Advanced Search
Volume 41 Issue 3
Jun.  2023
Turn off MathJax
Article Contents

GUO AiPeng, MAO LongJiang, MO DuoWen, ZHANG XingGuo, ZOU ChunHui, LI Ye, WU YouJin. Geochemical Element Characteristics and Provenance Changes at Tongguanyao Site Section in Changsha[J]. Acta Sedimentologica Sinica, 2023, 41(3): 735-747. doi: 10.14027/j.issn.1000-0550.2021.128
Citation: GUO AiPeng, MAO LongJiang, MO DuoWen, ZHANG XingGuo, ZOU ChunHui, LI Ye, WU YouJin. Geochemical Element Characteristics and Provenance Changes at Tongguanyao Site Section in Changsha[J]. Acta Sedimentologica Sinica, 2023, 41(3): 735-747. doi: 10.14027/j.issn.1000-0550.2021.128

Geochemical Element Characteristics and Provenance Changes at Tongguanyao Site Section in Changsha

doi: 10.14027/j.issn.1000-0550.2021.128
Funds:

National Natural Science Foundation of China 41771218

National Natural Science Foundation of China 41271228

National Key Research and Development Project, No. 2020YFC15216 05 2020YFC1521605

National Social Science Major Project 19ZDA231

  • Received Date: 2020-07-28
  • Accepted Date: 2021-10-19
  • Rev Recd Date: 2021-09-12
  • Available Online: 2021-10-19
  • Publish Date: 2023-06-10
  • High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was applied to determine the geochemical element content in sediments from the Shizhuping (SZP) profile of the Tongguan kiln site in Changsha, Hunan province, China. The variation of geochemical content was analyzed to reveal environmental evolution and provenance change. The content varies significantly. The elements Ti, Cr, Co, V, Ni, etc. gradually increase at depths from 80 cm to peak at 230 cm, then decrease from 230 cm to 310 cm to the lowest value s; Pb, Zr and Mn show the opposite trend. Of these, Ti content is the highest (average 5 405.8 μg/g). The lowest is Mo, with an average of 0.9 μg/g. The order of the average content from higher to lower is Ti > Mn > Ba> Zr> Rb> Zn> Li> Cr> V> Pb >Sr > Cu> Y> Ni> Th> Cs> Co> Sc> Sn> Hf> Be> Mo. The SZP section has recorded the changes in the sedimentary environment over the past 1 300 years: loess sediment⁃SZP lake formation⁃flood plain sediment⁃SZP lake reformed⁃SZP terrace. Correspondingly, the provenance of the section has changed significantly. The source below 310 cm is dust accumulated in the most recent glacial period. The formation at 310⁃230 cm depths (1 288⁃1 094 a B.P.) contains a large number of ceramic tablets, and the sediments are mainly the waste products of mining and smelting of metal minerals in the calcination process of Tongguan kiln porcelain. From 230 cm to 80 cm (1 094⁃380 a B.P.), the lower sediment source is from the Xiangjiang River; the upper sediment is weathering erosion and water transport of sandstone in the middle-to-lower reaches. Above 80 cm (380 a B.P. to present) the sediments are related to human activity, comprising mainly an artificial soil cushion and weathering erosion accumulation around the slope.
  • [1] 牛彩香,雒昆利. 陕西蓝田段家坡黄土剖面地球化学元素特征及古气候效应分析[J]. 西北地质,2010,43(1):66-74.

    Niu Caixiang, Luo Kunli. Characteristics of geochemical element and paleoclimate effect-a case studying of Duanjiapo section during Late Neogene and Quaternary, in Lantian, Shaanxi[J]. Northwestern Geology, 2010, 43(1): 66-74.
    [2] 毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348.

    Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348.
    [3] Yan Y, Xia B, Lin G, et al. Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary[J]. Sedimentary Geology, 2007, 197(1/2): 127-140.
    [4] 高华中. 沂沭河流域7470~2550a BP气候变化的元素地球化学记录[J]. 地球与环境,2016,44(6):595-599.

    Gao Huazhong. Elemental geochemistry for climate change of Yishu River Basin during 7470-2550 a B.P.[J]. Earth and Environment, 2016, 44(6): 595-599.
    [5] Das B K, Al-Mikhlafi A S, Kaur P. Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting[J]. Journal of Asian Earth Sciences, 2006, 26(6): 649-668.
    [6] Jia X P, Wang H B, Xiao J H. Geochemical elements characteristics and sources of the riverbed sediment in the Yellow River’s desert channel[J]. Environmental Earth Sciences, 2011, 64(8): 2159-2173.
    [7] 刘平贵,范淑贤,李雪菊. 银川盆地第四纪地球化学元素特征及沉积环境[J]. 地质力学学报,2000, 6(4):43-50,94.

    Liu Pinggui, Fan Shuxian, Li Xueju. The geochemical element characteristics and paleosedimentary environment of the Quaternary deposits in Yinchuan Basin[J]. Journal of Geomechanics, 2000, 6(4): 43-50, 94.
    [8] 陶树,汤达祯,周传祎,等. 川东南—黔中及其周边地区下组合烃源岩元素地球化学特征及沉积环境意义[J]. 中国地质,2009,36(2):397-403.

    Tao Shu, Tang Dazhen, Zhou Chuanyi, et al. Element geochemical characteristics of the lower assemblage hydrocarbon source rocks in southeast Sichuan-central Guizhou (Chuandongnan-Qianzhong) region and its periphery areas and their implications to sedimentary environments[J]. Geology in China, 2009, 36(2): 397-403.
    [9] Wang H, Huang Q H, Bai X F, et al. Geochemical characteristics and depositional environment of trace elements and rare earth elements of sedimentary rocks of Middle-Upper Permian boundary in Xing-Meng area[M]//Lin J E. Proceedings of the international field exploration and development conference 2019. Singapore: Springer, 2020.
    [10] 张文翔,张虎才,雷国良,等. 柴达木贝壳堤剖面元素地球化学与环境演变[J]. 第四纪研究,2008,28(5):917-928.

    Zhang Wenxiang, Zhang Hucai, Lei Guoliang, et al. Elemental geochemistry and paleoenvironment evolution of shell bar section at Qarhan in the Qaidam Basin[J]. Quaternary Sciences, 2008, 28(5): 917-928.
    [11] 周笃珺,马海州,高东林,等. 青海湖南岸全新世黄土地球化学特征及气候环境意义[J]. 中国沙漠,2004,24(2):144-148.

