Advanced Search
Volume 41 Issue 4
Aug.  2023
Turn off MathJax
Article Contents

XIE Wei, LI YiFan, LIU WangWei. Paleoclimate and Provenance Background of Lower Cambrian Mudstone in the Northeastern Margin of Tarim Basin[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1240-1256. doi: 10.14027/j.issn.1000-0550.2021.159
Citation: XIE Wei, LI YiFan, LIU WangWei. Paleoclimate and Provenance Background of Lower Cambrian Mudstone in the Northeastern Margin of Tarim Basin[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1240-1256. doi: 10.14027/j.issn.1000-0550.2021.159

Paleoclimate and Provenance Background of Lower Cambrian Mudstone in the Northeastern Margin of Tarim Basin

doi: 10.14027/j.issn.1000-0550.2021.159
Funds:

National Natural Science Foundation of China U19B6003-01-02

National Natural Science Foundation of China 41802155

  • Received Date: 2021-08-11
  • Accepted Date: 2021-12-22
  • Rev Recd Date: 2021-11-29
  • Available Online: 2021-12-22
  • Publish Date: 2023-08-10
  • Based on the geochemical analysis of the Lower Cambrian mudstone in the Kuluketage area, the paleoclimate, provenance, and formation of mudstone in the Early Cambrian are discussed. In the study area, the CIA value and SiO2-(Al2O3+K2O+Na2O) diagram show that the paleoclimate in the Early Cambrian was warmer than in the Ediacaran, and became cold and dry again in the Cambrian. The Ce/Ce* and (La/Ce)N values indicate that the Xishanbulake Formation was deposited in a submarine basin near a mid ocean ridge (MOR), and the overlying Xidashan and underlying Hangeerqiaoke Formations are deposited in a stable continental margin. The La-Th-Sc diagram shows that the tectonic setting of the formation in section QKMK-Ⅰwas a passive continental margin, while section QKMK-Ⅱ. Th-Sc and Th/Sc-La/Sc diagrams and discriminant functions indicate that the parent rock of section QKMK-Ⅰ is a neutral to intermediate-acid igneous rock, and its provenance may be intermediate-acid rock of the Precambrian in the central uplift zone. The parent rock of section QKMK-Ⅱis a mafic to intermediate-acidic igneous rock, and its mafic components obviously increased. Except for the central uplift zone provenance, it may be affected by the effusion of mafic hydrothermal fluids from the seabed.
  • [1] Zhou C M, Xiao S H. Ediacaran δ 13C chemostratigraphy of South China[J]. Chemical Geology, 2007, 237(1/2): 89-108.
    [2] 管树巍,吴林,任荣,等. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报,2017,38(1):9-22.

    Guan Shuwei, Wu Lin, Ren Rong, et al. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2017, 38(1): 9-22.
    [3] Scotese C R. Paleogeographic atlas: Paleomap project progress report No. 90-0497[R]. Arlington: University of Texas at Arlington, 1997: 45.
    [4] 方大钧,沈忠岳,谈晓东,等. 塔里木盆地显生宙古地磁与板块运动学[M]. 杭州:浙江大学出版社,2006:1-364.

    Fang Dajun, Shen Zhongyue, Tan Xiaodong, et al. Paleomagnetism of tarimbasin and the platemotion[M]. Hangzhou: Zhejiang University Press, 2006: 1-364.
    [5] 黄宝春,周烑秀,朱日祥. 从古地磁研究看中国大陆形成与演化过程[J]. 地学前缘,2008,15(3):348-359.

    Huang Baochun, Zhou Yaoxiu, Zhu Rixiang. Discussions on Phanerozoic evolution and formation of continental China, based on paleomagnetic studies[J]. Earth Science Frontiers, 2008, 15(3): 348-359.
    [6] 张英利,王宗起,闫臻,等. 库鲁克塔格地区新元古代沉积物源分析:来自碎屑锆石年代学的证据[J]. 岩石学报,2011,27(1):121-132.

    Zhang Yingli, Wang Zongqi, Yan Zhen, et al. Provenance of Neoproterozoic rocks in Quruqtagh area, Xinjiang: Evidence from detrital zircon geochronology[J]. Acta Petrologica Sinica, 2011, 27(1): 121-132.
    [7] 于炳松,陈建强,李兴武,等. 塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背景[J]. 沉积学报,2004,22(1):59-66.

    Yu Bingsong, Chen Jianqiang, Li Xingwu, et al. Rare earth and trace element patterns in bedded-cherts from the bottom of the Lower Cambrian in the northern Tarim Basin, northwest China: Implication for depositional environments[J]. Acta Sedimentologica Sinica, 2004, 22(1): 59-66.
    [8] 刘伟,张光亚,潘文庆,等. 塔里木地区寒武纪岩相古地理及沉积演化[J]. 古地理学报,2011,13(5):529-538.

    Liu Wei, Zhang Guangya, Pan Wenqing, et al. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim area[J]. Journal of Palaeogeography, 2011, 13(5): 529-538.
    [9] 冯增昭,鲍志东,吴茂炳,等. 塔里木地区寒武纪岩相古地理[J]. 古地理学报,2006,8(4):427-439.

