云石化流体则为受一定蒸发环境影响,盐度稍增加的中盐度海水,认为属渗透回流白云石化。马四段的豹斑状灰质云岩中白云石阴极发光更亮,呈亮红色(图8e,f),具有雾心亮边结构,与马五5亚段白云石相比其δ 13C、δ 18O值(图10)表现出埋藏环境白云石化特征,在埋藏白云石化控制下的白云岩无有效储集空间,不构成有效储层。

    Figure 8.  Dolomite type and cathodoluminescence properties of Majiagou Formation in Daniudi area

    井号 深度/m 层位 岩性描述 白云石有序度
    D67 2 881.30 马五2 泥晶白云岩 0.65
    D67 2 877.60 马五2 泥晶白云岩 0.66
    D1-530 3 082.71 马五5 泥—粉晶白云岩 0.73
    D1-530 3 093.61 马五5 泥—粉晶白云岩 0.75
    D1-530 3 097.42 马五5 粉晶白云岩 0.91
    D1-530 3 101.42 马五5 粉晶白云岩 0.88
    PG27 2 983.96 马五5 粉晶白云岩 0.82
    PG27 2 987.35 马五5 粉晶白云岩 0.83
    D48 3 009.32 马五5 粉晶白云岩 0.79
    D48 3 013.00 马五5 粉晶白云岩 0.80

    Table 1.  Ordered degree of dolomite

    Figure 9.  C and O isotope distribution points of dolomite and limestone in the Ma5 member

    Figure 10.  Comparison of C and O isotopes between the M a 5 5 submember and the Ma4 dolomite

  • 研究区马家沟组储层发育受到表生岩溶、胶结和充填作用、破裂作用的影响。表生岩溶作用是鄂尔多斯盆地马家沟组储层发育的关键控制因素[19-21]。大牛地地区马家沟组马五段普遍遭受表生岩溶改造,但岩溶影响方式不同。根据全岩的锶同位素组成,马四段和马三段的锶同位素接近同期海水值(0.708 7~0.708 9)[22],马五2、马五3、马五5和马五6亚段的锶同位素值均偏高(表2),与表生期陆源放射性锶的加入有关,指示这套地层受到淡水影响。马五2亚段、马五3亚段和马五6亚段储层含石膏,在淡水溶蚀下形成膏溶孔,储层质量得到改善。而马五5亚段储层主要为泥晶灰岩、泥晶白云岩、粉晶白云岩,不含石膏或含极少的石膏,不发育膏溶孔。同时,淡水溶蚀形成的晶间溶孔和溶洞被淡水方解石全部充填(图11),现今的有效孔隙为晶间孔和微裂缝,因此表生岩溶作用对大牛地地区马五5亚段储层质量并无明显改善。

    井名 井深/m 层位 岩性 87Sr/86Sr
    D113 2 863.22 马五2 泥晶白云岩 0.709 5
    D67 2 877.60 马五2 泥晶白云岩 0.711 0
    D113 2 870.30 马五3 泥晶灰岩 0.709 3
    D67 2 881.30 马五3 泥晶白云岩 0.709 4
    D48 3 013.00 马五5 粉晶白云岩 0.709 1
    D48 3 026.35 马五5 泥晶灰岩 0.708 9
    PG27 2 979.52 马五5 粉晶白云岩 0.709 6
    D1-530 3 115.62 马五6 粉晶白云岩 0.710 0
    D1-530 3 106.75 马五6 泥—粉晶白云岩 0.710 4
    D123 3 488.72 马四 含云粒屑灰岩 0.708 8
    D123 3 589.28 马三 亮晶鲕粒灰岩 0.708 9

    Table 2.  Strontium isotope of Majiagou Formation in Daniudi area

    Figure 11.  Fillings of karst pores and fractures in Ma5 5 submember of Majiagou Formation, Daniudi area

  • 研究区马家沟组储层可识别出表生期和埋藏期胶结,对储层的发育起破坏作用。胶结类型主要为表生期粗晶至巨晶方解石胶结,阴极发光可见方解石环带(图12a,b),胶结充填程度高,并且分布广泛。埋藏期胶结物包括方解石和萤石等低温热液矿物。埋藏期的方解石胶结阴极发光微弱(图12c,d),萤石充填在早期未被全部充填的溶孔和裂缝中(图12e,f)。

    Figure 12.  Cementation types of Majiagou Formation, Daniudi area

  • 破裂作用对马家沟组储层发育也存在影响。奥陶系马家沟组沉积后在加里东期发生暴露[23-24],表生成岩阶段形成了大量风化淋滤裂缝,主要以垂直或近垂直的树枝状裂缝为主,充填程度高(图13a,b),有效缝约占8.99%。相比而言,构造裂缝的有效性较高,可达34.75%。构造缝(图13c)以垂直裂缝和高角度斜交裂缝为主。根据成像测井的裂缝走向玫瑰花分布图(图13d)可知,裂缝走向与燕山期北西-南东向的挤压应力场相匹配。因此,认为燕山—喜山期是裂缝形成的最主要时期,形成的裂缝有效程度也较高。

    Figure 13.  Fracture morphology, strike and distribution of the Ma5member

  • (1) 大牛地地区马家沟组储层成因存在四种类型,包括以膏溶孔为主的膏溶型储层、以裂缝为主的弱改造破裂型云岩储层、以粒间孔和粒内溶孔为主的同生溶蚀颗粒型储层和以晶间孔及晶间溶孔为主的粉晶白云岩储层,四类储层类型对应的岩相为含膏白云岩、泥—粉晶白云岩、颗粒白云岩/灰岩和粉晶白云岩。

    (2) 储层的发育受沉积相的控制,蒸发台地主要发育膏溶型储层,局限台地泥云坪发育弱改造破裂型云岩储层,藻云坪发育粉晶白云岩储层。研究区西南部马三段和马五7亚段存在零星的滩相,发育同生溶蚀颗粒型储层。

    (3) 控制储层发育的成岩作用包括白云石化作用、溶蚀作用、胶结作用和破裂作用。渗透回流白云石化形成的粉晶白云岩储集性能较好;溶蚀作用主要发生在表生岩溶阶段,对马家沟组大部分层段的储层发育具有明显的改善;胶结作用呈现出多期次的特征,自表生期—埋藏期均存在胶结;燕山—喜山期构造裂缝对储集性贡献最大,加里东期风化淋滤裂缝有效性低。

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return