    Zhou Dujun, Ma Haizhou, Gao Donglin, et al. Geochemical characteristics and climatic environmental significance of Holocene loess on south Qinghai Lake shore[J]. Journal of Desert Research, 2004, 24(2): 144-148.
    [12] Kraft R A. Reconstruction of Holocene and Early Eocene terrestrial environments using multiple stable isotope proxies[D]. Washington: The Johns Hopkins University, 2012.
    [13] Piper D Z, Ludington S, Duval J S, et al. Geochemistry of bed and suspended sediment in the Mississippi River system: Provenance versus weathering and winnowing[J]. Science of the Total Environment, 2006, 362(1/2/3): 179-204.
    [14] Zhang S, Dong W J, Zhang L C, et al. Geochemical characteristics of heavy metals in the Xiangjiang River, China[M]//Sly P G, Hart B T. Sediment/water interactions. Dordrecht: Springer, 1989: 253-262.
    [15] 吴雅霁,彭渤,杨霞,等. 湘江竹埠港段河床沉积物元素地球化学特征[J]. 地质调查与研究,2014,37(4):274-282.

    Wu Yaji, Peng Bo, Yang Xia, et al. Geochemical characteristics of elements in the sediments of Zhubugang Xiangjiang River[J]. Geological Survey and Research, 2014, 37(4): 274-282.
    [16] 徐婧喆. 湘江长沙段沉积物重金属污染地球化学分析[D]. 长沙:湖南师范大学,2012.

    Xu Jingzhe. Geochemical study on heavy metal contamination developed in bed sediments of the Xiangjiang River, Hunan province, China[D]. Changsha: Hunan Normal University, 2012.
    [17] 刘春早,黄益宗,雷鸣,等. 湘江流域土壤重金属污染及其生态环境风险评价[J]. 环境科学,2012,33(1):260-265.

    Liu Chunzao, Huang Yizong, Lei Ming, et al. Soil contamination and assessment of heavy metals of Xiangjiang River Basin[J]. Chinese Journal of Environmental Science, 2012, 33(1): 260-265.
    [18] Mao L J, Mo D W, Guo Y Y, et al. Multivariate analysis of heavy metals in surface sediments from lower reaches of the Xiangjiang River, southern China[J]. Environmental Earth Sciences, 2012, 69(3): 765-771.
    [19] 彭渤,唐晓燕,余昌训,等. 湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪[J]. 地质学报,2011,85(2):282-299.

    Peng Bo, Tang Xiaoyan, Yu Changxun, et al. Heavy metal contamination of inlet sediments of the Xiangjiang River and Pb isotopic geochemical implication[J]. Acta Geologica Sinica, 2011, 85(2): 282-299.
    [20] 长沙窖课题组. 长沙窑[M]. 北京:紫禁城出版社,1996:7-28.

    Project Team of Changsha cellar. Changsha Kiln[M]. Beijing: Forbidden City Press, 1996: 7-28.
    [21] 封昊阳. 湘东地区传统村落及民居空间分布与形态文化地理研究[D]. 广州:华南理工大学,2017.

    Feng Haoyang. The research of spatial distribution and form of traditional villages and houses in eastern Hunan basing on the cultural geography[D]. Guangzhou: South China University of Technology, 2017.
    [22] 廖小红,王维俊,宋平,等. 湘江流域径流特性分析[J]. 湖南水利水电,2019(02):46-48.

    Liao Xiaohong, Wang Weijun, Song Ping, et al. Analysis of runoff characteristics in Xiangjiang River Basin[J]. Hunan Hydro & Power, 2019(02): 46-48.
    [23] 高冠民,窦秀英. 湖南自然地理[M]. 长沙:湖南人民出版社,1981:179-180.

    Gao Guanmin, Dou Xiuying. Hunan physical geography[M]. Changsha: Hunan People's Press, 1981: 179-180.
    [24] 唐晓燕,彭渤,余昌训,等. 湘江沉积物重金属元素环境地球化学特征[J]. 云南地理环境研究,2008,20(3):26-32.

    Tang Xiaoyan, Peng Bo, Yu Changxun, et al. Environmental-geochemical characteristics of heavy metals in sediments from the Xiang River[J]. Yunnan Geographic Environment Research, 2008, 20 (3): 26-32.
    [25] 高剑峰,陆建军,赖鸣远,等. 岩石样品中微量元素的高分辨率等离子质谱分析[J]. 南京大学学报(自然科学),2003,39(6):844-850.

    Gao Jianfeng, Lu Jianjun, Lai Mingyuan, et al. Analysis of trace elements in rock samples using HR-ICPMS[J]. Journal of Nanjing University (Natural Science), 2003, 39 (6): 844-850.
    [26] Tan Z H, Mao L J, Han Y M, et al. Black carbon and charcoal records of fire and human land use over the past 1300 years at the Tongguan Kiln archaeological site, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 162-169.
    [27] 潘佑民. 湖南土壤背景值及研究方法[M]. 北京:中国环境科学出版社,1988:159-275.

    Pan Youmin. Soil background values and research methods in Hunan[M]. Beijing: China Environmental Science Press, 1988: 159-275.
    [28] 王晓丽. 河口沉积物采样代表性研究[D]. 北京:中国地质大学,2006.

    Wang Xiaoli. Research on representativeness of estuarine sediment sampling[D]. Beijing: China University of Geosciences, 2006.
    [29] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4):203-236.
    [30] 王建丰,雷天柱,张生银,等. 刘家峡水库表层沉积物微量元素地球化学特征[J]. 沉积与特提斯地质,2018,38(3):51-59.

    Wang Jianfeng, Lei Tianzhu, Zhang Shengyin, et al. Trace element geochemistry of the surface sediments in the Liujiaxia reservoir, Gansu[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(3): 51-59.
    [31] 刘良,张祖陆. 南四湖表层沉积物重金属的空间分布、来源及污染评价[J]. 水生态学杂志,2013,34(6):7-15.

    Liu Liang, Zhang Zulu. Spatial distribution, sources and pollution assesment of heavy metals in the surface sediments of Nansihu Lake[J]. Journal of Hydroecology, 2013, 34(6): 7-15.
    [32] 金秉福,林振宏,季福武. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展,2003,21(1):99-106.