    Feng Zengzhao, Bao Zhidong, Wu Maobing, et al. Lithofacies palaeogeography of the Cambrian in Tarim area[J]. Journal of Palaeogeography, 2006, 8(4): 427-439.
    [10] 刘文,吴春明,吕新彪,等. 库鲁克塔格早寒武世泥质岩的地球化学特征及其地质意义[J]. 中国地质,2016,43(6):1999-2010.

    Liu Wen, Wu Chunming, Xinbiao Lü, et al. Geochemical characteristics and geological significance of Early Cambrian argillaceous rocks in Kuruk Tag, Xinjiang[J]. Geology in China, 2016, 43(6): 1999-2010.
    [11] 石开波,刘波,刘红光,等. 塔里木盆地东北缘库鲁克塔格地区新元古代构造—沉积演化[J]. 地学前缘,2017,24(1):297-307.

    Shi Kaibo, Liu Bo, Liu Hongguang, et al. Neoproterozoic tectono-sedimentary evolution in Quruqtagh area, NE Tarim Basin, Xinjiang, China[J]. Earth Science Frontiers, 2017, 24(1): 297-307.
    [12] 何登发,贾承造,李德生,等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质,2005,26(1):64-77.

    He Dengfa, Jia Chengzao, Li Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1): 64-77.
    [13] 贾承造. 中国塔里木盆地构造特征与油气[M]. 北京:石油工业出版社,1997:1-438.

    Jia Chengzao. Tectonic characteristics and petroleum, Tarim Basin, China[M]. Beijing: Geological Publishing House, 1997: 1-438.
    [14] 任荣,管树巍,吴林,等. 塔里木新元古代裂谷盆地南北分异及油气勘探启示[J]. 石油学报,2017,38(3):255-266.

    Ren Rong, Guan Shuwei, Wu Lin, et al. The north-south differentiation characteristic and its enlightenment on oil-gas exploration of the Neoproterozoic rift basin, Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(3): 255-266.
    [15] 陈永权,严威,韩长伟,等. 塔里木盆地寒武纪/前寒武纪构造:沉积转换及其勘探意义[J]. 天然气地球科学,2019,30(1):39-50.

    Chen Yongquan, Yan Wei, Han Changwei, et al. Structural and sedimentary basin transformation at the Cambrian/Neoproterozoic interval in Tarim Basin: Implication to subsalt dolostone exploration[J]. Natural Gas Geoscience, 2019, 30(1): 39-50.
    [16] 石开波,刘波,姜伟民,等. 塔里木盆地南华纪—震旦纪构造—沉积格局[J]. 石油与天然气地质,2018,39(5):862-877.

    Shi Kaibo, Liu Bo, Jiang Weimin, et al. Nanhua-Sinian tectono-sedimentary framework of Tarim Basin, NW China[J]. Oil & Gas Geology, 2018, 39(5): 862-877.
    [17] 邬光辉,李浩武,徐彦龙,等. 塔里木克拉通基底古隆起构造—热事件及其结构与演化[J]. 岩石学报,2012,28(8):2435-2452.

    Wu Guanghui, Li Haowu, Xu Yanlong, et al. The tectonothermal events, architecture and evolution of Tarim Craton basement palaeo-uplifts[J]. Acta Petrologica Sinica, 2012, 28(8): 2435-2452.
    [18] 田雷,崔海峰,刘军,等. 塔里木盆地早、中寒武世古地理与沉积演化[J]. 石油与天然气地质,2018,39(5):1011-1021.

    Tian Lei, Cui Haifeng, Liu Jun, et al. Early-Middle Cambrian paleogeography and depositional evolution of Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 1011-1021.
    [19] 许怀智,张岳桥,刘兴晓,等. 塔东南隆起沉积—构造特征及其演化历史[J]. 中国地质,2009,36(5):1030-1045.

    Xu Huaizhi, Zhang Yueqiao, Liu Xingxiao, et al. Sedimentary-structural characteristics and tectonic evolution history of the Tadongnan uplift[J]. Geology in China, 2009, 36(5): 1030-1045.
    [20] Yang H J, Wu G H, Kusky T M, et al. Paleoproterozoic assembly of the north and south Tarim terranes: New insights from deep seismic profiles and Precambrian granite cores[J]. Precambrian Research, 2018, 305: 151-165.
    [21] 刘长磊,张艺琼,张永,等. 塔北—塔中区域构造地质大剖面解析及古隆起成因新解[J]. 石油与天然气地质,2018,39(5):1001-1010.

    Liu Changlei, Zhang Yiqiong, Zhang Yong, et al. Analysis of regional structural cross section of the north and central Tarim Basin and new insights into paleo-uplift origin[J]. Oil & Gas Geology, 2018, 39(5): 1001-1010.
    [22] Xu Z Q, He B Z, Zhang C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: New geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162.
    [23] 彭洪超,张振生,刘社平. 塔里木盆地古生代盆地类型及板块运动特征[J]. 石油地球物理勘探,2006,41(6):711-718.