    Jin Bingfu, Lin Zhenhong, Ji Fuwu. Interpretation of element geochemical records of marine sedimentary environment and provenance[J]. Advances in Marine Science, 2003, 21(1): 99-106.
    [33] 张虎才. 元素表生地球化学特征及理论基础[M]. 兰州:兰州大学出版社,1997:26-176.

    Zhang Hucai. Epigenetic geochemical characteristics and theoretical basis of elements[M]. Lanzhou: Lanzhou University Press, 1997: 26-176.
    [34] 张元培,黄春娟,孙卫国,等. 秭归地区闪长岩岩体风化壳微量元素地球化学特征[J]. 物探与化探,2012,36(5):755-759.

    Zhang Yuanpei, Huang Chunjuan, Sun Weiguo, et al. Geochemical characteristics of trace elements in the diorite weathered crust of Zigui area[J]. Geophysical and Geochemical Exploration, 2012, 36(5): 755-759.
    [35] 付胜云,唐分配,李大江,等. 湖南省铜矿成矿规律[J]. 有色金属(矿山部分),2015,67(6):36-43.

    Fu Shengyun, Tang Fenpei, Li Dajiang, et al. Metallogenic regularities of copper mines in Hunan province[J]. Nonferrous Metals (Mining Section), 2015, 67(6): 36-43.
    [36] 李振红,赵亚辉,周厚祥. 硫同位素地质特征及其在湖南省铜矿床成矿物质来源示踪中的应用[J]. 华南地质与矿产,2018,34(1):72-77.

    Li Zhenhong, Zhao Yahui, Zhou Houxiang. Sulfur isotopic characteristics of copper deposits in Hunan province[J]. Geology and Mineral Resources of South China, 2018, 34(1): 72-77.
    [37] 魏晓,文雪峰,杨瑞东. 贵州从江县大融砖厂新元古界浅变质岩现代风化壳剖面中微量元素分布特征与相关性分析[J]. 地球与环境,2010,38(3):304-313.

    Wei Xiao, Wen Xuefeng, Yang Ruidong. Trace element distribution characteristics and correlation analysis of modern weathering crust profile of Neoproterozoic epimetamorphic rocks in Darong, Congjiang county, Guizhou province [J]. Earth and Environment, 2010, 38(3): 304-313.
    [38] 陈卫锋,陈培荣,黄宏业,等. 湖南白马山岩体花岗岩及其包体的年代学和地球化学研究[J]. 中国科学(D辑):地球科学,2007,37(7):873-893.

    Chen Weifeng, Chen Peirong, Huang Hongye, et al. Chronological and geochemical studies of granite and enclave in Baimashan pluton, Hunan, South China[J]. Science China (Seri. D): Earth Sciences, 2007, 37(7): 873-893.
    [39] 邓宏文,钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科学技术出版社,1993:8-10.

    Deng Hongwen, Qian Kai. Sedimentary geochemistry and environmental analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993: 8-10.
    [40] 赵海权. 湖南省主要稀有稀土金属矿床特征研究[J]. 世界有色金属,2019(3):273-274.

    Zhao Haiquan. Study on the characteristics of the major rare earth metal deposits in Hunan province[J]. World Nonferrous Metals, 2019(3): 273-274.
    [41] 黄春长. 环境变迁[M]. 北京:科学出版社,1998:110.

    Huang Chunchang. Environmental change[M]. Beijing:Science Press,1998:110.
    [42] 杨达源. 晚更新世冰期最盛时长江中下游地区的古环境[J]. 地理学报,1986,41(4):302-310.

    Yang Dayuan. The paleoenvironment of the mid-lower regions of Changjiang in the full-glacial period of Late Pleistocene[J]. Journal of Geography, 1986, 41(4): 302-310.
    [43] 庄检平,贾玉连,马春梅,等. 末次冰期间冰阶晚期长江中游风尘堆积及环境意义[J]. 沉积学报,2007,25(3):424-428.

    Zhuang Jianping, Jia Yulian, Ma Chunmei, et al. Eolian deposits in the middle reaches of the Yangtze River during Late Interstadial of the Last Glacial (40-22 ka B.P.) and its environmental significance[J]. Acta Sedimentologica Sinica, 2007, 25(3): 424-428.
    [44] 于玲玲,贾玉连,陈晓玲, 等. 长江中游末次冰期风成堆积及其环境指示[J]. 华中师范大学学报(自然科学版),2010,44(1):158-162.

    Yu Lingling, Jia Yulian, Chen Xiaoling, et al. Aeolian deposits in the middle reaches of Changjiang River during the Last Glaciation and their environmental implication[J]. Journal of Central China Normal University (Natural Sciences), 2010, 44(1): 158-162.
    [45] 包浪,李海平. 第四纪末次间冰期—冰期的气候变化和驱动机制[J]. 城市地理,2017(18):108.

    Bao Lang, Li Haiping. Climate change and driving mechanism of the Last Interglacial Glaciation in Quaternary[J]. Urban Geography, 2017(18): 108.
    [46] 贾玉芳. 末次冰期以来鄱阳湖沙山沉积及其环境意义研究[D]. 济南:山东师范大学,2012.

    Jia Yufang. Research on sand hills and their environmental significance in Poyang Lake region since Last Glacial Period[D]. Ji’nan: Shandong Normal University, 2012.
    [47] 刘美观. 长沙窑纪年瓷研究[J]. 收藏,2010(2):56-58.

    Liu Meiguan. Research on chronological porcelain of Changsha Kiln[J]. Collection, 2010(2): 56-58.
    [48] 李偏,张茂恒,孔兴功,等. 近2000年来东亚夏季风石笋记录及与历史变迁的关系[J]. 海洋地质与第四纪地质,2010,30(4):206-213.

    Li Pian, Zhang Maoheng, Kong Xinggong, et al. A stalagmite-record of East Asian summer monsoon in the last 2000 years and its correlation with historical records[J]. Marine Geology & Quaternary Geology, 2010, 30 (4): 206-213.
    [49] 林亦秋. 长沙窑蓝釉与铜红釉器及宗教纹饰:黑石号沉船的发现[C] //2009年古陶瓷科学技术国际学术讨论会(ISAC'09)论文集. 北京:中国科学院上海硅酸盐研究所,2009.

    Lin Yiqiu. Changsha kiln blue glaze and copper red glaze ware and religious decoration: Discovery of the wreck of the black stone[C]//Proceedings of the 2009 international symposium on ancient ceramic science and technology. Beijing: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2009.
    [50] 廖政文. 湘江上游泥沙的产生和特性[J]. 湖南水利水电,2004(1):28-29.