    Peng Hongchao, Zhang Zhensheng, Liu Sheping. Type of Paleozoic basin and feature of plate movement in Tarim Basin[J]. Oil Geophysical Prospecting, 2006, 41(6): 711-718.
    [24] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [25] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
    [26] Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232.
    [27] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
    [28] 杨瑞东,张传林,罗新荣,等. 新疆库鲁克塔格地区早寒武世硅质岩地球化学特征及其意义[J]. 地质学报,2006,80(4):598-605.

    Yang Ruidong, Zhang Chuanlin, Luo Xinrong, et al. Geochemical characteristics of Early Cambrian cherts in quruqtagh, Xinjiang, west China[J]. Acta Geologica Sinica, 2006, 80(4): 598-605.
    [29] Savoy L E, Stevenson R K, Mountjoy E W. Provenance of Upper Devonian-Lower Carboniferous Miogeoclinal Strata, southeastern Canadian Cordillera: Link between tectonics and sedimentation[J]. Journal of Sedimentary Research, 2000, 70(1): 181-193.
    [30] Totten M W, Hanan M A, Weaver B L. Beyond whole-rock geochemistry of shales: The importance of assessing mineralogic controls for revealing tectonic discriminants of multiple sediment sources for the Ouachita Mountain flysch deposits[J]. GSA Bulletin, 2000, 112(7): 1012-1022.
    [31] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
    [32] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publication, 1985.
    [33] 张光亚,赵文智,王红军,等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质,2007,28(5):653-663.

    Zhang Guangya, Zhao Wenzhi, Wang Hongjun, et al. Multicycle tectonic evolution and composite petroleum systems in the Tarim Basin[J]. Oil & Gas Geology, 2007, 28(5): 653-663.
    [34] Goldberg E D, Arrhenius G O S. Chemistry of Pacific pelagic sediments[J]. Geochimica et Cosmochimica Acta, 1958, 13(2/3): 153-198, IN1, 199-212.
    [35] 周永章,刘建明,陈多福. 华南古海洋热水沉积作用研究概述及若干认识[J]. 矿物岩石地球化学通报,2000,19(2):114-118.

    Zhou Yongzhang, Liu Jianming, Chen Duofu. Thread and knowledge to fossil sea-floor hydrothermal sedimentation of South China[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2000, 19(2): 114-118.
    [36] 中国科学院贵阳地球化学研究所. 简明地球化学手册[M]. 北京:科学出版社,1977:63-72.

    Geochemical Institute of Guiyang, Chinese Academy of Sciences, The handbook of concise geochemistry [M]. Beijng: Science Press, 1977: 63-72.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)  / Tables(3)

Article Metrics

Article views(157) PDF downloads(64) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-08-11
  • Revised:  2021-11-29
  • Accepted:  2021-12-22
  • Published:  2023-08-10

Paleoclimate and Provenance Background of Lower Cambrian Mudstone in the Northeastern Margin of Tarim Basin

doi: 10.14027/j.issn.1000-0550.2021.159
Funds:

National Natural Science Foundation of China U19B6003-01-02

National Natural Science Foundation of China 41802155

Abstract: Based on the geochemical analysis of the Lower Cambrian mudstone in the Kuluketage area, the paleoclimate, provenance, and formation of mudstone in the Early Cambrian are discussed. In the study area, the CIA value and SiO2-(Al2O3+K2O+Na2O) diagram show that the paleoclimate in the Early Cambrian was warmer than in the Ediacaran, and became cold and dry again in the Cambrian. The Ce/Ce* and (La/Ce)N values indicate that the Xishanbulake Formation was deposited in a submarine basin near a mid ocean ridge (MOR), and the overlying Xidashan and underlying Hangeerqiaoke Formations are deposited in a stable continental margin. The La-Th-Sc diagram shows that the tectonic setting of the formation in section QKMK-Ⅰwas a passive continental margin, while section QKMK-Ⅱ. Th-Sc and Th/Sc-La/Sc diagrams and discriminant functions indicate that the parent rock of section QKMK-Ⅰ is a neutral to intermediate-acid igneous rock, and its provenance may be intermediate-acid rock of the Precambrian in the central uplift zone. The parent rock of section QKMK-Ⅱis a mafic to intermediate-acidic igneous rock, and its mafic components obviously increased. Except for the central uplift zone provenance, it may be affected by the effusion of mafic hydrothermal fluids from the seabed.

XIE Wei, LI YiFan, LIU WangWei. Paleoclimate and Provenance Background of Lower Cambrian Mudstone in the Northeastern Margin of Tarim Basin[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1240-1256. doi: 10.14027/j.issn.1000-0550.2021.159
Citation: XIE Wei, LI YiFan, LIU WangWei. Paleoclimate and Provenance Background of Lower Cambrian Mudstone in the Northeastern Margin of Tarim Basin[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1240-1256. doi: 10.14027/j.issn.1000-0550.2021.159
  • 在地球46亿年的演化历史中,埃迪卡拉—寒武纪界线(~540 Ma)是一个极其重要的时期,发生了一系列重大事件。Rodinia大陆裂解板块汇聚形成Gondwana超大陆,生物圈从微体生物为主向动物占主导地位转变,地表开始形成相对富氧的环境,发育低纬度冰川沉积,碳同位素发生显著负漂移事件[1],全球海洋(大气)化学成分显著变化,海洋中出现缺氧环境,导致了前寒武纪的生物灭绝事件,第二次氧气突增事件导致寒武纪早期出现“生命大爆发”。因此对寒武纪早期形成的泥页岩进行研究,有助于了解地球早期古气候特征、古构造背景、物质来源等的演化。

    塔里木陆块在新元古代初期参与了Rodinia超大陆的聚合过程,随着Rodinia超大陆的裂解,塔里木盆地整体处于拉张背景,周缘发育一系列断裂[2]。在新元古代晚期,塔里木主体上升为古陆,遭受剥蚀,仅在北缘与东缘接受局部海侵。寒武纪塔里木板块的古板块位置和古纬度大致位于赤道附近,克拉通主体在伸展背景下呈现东西分异的特点,中西部为克拉通内坳陷盆地,东部为克拉通边缘坳陷盆地。古塔里木板块被洋盆所环绕,其北侧为南天山洋,南侧为古特提斯洋[35]

    库鲁克塔格地区位于塔里木盆地东北缘,南天山和盆地的接合部位[6],寒武系底部发育一套黑色泥岩[7]。前人对该区新元古界的构造格局、沉积环境、古生物组合、下寒武统玉尔吐斯组硅质岩成因等做了较多的研究。刘伟等[8]对塔东北地区岩相古地理进行分析,认为该区为克拉通边缘拗陷欠补偿性质的盆地;冯增昭等[9]认为该区古生物组合主要分布深水古生物及半深水浮游生物,沉积环境为深水盆地,塔东北部地区早寒武世与震旦纪之间存在较长时间的沉积间断;刘文等[10]发现库鲁克塔格且干布拉克地区泥质岩源区母岩以岩浆岩为主,磷、钒等成矿元素与中基性岩浆岩有关。本次研究基于下寒武统泥页岩的地球化学数据,结合前人大量研究,旨在恢复早寒武世塔东地区的古气候特征、古地理背景及古构造单元,推断物源背景,探讨塔里木盆地下寒武统泥页岩的成因演化模式。

  • 塔里木盆地位于中国新疆南部,经纬度为74°~91° E,36°~42° N,是一个大型多旋回叠合盆地,面积约56×104 km2,该盆地是我国最大的内陆盆地。盆地北向为天山山脉,西南向为昆仑山脉,周边还有其他次一级山脉,东北向为库鲁克塔格山,东南向为阿尔金山,西北向为柯坪塔格山。盆地中央是我国最大的沙漠——塔克拉玛干沙漠,面积约33.7×104 km2,盆地自然条件差,勘探程度较低,油气资源量丰富。本文研究区位于塔里木东北缘的库鲁克塔格地区,位于天山山脉的南端,向北以辛格尔断裂为界,向南以孔雀河断裂为界,西起库尔勒,向东至玉儿滚布拉克一带[11]图1)。该区以兴地断裂为界可分为南、北两区,兴地断裂形成于中元古代,是一条穿越整个库鲁克塔格地区的深大断裂,控制了南、北两区自新元古代以来的沉积过程。研究剖面恰克马克铁什I号和恰克马克铁什Ⅱ号位于兴地断裂北侧。

    Figure 1.  Distribution of Cambrian⁃Ordovician outcrops in Kuluketage area, northeast margin of Tarim Basin(modified from reference [11])

  • 塔里木盆地是在前震旦纪陆壳基底上发展起来的大型复合叠合盆地[12],新元古代早期,南、北塔里木陆块拼合形成统一结晶的克拉通基底[13]。南华纪初期,随着Rodinia古陆的裂解,受控板块边缘的俯冲作用和Rodinia超级地幔柱的影响,塔里木内部和边缘发生强烈的裂陷作用。至震旦纪中晚期,塔里木北缘南天山洋、南缘西昆仑—阿尔金—祁连洋已经打开,塔里木周缘演化成被动大陆边缘[14],被洋盆包围,同时柯坪运动大范围发育,对盆地南部影响较强,在中央高磁异常带南部形成相对较高的大面积隆起[15]。晚震旦世,塔里木盆地处于稳定的构造背景之下,塔北地区为克拉通内拗陷演化阶段,以热沉降为主,持续的海侵使得塔北残余古陆逐渐消失,塔北地区整体接受沉积,稳定的构造背景以及陆源碎屑的减少,开始发育碳酸盐岩沉积体系。震旦纪末期,整个塔里木盆地经历了一次构造抬升及海退过程,震旦系遭受长期风化剥蚀作用[16]