    Liao Zhengwen. Sediment formation and characteristic in upstream of Xiangjiang River[J]. Hunan Hydro & Power, 2004(1): 28-29.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(5)

Article Metrics

Article views(82) PDF downloads(43) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-07-28
  • Revised:  2021-09-12
  • Accepted:  2021-10-19
  • Published:  2023-06-10

Geochemical Element Characteristics and Provenance Changes at Tongguanyao Site Section in Changsha

doi: 10.14027/j.issn.1000-0550.2021.128
Funds:

National Natural Science Foundation of China 41771218

National Natural Science Foundation of China 41271228

National Key Research and Development Project, No. 2020YFC15216 05 2020YFC1521605

National Social Science Major Project 19ZDA231

Abstract: High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was applied to determine the geochemical element content in sediments from the Shizhuping (SZP) profile of the Tongguan kiln site in Changsha, Hunan province, China. The variation of geochemical content was analyzed to reveal environmental evolution and provenance change. The content varies significantly. The elements Ti, Cr, Co, V, Ni, etc. gradually increase at depths from 80 cm to peak at 230 cm, then decrease from 230 cm to 310 cm to the lowest value s; Pb, Zr and Mn show the opposite trend. Of these, Ti content is the highest (average 5 405.8 μg/g). The lowest is Mo, with an average of 0.9 μg/g. The order of the average content from higher to lower is Ti > Mn > Ba> Zr> Rb> Zn> Li> Cr> V> Pb >Sr > Cu> Y> Ni> Th> Cs> Co> Sc> Sn> Hf> Be> Mo. The SZP section has recorded the changes in the sedimentary environment over the past 1 300 years: loess sediment⁃SZP lake formation⁃flood plain sediment⁃SZP lake reformed⁃SZP terrace. Correspondingly, the provenance of the section has changed significantly. The source below 310 cm is dust accumulated in the most recent glacial period. The formation at 310⁃230 cm depths (1 288⁃1 094 a B.P.) contains a large number of ceramic tablets, and the sediments are mainly the waste products of mining and smelting of metal minerals in the calcination process of Tongguan kiln porcelain. From 230 cm to 80 cm (1 094⁃380 a B.P.), the lower sediment source is from the Xiangjiang River; the upper sediment is weathering erosion and water transport of sandstone in the middle-to-lower reaches. Above 80 cm (380 a B.P. to present) the sediments are related to human activity, comprising mainly an artificial soil cushion and weathering erosion accumulation around the slope.

GUO AiPeng, MAO LongJiang, MO DuoWen, ZHANG XingGuo, ZOU ChunHui, LI Ye, WU YouJin. Geochemical Element Characteristics and Provenance Changes at Tongguanyao Site Section in Changsha[J]. Acta Sedimentologica Sinica, 2023, 41(3): 735-747. doi: 10.14027/j.issn.1000-0550.2021.128
Citation: GUO AiPeng, MAO LongJiang, MO DuoWen, ZHANG XingGuo, ZOU ChunHui, LI Ye, WU YouJin. Geochemical Element Characteristics and Provenance Changes at Tongguanyao Site Section in Changsha[J]. Acta Sedimentologica Sinica, 2023, 41(3): 735-747. doi: 10.14027/j.issn.1000-0550.2021.128
  • 沉积物地球化学的元素含量、元素比值、迁移富集特征、同位素含量等与沉积环境和物质来源密切相关[12]。因此,前人使用地球化学方法在沉积环境重建[3]、古气候极端事件[4]、沉积物风化强度[5]、物质来源[6]等多方面进行了大量研究,并取得了一些研究成果。如刘平贵等[7]通过分析银川盆地Y1孔地球化学元素含量及其分布规律,还原了该地层由还原到氧化的地球化学环境,由深水到浅水的水环境以及由湖沼相到河流相的沉积相。陶树等[8]测量了川东南—黔中及其周边地区震旦—志留纪地层的主量元素及微量元素含量,利用元素比值分析得出其沉积环境主要为半深海—深海及浅海滞流环境。Wang et al.[9]研究了内蒙古兴蒙地区元素比值的特征参数,指出研究区中、晚二叠世之交的主要沉积环境为海相和强还原环境。张文翔等[10]用柴达木贝壳堤剖面沉积物常量元素和微量元素含量及其元素比值,重建了43.5~22.4 ka B.P.高湖水位期间的古气候和水位波动历史。周笃珺等[11]利用青海湖地区全新世黄土剖面的元素组分、氧和碳同位素等指标,探讨了青海湖湖区温湿—高温—冷干—暖湿—暖干—冷干的气候环境演变过程。Kraft[12]对华南南雄盆地白垩系和第三系碎屑沉积岩进行了分析,通过晚白垩世CaCO3含量、TOC值、Rb/Ti、Cs/Ti比值等,揭示了华南地区长期的极端干旱气候。Piper et al.[13]通过对密西西比河水系的河床沉积物和悬沙的地球化学研究,得出沉积物微量元素富集可能与人类活动有关。

    湘江是湖南省最大的河流,属于长江流域洞庭湖水系。前人对于湘江流域沉积物开展了地球化学相关研究,主要关注湘江流域沉积物重金属的地球化学特征[1416]、污染性评价和来源分析[1719]。长沙铜官窑遗址剖面正处于湘江流域中下游地区,铜官窑是外销窑,盛行于中晚唐而衰于五代[20]。长沙窑地区的沉积环境及物质来源的研究是解读长沙窑兴衰过程与环境变化关系的前提。因此,本文拟以长沙窑遗址石渚坪(SZP)剖面沉积物为研究对象,对其沉积物进行地球化学元素分析,揭示其元素地球化学特征,探讨其沉积环境。