  • 前人研究发现塔里木盆地前寒武系发育广泛分布的大型不整合[17]。下寒武统玉尔吐斯组沉积期,塔里木盆地北部发生广泛海侵[18]图2),南部地区缺少震旦系的大面积连片沉积,形成大面积的中央隆起带,在同1井—巴探5井—玛北1井—玉龙6井—中深1井一带广泛分布,呈东西走向[18]图2)。

    Figure 2.  Lithofacies palaeogeography of Lower Cambrian Yuertusi Formation in Tarim Basin(modified from reference [18])

    下寒武统沉积期,中央隆起带西部基底组成为新元古代绿片岩相变质基底[16],方1、和4井钻穿寒武系盖层,基底为玄武岩等基性火成岩[17]。中央隆起带东部基底由元古宙中浅变质岩组成[19],塔东2井前寒武纪样品为角闪质花岗岩,矿物含量主要为钾长石(49%~54%)、钠长石(5%~30%)、石英(10%~20%)、角闪石(10%~20%)[20]。中央隆起带中部缺失南华系—震旦系、下寒武统玉尔吐斯组沉积[21],塔参1井钻穿寒武系后钻遇花岗闪长岩,中深1井发现含石榴石花岗岩样品,主要矿物为斜长石(30%~35%)、微斜长石(15%~25%)、石英(40%~55%)和少量石榴石(小于5%)[22]

  • 基于野外露头观察、样品分析、光学显微镜观察等沉积学分析手段,从宏观和微观视觉上分别对恰克马克铁什I号剖面和恰克马克铁什Ⅱ号剖面下寒武统西山布拉克组和西大山组进行精细描述并建立了岩性柱状图(图3)。

    Figure 3.  Lithological column of section QKMK⁃I and QKMK⁃Ⅱ in the study area

    恰克马克铁什Ⅰ号剖面西山布拉克组底部为一套火成岩(图4a),与上部灰黑色硅质岩侵入接触,西山布拉克组上部发育灰黑色硅质岩夹灰色页岩(图4b),西大山组底部为灰色砂质灰岩与灰色灰岩夹灰黑色钙质页岩,中部发育灰白色灰岩夹白云质砂岩,顶部发育灰色—深灰色泥质灰岩、灰黑色页岩与灰黑色钙质页岩互层(图4c)。恰克马克铁什Ⅱ号剖面西山布拉克组发育一整套灰黑色硅质岩,中间夹灰褐色磷质页岩(图4d),与下伏汉格尔乔克组冰碛岩呈不整合接触关系(图4e),西大山组发育黄褐色泥质灰岩与灰黑色钙质页岩互层(图4f)。

    Figure 4.  Photos of the study area

  • 本文针对恰克马克铁什I号和恰克马克铁什Ⅱ号两个剖面的不同岩相,从西山布拉克组和西大山组选取74块样品,其中恰克马克铁什I号剖面39个样品(表1),恰克马克铁什Ⅱ号剖面35个样品(表2)。将岩石样品磨至为200目以下的粉末,进行主量和微量元素测试,测试结果如表1,2

    样品编号Si/%Al/%Fe/%Na/%K/%MnO/%La/ScTh/ScCe/Ce*(La/Ce)N
    Q1-4115.691.9200.6030.3780.4310.0295.730.950.871.60
    Q1-4028.783.1500.9971.0300.7990.0324.230.880.911.50
    Q1-3916.052.0800.8390.2970.4740.0776.311.020.891.49
    Q1-3811.281.3200.4320.3220.2460.0229.010.960.891.53
    Q1-3713.351.6400.5580.3620.3240.0297.211.120.861.56
    Q1-3622.773.4800.9640.3180.8860.0213.761.080.951.38
    Q1-3511.622.1800.6530.3420.5200.0174.360.960.911.40
    Q1-3496.830.4100.6180.0700.0850.0047.121.570.671.93
    Q1-3396.410.4801.2000.1110.1050.0044.860.980.532.20
    Q1-3290.382.7002.1300.5740.8960.0045.711.090.781.73
    Q1-3197.040.3800.6570.0840.082<0.0044.211.150.711.71
    Q1-3090.103.5001.5400.6841.100<0.0045.791.200.761.83
    Q1-2996.330.5030.6920.0920.1000.0045.931.340.691.69
    Q1-2896.770.4040.7660.1300.1050.00411.862.160.542.48
    Q1-2797.410.3960.6830.0510.0850.0053.850.660.551.95
    Q1-2692.552.3400.7870.1980.486<0.0046.090.720.662.10
    Q1-2596.450.5890.8860.0830.0990.0047.800.980.562.20
    Q1-2496.220.2010.9910.0450.0450.0082.191.530.851.67
    Q1-2394.760.6921.3300.1220.123<0.0042.861.570.452.01
    Q1-2293.012.1300.6670.5540.439<0.0045.400.850.632.34
    Q1-2195.140.9810.8300.0960.163<0.0043.740.740.442.71
    Q1-2093.561.4200.3770.8740.314<0.0048.960.470.712.16
    Q1-1996.010.9840.6880.0590.2270.0077.020.750.482.58
    Q1-1896.030.4661.0900.1020.081<0.00413.930.750.501.73
    Q1-1796.110.5231.0400.1140.1100.00619.000.950.612.24
    Q1-1695.700.5910.6060.1370.111<0.00417.180.680.403.03
    Q1-1592.882.4401.0700.1860.8200.0081.530.730.482.84
    Q1-1491.413.1500.4720.3081.210<0.00420.001.160.602.92
    Q1-1310.071.8004.9101.0800.2062.6311.230.812.430.58
    Q1-1274.0010.0304.1000.4874.0400.0095.981.260.801.83
    Q1-1176.5211.1001.3501.2203.390<0.0045.190.680.771.82
    Q1-1078.9510.3400.5270.9333.330<0.0045.650.700.801.79
    Q1-977.7210.6401.0900.9863.310<0.0045.080.650.771.87
    Q1-887.355.1200.5440.3351.710<0.0047.830.720.582.32
    Q1-792.742.4200.5790.1420.8820.0046.310.620.692.08
    Q1-690.043.8100.5310.2451.250<0.0046.480.530.512.63
    Q1-578.514.2302.0400.6821.080<0.0046.520.350.462.74
    Q1-488.044.3901.0500.5891.430<0.0047.080.810.622.10
    Q1-243.7215.67010.5703.9201.4000.1221.270.091.011.32
    样品编号Si/%Al/%Fe/%Na/%K/%MnO%La/ScTh/ScCe/Ce*(La/Ce)N
    Q2-4810.700.5410.9560.1230.1280.0635.410.850.791.76
    Q2-4797.270.2840.5820.0680.0630.00616.940.700.562.67
    Q2-4696.750.3270.6460.0830.0710.0059.040.680.552.68
    Q2-4597.720.2340.5680.0580.0610.0054.240.370.492.64
    Q2-4497.470.2860.4270.0890.0750.0062.770.210.343.53
    Q2-4397.630.3070.5050.1010.0960.0054.280.370.353.56
    Q2-4296.840.4080.6330.0940.1160.00410.050.490.473.11
    Q2-4196.910.2590.8490.0970.0700.0040.850.100.462.61
    Q2-4023.658.41012.9000.2742.5100.00214.300.360.463.24
    Q2-3936.165.1903.0800.4251.3900.00210.031.150.542.16
    Q2-3818.956.4606.1600.2671.7600.0029.910.430.562.32
    Q2-3743.1610.53011.6900.3055.5600.00236.211.251.021.42
    Q2-3627.0713.61013.2200.5624.2400.0059.380.690.561.51
    Q2-3519.7814.87016.6901.9504.9700.00515.120.860.451.49
    Q2-3479.910.2211.4100.0520.0530.00774.440.690.443.21
    Q2-3395.400.2442.3000.0320.0690.0135.250.480.572.05
    Q2-3234.672.2602.2200.2270.7730.1411.180.260.642.06
    Q2-3195.381.6401.0300.0300.5680.0191.180.320.612.64
    Q2-3037.634.3001.0200.2141.8300.0950.160.160.612.26
    Q2-2997.810.3360.5080.0220.0840.0050.490.370.571.57
    Q2-2894.510.8130.6350.0540.2460.0070.280.190.642.02
    Q2-2797.530.3011.0100.0500.0870.0041.080.530.731.67
    Q2-2697.060.6480.9900.0630.2220.0040.610.490.672.18
    Q2-2591.970.8013.6300.0730.2590.0480.500.330.721.81
    Q2-2490.290.6101.2500.0470.1930.0160.270.190.801.56
    Q2-2396.040.5080.7590.0190.1780.0040.510.550.671.72
    Q2-2292.411.2800.6440.0840.4210.0170.350.320.811.44
    Q2-2195.680.4160.6390.0240.1140.0180.330.410.741.55
    Q2-2096.940.8350.7260.0410.2320.0100.620.490.681.75
    Q2-1997.340.8240.7130.0300.2620.0070.240.380.731.63
    Q2-1811.511.3000.6000.0240.4300.1003.670.650.841.61
    Q2-1744.916.0702.1600.2632.7300.0524.571.641.081.26
    Q2-1645.206.1802.3500.2712.7100.0446.341.840.981.44
    Q2-1547.896.4302.4800.5092.8700.0446.282.081.131.27
    Q2-149.631.7802.8000.3380.6510.0912.300.651.091.22

    分析测试在核工业北京地质研究院分析测试研究中心进行。主量元素使用Axios-mAX波长色散X射线荧光光谱仪,微量元素使用ELEMENT-XR等离子体质谱仪。

  • 石英和长石的抗风化能力具有差异,石英抗风化能力很强,SiO2元素含量在温暖湿润的强风化作用中能够较多地保留,长石抗风化能力较弱,Al2O3、K2O、Na2O等元素容易因风化作用而流失,在强风化条件下含量较低。因此,利用SiO2/(Al2O3+K2O+Na2O)图解可以对气候类型进行判别(图5)。彭洪超等[23]通过古地磁的研究认为库鲁克塔格地区早寒武世位于30°S左右的地理位置,为湿热的气候条件。从研究区气候类型判别图解中可以看出,西山布拉克组整体为湿润气候,少数投影点为半干旱—干旱气候。