  • SZP剖面(28°25′0.92″ N,112°49′35.7″ E)位于长沙市望城区丁字镇铜官窑考古遗址(图1),海拔约25 m,处于湘江流域下游地区,洞庭湖平原以南。铜官窑遗址在石渚湖北岸,西南滨湘江,位于觉华山山脚下。地貌呈现为丘陵向平原过渡,高出现代河堤1~2 m。铜官窑遗址距离湘江约1 km,位于湘江的二级阶地,2011年湖南省文物考古研究所考古发掘时出露该遗址剖面。研究区域为亚热带季风气候,四季温差明显,雨热同期。年均气温为17.8 ℃,年降水量介于1 250~1 750 mm[21]。湘江是洞庭湖水系中流域面积最大的河流,水源至濠河口干流全长856 km,总流域面积94 600 km2[22]。在地质构造上,湘江源头在南岭构造带,向北汇入扬子板块的洞庭湖。流域上游以石灰岩为主,其中南部地区广泛分布石灰岩和砂岩,中下游区域则以砂岩、页岩、砾岩及花岗岩为主[23]。地貌特点为低山高丘与盆地相间,丘陵低缓。植被主要是马尾松稀疏草丛和油茶林,部分沟谷中有常绿阔叶林。土壤以红壤和紫色土为主,水土流失比较严重[24]

    Figure 1.  Location of SZP profile

  • SZP剖面为含文化层剖面,地层界线分明,清晰可见(表1)。该剖面在铜官窑遗址范围内,是专门开挖的平行剖面,距离湘江约50 m,位于河流二级阶地且靠近丘陵。剖面厚度为320 cm,未见底。以每间隔2 cm或10 cm不等距取样,共采集99份样品,样品编号为SZP001~SZP099。文化层为260~290 cm,出土大量的瓷块和瓷片,时间约在唐代中晚期。

    地层深度/cm地层特征
    0~70灰黄色黏土,含黑色斑块与胶膜、红色碎块、青灰色小砾石(0.5~1 cm)以及大量虫孔。在5~10 cm处发现灰色陶片
    70~80灰黄色黏土,沿裂隙发育大量红色Fe、Mn胶膜
    80~145青灰色淤泥,沿裂隙面发育红黄色胶膜,含虫孔
    145~215浅黄色,粉砂质黏土,无层理
    215~230灰黄色黏土
    230~260灰色淤泥层,含大量陶片
    260~290唐代中晚期文化层,含大量的陶块和陶片、红烧土
    290~310灰黄色,含少量烧土,含大量的碳粒和碳片,厚度约5~10 cm
    310以下浅黄色生土
  • 所有样品在实验室进行自然风干,取出5 g样品使用玛瑙研钵进行研磨,过200目筛。然后实验前,对磨好的样品在烘箱内烘干,烘干后称取25 mg样品置于自制高压密闭溶样装置中。加入0.5 mL浓HF后加热蒸干,去除样品中的部分Si。再加入1 mL浓HF和0.5 mL浓HNO3于190 ℃溶解,蒸干至湿盐状,再加入1 mL HNO3蒸干至湿盐状,去除过量HF。蒸干后以5 mL的30%(v/v) HNO3在140 ℃时提取残渣,冷却后加入1 mL的500 ng/mL的RH内标溶液稀释到50 mL用以减轻基体效应及仪器漂移带来的影响。测得Li、Sc、Ti、V、Cr、U、Be、Pb等共33种微量元素,分析结果与标样测定结果进行比较,误差均小于±10%。微量元素的含量用高分辨率电感耦合等离子体质谱仪(HR-ICPMS)进行测定,实验在南京大学地球科学系内生金属矿床成矿机制研究国家重点实验室完成[25]。分别在94~96 cm、139~141 cm和149~151 cm以及290~292 cm采集了3个OSL和1个AMS14C样品进行年代测定(表2),实验在北京大学AMS14C/OSL实验室(用CALIB 7.01校准)完成。除此以外,在剖面260~290 cm间的文化层中出土的陶器碎片被确定为中晚唐的器物。利用Tan et al.[26]基于测年结果和瓷器类型学建立的相对年代学框架,建立了一个年代—深度模型(图2)。

    样品编号深度/cm校正年代/a B.P.
    AB12017194~96451±32
    AB120172139~141879±65
    AB120173149~1511 182±85
    BA120171(AMS14C)290~2921 320±30

    Figure 2.  Age vs. depth plot for SZP profile[26]

  • 剖面选择4个样品完成年代测试,其中AMS14C(用Calib7.01校准)1个和OSL年代3个。OSL年代测定使用Riso-TL/OSL-DA15测年系统,在SZP剖面260~290 cm间的文化层中出土的大量瓷器碎片被确定为中晚唐的器物。建立的剖面年代序列如表2图2

  • SZP剖面地球化学元素(Ti、Mn、Li、Be、Sc、V、Cr、Co、Ni、Cu、Zn、Rb、Sr、Y、Zr、Mo、Sn、Cs、Ba、Hf、Pb、Th、U)含量变化如表3。Ti含量最高,平均值达到5 405.8 μg/g,其次是Mn,平均值为988.8 μg/g。元素中含量平均值较高的有Li、Mn、Zr、Ba、Rb、Zn,均在100 μg/g以上。含量较低的是Be、Mo、Hf、Ta、W、Bi、U,平均值皆在10 μg/g以下。最低的是Mo,平均值为0.9 μg/g。剖面含量均值由大到小为:Ti>Mn>Ba>Zr>Rb>Zn>Li>Cr>V>Pb>Sr>Cu>Y>Ni>Th>Cs>Co>Sc>Sn>Hf>U>Be>Mo。

    深度LiBeScTiVCrMnCoNiCuZnRbSrYZrMoSnCsBaHfPbThU
    80 cm以上最小100.93.115.95 421.763.760.0620.018.033.335.6117.5165.247.932.0209.30.87.119.1484.26.649.930.94.9
    最大115.74.016.45 638.966.067.32 493.123.936.538.7137.1180.450.034.3271.91.210.922.9646.18.274.432.76.2
    均值107.63.516.25 506.964.663.61 146.120.434.737.0127.3174.749.033.2235.31.09.220.1526.77.356.931.95.5
    80~230 cm最小104.63.313.85 386.158.957.4503.214.928.834.9111.8171.347.527.8199.60.77.618.1502.16.053.124.55.0
    最大118.94.517.66 023.670.772.51 578.824.537.444.2141.4186.653.537.7260.41.315.322.3546.87.966.933.46.5
    均值110.03.816.05 676.866.264.7876.320.334.138.4129.9177.149.832.7228.31.011.319.3519.37.157.931.05.8
    230~310 cm最小89.93.312.94 864.848.149.3800.916.026.530.4102.2155.445.630.5220.40.67.021.2506.46.538.822.74.7
    最大106.44.014.85 279.257.857.61 997.918.829.697.3125.4183.455.437.1317.30.820.227.1631.39.3129.728.45.5
    均值97.03.613.75 042.751.854.11 093.217.228.441.4115.5173.150.134.2275.00.79.924.7543.18.258.325.45.1
    310~320 cm最小100.23.514.75 168.653.455.8628.915.128.426.7110.1178.848.833.0241.20.86.925.0509.37.337.322.35.3
    最大102.23.614.95 230.853.669.4695.315.435.129.0126.0182.749.734.2248.30.87.525.1530.17.540.423.75.4
    均值101.23.614.85 199.753.562.6662.115.331.827.8118.1180.749.233.6244.70.87.225.0519.77.438.923.05.3
    全剖面最小89.93.312.94 864.848.149.3503.214.926.526.7102.2155.445.627.8199.60.66.918.1502.16.037.322.34.7
    最大118.94.517.66 023.670.772.51 997.924.537.497.3141.4186.655.437.7317.31.320.227.1631.39.3129.733.46.5
    均值104.03.714.95 371.058.960.4991.618.431.540.6121.9175.850.033.3249.70.910.722.2532.67.658.227.65.4
    湖南土壤背景值[27]1.06111366844114322795139572726034727174.2
    湘江沉积物背景值[28]46.72.834 48792.166.885513.629.93087.448.6273471.288.4535439.717.84.21
    上陆壳UCC[29]20313.64 1001078360017442571112350221901.55.54.65505.81710.72.8

    元素含量随着深度的变化而变化,可能与当时的沉积环境和物质来源相关。元素Sc、V、Ni、Th、Mo、Ti、Cr、Co、Li、U、Zn变化趋势一致,在80~230 cm的地层为高值区,在230 cm以下的地层为低值区。Pb、Cu、Sn、Hf、Zr、Y、Ba、Mn、Sr与上述元素呈相反的变化趋势,230 cm以下的地层为它们的高值区。Pb、Cu在230 cm以上的地层波动不大,在230~310 cm出现最大值,Sn、Hf、Zr、Y、Ba、Mn、Sr在80~230 cm之间出现小幅升高。在80 cm上出现峰值的有Ba、Mn、Mo、Co。

  • 微量元素之间相关性高,表明它们的来源可能一致,若相关性较差,来源可能就不同[30]。Ti与微量元素Sc、Li、V、Cr显著相关,相关系数均在0.8以上(置信度为99%)(表4)。Sc与Li、V、Cr、Ni;V与Li、Sr、Cr、Ni;Ni与Mo、Th;Cr与V、Ni;Co与Mo、Th在0.01水平上高度正相关,相关系数在0.8以上。这说明它们可能具有相同的物质来源。Pb与Cu(0.877)、Sn(0.759)呈正相关,与Rb(-0.25)、Cs(-0.456)负相关。Cu与Sn(0.794)正相关,与Sr(0.454)呈弱相关。Hf与Zr(0.983)、Y(0.736)显著相关,Zr与Y(0.668)相关性较高。Ba与Mn(0.744)相关性显著,与Sr(0.594)相关性较高,与Cu(0.444)弱相关。Mn与Sr(0.365)弱相关。

    LiBeScTiVCrMnCoCuNiZnRbSrYZrMoSnUThPbHfBa
    Li1.000
    Be0.3701.000
    Sc0.8750.3251.000
    Ti0.8630.3700.9101.000
    V0.8980.2740.9330.9371.000
    Cr0.7990.4430.8770.8300.8381.000
    Mn-0.165-0.209-0.004-0.155-0.084-0.1581.000
    Co0.4350.1220.6810.5900.6810.5220.4981.000
    Cu0.0640.1220.0020.0050.0620.0390.3770.2751.000
    Ni0.7370.3260.9000.7940.8460.9360.0390.7130.1351.000
    Zn0.6480.4230.7310.7040.6670.722-0.1390.5270.2820.7911.000
    Rb0.4800.3140.4450.3990.3350.431-0.264-0.010-0.5810.3050.3001.000
    Sr0.0140.3790.0620.062-0.0520.0360.3650.1580.4540.1490.4060.0281.000
    Y-0.2630.3870.048-0.123-0.1320.0900.3580.327-0.0250.1560.0310.0790.2151.000
    Zr-0.692-0.014-0.518-0.540-0.605-0.4330.329-0.114-0.024-0.437-0.464-0.2570.0260.6681.000
    Mo0.5580.2810.7810.7460.7660.7180.2010.8400.1520.8140.5660.0620.1660.240-0.2321.000
    Sn0.3900.3700.2550.3320.3230.2970.0190.2090.7940.2760.459-0.2500.287-0.199-0.3370.2081.000
    U0.7410.4140.7660.7500.7200.670-0.2230.451-0.0400.6790.7690.5590.1790.059-0.4580.5480.2401.000
    Th0.6300.2440.7530.7260.8140.7060.1480.8120.3390.8030.6610.014-0.0030.171-0.2470.7310.3670.6021.000
    Pb0.1820.1390.0960.1350.1920.1150.1670.2760.8770.1730.313-0.5930.197-0.122-0.1860.1940.7590.0330.4421.000
    Hf-0.6150.034-0.419-0.462-0.519-0.3460.329-0.011-0.013-0.329-0.344-0.2020.0410.7360.983-0.151-0.329-0.328-0.118-0.1621.000
    Ba-0.194-0.003-0.154-0.259-0.222-0.1990.7440.2520.444-0.039-0.017-0.1380.5940.2740.1490.0330.157-0.204-0.0440.2470.1511.000
    Cs-0.633-0.275-0.625-0.696-0.774-0.6740.189-0.532-0.315-0.686-0.5300.0670.1450.2170.524-0.589-0.516-0.448-0.771-0.4560.4580.285
  • 因子分析前的KMO(Kaiser-Meyer-Olkin检验)=0.534,Bartlett球度检验结果显示(DF=253,Sig.<0.001),说明样品数据适用于因子分析。通过主成分分析,可分为五个主成分,第一主成分的特征值为10.053,方差贡献为43.710%;第二主成分的特征值为3.912,贡献了17.007%;第三主成分特征值为3.016,贡献了13.112%;第四主成分特征值为1.802,贡献了7.836%;第五主成分的特征值为1.520,贡献了6.610%。这五个主成分的总累积解释方差为88.274%,大于85%,说明这五个主成分可反映所有数据的大部分信息(表5)。以累积方差贡献88.274%为准,可以提取五个主成因子:F1包括Sc、V、Ni、Th、Mo、Ti、Cr、Co、Li、U、Zn;F2包括Pb、Cu、Sn;F3包括Hf、Zr、Y;F4包括Ba、Mn、Sr;F5包括Be。