    Figure 5.  Discrimination diagram of climate types in the study area

    西大山组与汉格尔乔克组均为半干旱气候条件,反映了从汉格尔乔克组—西山布拉克组—西大山组沉积时,气候逐渐由半干旱—温暖湿润—半干旱。说明早寒武世塔里木盆地东北缘迅速从埃迪卡拉纪末期的寒冷干旱气候中恢复,随后又逐渐向半干旱气候转变。

    Nesbitt et al.[24]提出化学蚀变指数(CIA)用以反映物源区化学风化程度,CIA主要反映长石相对于黏土矿物的含量,其计算公式为:

    CIA=Al2O3/(Al2O3+CaO*+Na2O+K2O)×100[24]

    式中:各氧化物均以摩尔分数为单位,强调其矿物学关系。这里的CaO*是除了碳酸盐岩的Ca元素,也即全岩CaO扣除化学沉积CaO的摩尔分数,比例超过90%表明大量的长石转换为黏土以及强烈的风化。在无法独立获得化学沉积中CaO含量的情况下,其校正公式一般采用:

    CaO*=min(CaO-P2O5×103,Na2O)[25]

    与此同时,化学风化程度与气候还有着强烈的正相关关系。炎热湿润的气候条件往往带来较强的化学风化程度,因此CIA指数还广泛用于反映沉积时气候条件的变化。沉积物CIA值50~65之间反映寒冷干燥气候,65~85为温暖湿润气候,85~100则代表炎热潮湿气候[24]

    使用CIA参数的一个局限是,古老碎屑岩普遍存在的沉积后K的增加。因此,一些学者提出了一个不包含K的指数,即化学风化指数(CIW),定义为:

    CIW=Al2O3/(Al2O3+CaO*+Na2O)×100

    恰克马克铁什Ⅰ号剖面CIA指数自下而上总体降低,但期间经历了两次由温暖潮湿向寒冷干旱气候的转变,反映了寒武纪早期气候的波动(图6)。恰克马克铁什Ⅱ号剖面CIA指数从埃迪卡拉纪汉格尔乔克组开始逐渐升高,在埃迪卡拉纪—寒武纪转折期达到最高,随后再次逐渐降低,反映了埃迪卡拉纪冰川逐渐消退,早寒武世气候逐渐变暖,进入寒武纪以后又再次变得寒冷干旱。

    Figure 6.  Palaeoclimate evolution diagram of the study area

  • 根据前人研究,硅质岩在洋中脊、大洋盆地和大陆边缘三种不同沉积背景中,稀土元素值有显著区别,其平均Ce/Ce*值(Ce/Ce*=CeN/(LaN+NdN2))分别为0.29、0.58、1.03[26]。洋中脊附近硅质岩(La/Ce)N值大于等于3.5,大洋盆地硅质岩的(La/Ce)N值介于2~3,大陆边缘硅质岩的(La/Ce)N值在1左右[27]。根据恰克马克铁什Ⅰ号、Ⅱ号剖面Ce/Ce*值和(La/Ce)N值变化特征(图7),结合寒武纪早期塔里木盆地边缘受到强烈的地壳伸展拉张作用影响[28],认为西山布拉克组硅质岩沉积背景为距离洋中脊不远的大洋盆地,少数沉积于大陆边缘背景,其上覆的西大山组和下伏的汉格尔乔克组均显示出稳定的大陆边缘背景。

    Figure 7.  Characteristic diagram of content variation of Ce/Ce* and (La/Ce)N

    Savoy et al.[29]设计了泥质岩的La-Th-Sc判别图解。在对研究区泥页岩应用La-Th-Sc判别图解(图8)时发现,恰克马克铁什Ⅰ号剖面泥页岩投点主要落于被动大陆边缘沉积物区域,为陆内较稳定的构造环境;恰克马克铁什Ⅱ号剖面泥页岩投点较为分散,在被动大陆边缘沉积物区域及与岩浆弧有关的沉积物区域分布较多,指示该区域构造环境变化较大。

    Figure 8.  La⁃Th⁃Sc provenance discrimination diagram for mud shale in the study area (base map from reference [29])

    Th、Sc元素的富集受到物源区母岩类型的控制。典型大陆上地壳(UC)中,Th元素和Sc元素富集程度相近,而铁镁质物源则具有Sc元素富集的特征。因此,可用Th-Sc图解来识别两类不同源区的母岩[30]。在Th-Sc图解(图9)中,恰克马克铁什Ⅰ号剖面西大山组和西山布拉克组泥页岩的投影点均靠近Th/Sc=1趋势线,Th元素和Sc元素富集程度相近,反映沉积物源区母岩含有较高的硅铝质组分;恰克马克铁什Ⅱ号剖面西山布拉克组泥页岩的投影点靠近Th/Sc=0.2趋势线,指示沉积物源区母岩具有较高的铁镁质组分。两者差异反映了其物源背景的不同,中央隆起带基底性质为酸性岩浆岩,因此判断中央隆起带东部可能为恰克马克铁什Ⅰ号剖面提供物源。塔西隆起为基性火成岩,但由于其距离研究区较远,因此判断恰克马克铁什Ⅱ号剖面受到铁镁质热液的影响。