    元素成分
    成分1成分2成分3成分4成分5
    Sc0.936-0.095-0.1910.0090.157
    V0.9290.033-0.290-0.1100.047
    Ni0.9270.030-0.0720.0620.157
    Th0.8890.3190.109-0.033-0.040
    Mo0.8830.0840.1150.139-0.030
    Ti0.873-0.016-0.264-0.1240.205
    Cr0.862-0.021-0.105-0.1350.289
    Co0.8370.1580.2080.340-0.202
    Li0.765-0.009-0.466-0.0860.259
    Cs-0.716-0.4410.2210.3270.017
    U0.709-0.146-0.182-0.0540.453
    Zn0.6900.168-0.1910.0950.485
    Pb0.1570.927-0.0940.0970.028
    Cu0.0650.904-0.0070.3480.095
    Sn0.2160.786-0.2620.0620.348
    Rb0.287-0.740-0.191-0.0110.461
    Hf-0.260-0.0450.9310.071-0.031
    Zr-0.374-0.0390.8910.066-0.070
    Y0.160-0.1310.8740.2270.220
    Ba-0.1130.1740.0870.9090.011
    Mn0.0980.1310.3030.807-0.362
    Sr0.0000.1680.0110.7120.547
    Be0.2720.1190.213-0.0800.820
    特征值10.0533.9123.0161.8021.520
    变量解释/%43.71017.00713.1127.8366.610
    累积/%43.71060.71773.82981.66488.274
  • 聚类分析能够直接观察各元素之间的远疏距离,距离系数的长短代表元素间来源的相关性程度,最先连接且距离最短的元素之间相关性高且来源相似[31]。对SZP剖面的地球化学元素进行R型聚类分析(图3),当距离系数选为15时,可以分成五组,聚类分析结果与主成分分析结果完全一致。

    Figure 3.  R⁃type cluster analysis of geochemical elements in SZP profile

  • 根据多变量分析结果,可以将元素分为5类(F1~F5),F1:Sc、V、Ni、Th、Mo、Ti、Cr、Co、Li、U、Zn;F2:Pb、Cu、Sn;F3:Hf、Zr、Y;F4:Ba、Mn、Sr;F5:Be。

    F1解释了方差的43.710%,所占比重最大,说明在石渚坪剖面的沉积物中F1对其他变量的影响占据主导地位。Sc、V、Ni、Ti、Cr、Co、Li、Zn等元素在风化、侵蚀搬运和沉积的表生环境下较为稳定[32]。其中,铁族元素居多,包括Ti、Cr、Co、V、Ni,Ti、Cr、V,同时也为造岩元素,说明F1因子以陆源碎屑为主。Ti是亲碎屑元素,Ti离子在水溶液中迁移微弱,但Ti能在风化作用下富集,尤其是在玄武岩和一些其他基性岩风化形成的土壤中Ti含量明显居多[33]。Ti与微量元素Sc、Li、V、Cr显著的相关性说明它们的来源相似。Zn作为亲铜元素被分在F1因子中也许是因为其原生矿物较难风化或次生矿物稳定难溶,而后吸附于黏土矿物,在风化过程中得以保留[34]。在湘江流域广泛分布的古生代碳酸盐岩和印支—燕山期花岗岩体,这些岩石均是在地表条件下易于风化分解的地质体,其中,上游主要是泥盆系砂、页岩和泥盆系—石炭系的石灰岩,中下游区域中新生代的紫色砂岩与花岗岩[24]。但是,铁族元素在基性岩与超基性岩中分布广泛,在石灰土及石灰岩地区土壤中含量最高[28]。因此,可以推断F1主要来源于上游地区的石灰岩。

    F2包括Pb、Cu、Sn,贡献了17.007%。3个元素皆是亲硫元素,易形成硫化物。湖南省内的侵入岩发育,与铜铅锌矿有关的主要是印支—燕山期花岗岩体[35],铜矿很少有单一铜矿,共伴生铜的矿床比重大,铜常和铅、锌、锡、钴等形成多金属矿床[36]。F2可能来源于对湘江流域附近铜铅锡矿等有色金属矿的人为开采活动。

    F3包括Hf、Zr、Y,贡献了13.112%。Hf与Zr的地球化学性质相似,矿物中Hf常与Zr伴生。在风化前期或风化成熟度较低的情况下,Zr和Hf往往呈弱相关。随着矿物风化增大,Zr和Hf显著相关,Zr和Hf会迁移,仅以锆石的形式保留下来[37]。锆石在火成岩中广泛存在,在花岗岩矿岩内属于副矿物[38]。因此,F3可能来源于中下游地区花岗岩风化侵蚀。

    F4包括Ba、Mn、Sr,贡献了7.836%。Ba、Sr同属碱土金属元素,同时也是亲石元素。Ba在细粒陆源沉积岩如粉砂岩、泥岩中含量较高,Sr在泥岩、钙质泥岩和碳酸盐岩中含量较高[39]。在湖南地区,Ba在砂页岩中含量最高,在石灰岩发育的土壤中含量低[28]。所以F4可能与中下游地区的砂岩的风化剥蚀有关。但在SZP剖面中,Ba均值是湖南背景值均值的1.53倍,湘江沉积物均值的1.5倍,Mn均值是湖南背景值均值的4.53倍,湘江沉积物均值的2.34倍,远高于湘江沉积物和湖南土壤背景值。可以推断F4物源主要与锰矿物的人为开发有关。

    F5包括Be。湖南地区大部分有色金属矿床与中酸性花岗岩有成因联系,燕山期不同成因类型的花岗岩成矿专属性不同,花岗岩会形成Ta-Be、Sn、Mo、Bi-Cu、Pb、Zn-U等矿床系列[40]。SZP剖面中Be含量平均值是湖南背景值的4.27倍,是湘江沉积物的1.06倍,说明SZP剖面中Be富集可能与中下游地区花岗岩有色金属矿床的人为开采有关。

  • 310 cm以下为生土层,此时生土多为末次冰期时的风尘堆积[41]。晚更新世冰期最盛时,长江中下游地区气候普遍寒冷且降水量减少,黄土高原堆积厚层的马兰黄土,在长江中下游地区的下蜀黄土开始堆积[42]。如江西定山砂山剖面的下层灰黄色土—淤泥沉积是末次冰期间冰阶晚期的区域降尘堆积[43],鄱阳湖地区的彭泽红光、小学剖面皆为黄土状土—中细砂堆积,分别对应末次冰期早、中期及末次冰期中、后期的堆积[44]。末次冰期期间,全球大范围气候寒冷干旱,海平面大幅降低,大陆架出露成陆[45]。海平面降低,河流下切侵蚀能力加强,河谷漫滩加深。此时强劲的冬季风吹蚀河谷漫滩,产生大量粉尘,河流台地开始形成堆积[46],SZP剖面的下部就是典型的下蜀黄土层,F1因子中的Cr、Ni、Ti、Zn出现峰值(图4),生土层的物源主要是上游的石灰石风化剥蚀。

    Figure 4.  First principal component elements (μg/g) vs. depth in SZP profile

    230~310 cm,对应年代为1 288~1 094 a B.P.。沉积层下部颜色由灰黄色转为黑色,显示此时水位逐渐上升,石渚洼地开始积水形成石渚湖,其沉积物为黑色湖沼相淤泥沉积。此时,长沙窑先民利用此地进行制窑,在黑色淤泥层中发现烧土和大量的碳粒、碳片,这也表明约在盛唐开元年间,石渚制瓷业已经有所发展。根据考古发掘发现长沙窑纪年瓷中最早的记录正是记有“开元三年”字样的瓷碗[47]。此沉积层的上部为唐朝文化层,大量的瓷片和缸片表明当地制瓷业在唐朝中晚期的繁荣,现有的研究也可佐证长沙窑发展的繁荣期是在唐朝中晚期[20]。唐朝气候总体上趋于湿润,唐末30年更是多雨阶段,唐末集中的水灾记录也体现了湿润的气候[48],这些都充分表明了此时的高水位,石渚湖初步形成。Pb、Cu、Sn、Ba、Mn、Sr皆在文化层出现峰值(图5)。长沙窑瓷器以与当时主流不符的彩瓷闻名,制造原料多就地取材,其釉彩制作以磷灰石、方解石为熔剂,用Cu、Fe、Mn等矿物做釉彩着色剂[20]。方解石中含有Mn、Sr、Ba、Pb、Co、Fe、Zn、Mg等类质同象替代物,釉彩中的乳浊现象主要是因为含Cu矿物中含有部分SnO2[49]。在瓷器的制作过程中,各种矿物的开采和冶炼活动中产生的废料被沉入水中,随着水位的上升,窑址逐渐被洪水掩盖。可以看出此时物源主要是长沙铜官窑瓷器的煅烧过程中,各种金属矿物开采及冶炼产生的废料。

    Figure 5.  Variation curve of the second⁃fifth principal component elements (μg/g) with depth for SZP profile

    80~230 cm对应年代为1 288~1 094 a B.P.。沉积层为黏土—粉砂质黏土—淤泥层,该层沉积相分为上下两层,下层为河漫滩相。说明此时石渚湖水位发生多次变化,这种变化与湘江水位变化有着密切的关系。

    粉砂质黏土层为湘江洪水期泛滥时期,水流漫溢天然堤,河流流速降低,悬浮沉积物大量堆积形成河漫滩沉积。此层F1元素含量较下层大量增加(图4),证明此时物源主要是湘江的泥沙。湘江大部分泥沙集中在洪水时期,洪水越大含沙量越高[50]。随着湘江水位的变化,各种元素以碎屑形式在泥沙中被冲上岸。下层变为湖相后,湘江水位提高。元素Co、Sc、V、Li、U等F1因子皆出现较明显的峰值(图4),且含量远高于其他因子,说明沉积物主要来源于上游的泥盆系—石炭系的石灰岩风化剥蚀与水流搬运。洪水退去后,石渚坪低洼处开始积水,淤泥层中植物根系形成的铁锰胶膜和虫孔说明因为长期潮湿的环境,动植物开始生长,逐渐形成漫滩沼泽。此层上部为黑色淤泥层,水位明显上涨,即石渚湖再次形成。此时沉积环境较为封闭,只有F4因子和U的元素含量分布发生明显波动,铜官窑的人类活动痕迹已经消失,与文化层的锰矿物人为开发不同,物源主要来自于中下游地区砂岩的风化剥蚀。

    80 cm以上地层为人工垫土和表土层,含砾石、灰色瓷片、红烧土等。1964年铜官窑—石渚湖一带修建石渚新河和堤垸,破坏了部分窑址[17],故沉积物中的瓷片和红烧土主要与人类活动有关。F4因子出现峰值(图5)。Ba、Mn、Zn、Cu等元素远高于湘江沉积物和湖南土壤背景值,可能与湘江流域有色金属矿藏的开采有关。

  • (1) SZP剖面元素的含量变化显著,以80 cm为界,上层变化平缓,下层变化剧烈。元素Sc、V、Ni、Th、Mo、Ti、Cr、Co、Li、U、Zn在80~230 cm逐渐升高出现峰值,230~310 cm逐渐降低至谷值。元素Hf、Zr、Y、Ba、Mn、Sr、Be与其分布趋势相反。其中Ti含量最高,平均值达到5 405.8 μg/g。最低的是Mo,平均值为0.9 μg/g。剖面含量均值由大到小为:Ti>Mn>Ba>Zr>Rb>Zn>Li>Cr>V>Pb>Sr>Cu>Y>Ni>Th>Cs>Co>Sc>Sn>Hf>U>Be>Mo。

    (2) SZP剖面沉积物地球化学特征揭示了沉积环境变化过程及其物质来源演化。310 cm以下的浅黄色生土层为末次冰期风成堆积;310~230 cm,对应年代1 288~1 094 a B.P.,湘江水位上升,石渚洼地开始积水形成石渚湖。物源主要是长沙铜官窑瓷器的煅烧过程中,各种金属矿物开采及冶炼产生的废料。230~80 cm,对应年代1 094~380 a B.P.,水位变化显著,其沉积相为河漫滩相—湖相,洼地再次积水形成石渚湖。此层下层沉积物来源于湘江输入的泥沙,是来自上游的泥盆石炭系的石灰岩沉积物风化侵蚀和水流搬运沉积。上层沉积物来源于中下游地区砂岩的风化侵蚀。80 cm以上,水位下降,周边坡地遭遇水土侵蚀,同时人为活动垫土形成此时的石渚坪,物源可能与现代人类工业活动有关。

Reference (50)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return