    Figure 9.  Th⁃Sc diagram for mud shale in the study area (base map from reference [30])

    根据前人的研究,基于几种主量、微量和稀土元素的判别函数图被用于推断硅质碎屑岩的来源[25,31]。本文中的公式化判别函数(即双变量F1、F2)是基于不易流失和容易流失的几种主量元素的浓度来进行计算。从公式化判别图解(图10)可以看出,恰克马克铁什Ⅰ号剖面投影点几乎全部落在石英岩沉积物源区,恰克马克铁什Ⅱ号剖面投影点主要落在石英岩沉积物源区,少部分落在铁镁质火成岩物源区。

    F1=-1.773×TiO2%+0.607×Al2O3%+0.76×Fe2O3T%+-1.5×MgO%+0.616×CaO%+0.509×Na2O%+-1.22×K2O%-9.09
    F2=0.445×TiO2%+0.07×Al2O3%+-0.25×Fe2O3T%+-1.142×MgO%+0.432×Na2O%+1.426×K2O%-6.861

    Figure 10.  Discriminant function diagram of mud shale provenance in the study area

    Taylor et al.[32]提出,运用Th/Sc-La/Sc图解可以衡量沉积物物源区地壳物质所占的比例。岩浆岩从基性—酸性,La/Sc值与Th/Sc值具有较好的正相关性,因此将沉积物中的相关比值与此值作比较,可以反映沉积物源区的母岩性质。图11显示,恰克马克铁什Ⅰ号剖面的投点位于中性—中酸性岩浆岩区域,指示源区母岩可能为花岗闪长岩、英云闪长岩、英安岩等岩浆岩;恰克马克铁什Ⅱ号剖面的投点位于基性—中酸性之间,沉积物物源既来自于长英质组分的岩石,也来自于铁镁质组分的岩石,具有混合源区的特征。

    Figure 11.  Th/Sc⁃La/Sc discrimination diagram of mud shale in the study area (base map from reference [32])

    以上结果表明,恰克马克铁什Ⅰ号剖面和恰克马克铁什Ⅱ号剖面硅质岩都具有大洋盆地的沉积背景,但是其物源区母岩性质不同。恰克马克铁什Ⅰ号剖面母岩性质为中性—中酸性岩浆岩,含较多硅铝质组分。研究区北部随着伊犁、中天山地块的裂解,形成南天山洋盆[33],其物源可能来自中央隆起带中部前寒武系的中酸性喷出岩。恰克马克铁什Ⅱ号剖面母岩性质为基性—中酸性岩浆岩,其铁镁质组分较恰克马克铁什Ⅰ号剖面明显增加,结合其构造环境背景分析,除中央隆起带物源的输入外,可能还受到海底铁镁质热液喷出的影响。

  • 此岩相广泛分布于恰克马克铁什Ⅰ号剖面和恰克马克铁什Ⅱ号剖面西山布拉克组,是西山布拉克组的主要组成部分。在野外照片中表现为灰黑色薄层状,厚70~80 m,与下伏安山岩侵入接触。矿物成分以石英为主,含量高达90%以上。颗粒间以黏土矿物作为基质,含少量方解石晶体(图12a),局部可见少量黄铁矿发育(图12b),反映沉积时的深水缺氧还原环境。

    Figure 12.  Under microscope and field photographs of gray⁃black siliceous rocks

    据前人研究,海相地层中的TiO2一般为陆源碎屑成因[34]。将Al2O3、SiO2分别与TiO2进行相关性分析(图13),发现在恰克马克铁什Ⅰ号剖面中,Al2O3与TiO2呈正相关关系,说明Al2O3元素主要为陆源碎屑成因,SiO2与TiO2呈负相关,说明SiO2的产生与陆源碎屑无关。而恰克马克铁什Ⅱ号剖面中,Al2O3与TiO2含量呈正相关,SiO2与TiO2以及Al2O3均为负相关,说明SiO2为自生成因。从主量元素的垂向变化中也可以看出,西山布拉克组硅质岩SiO2与Al2O3的含量互为消长,且Al2O3含量增加时,岩相类型从硅质岩变为页岩。因此可得出结论,西山布拉克组硅质岩主要为自生成因,且陆源碎屑的输入对硅质岩的沉积起破坏作用。

    Figure 13.  Crossplots of some major elements in the study area

    硅质岩中Fe、Mn的富集主要与热水有关。因此可利用Al-Fe-Mn三元图来区分正常沉积和热水沉积的硅质岩(图14)。在恰克马克铁什Ⅰ号剖面中,西山布拉克组硅质岩样品投影点在正常沉积区占63%,热水沉积区占37%,在恰克马克铁什Ⅱ号剖面中,西山布拉克组硅质岩样品投影点正常沉积区占41%,热水沉积区占59%。说明西山布拉克组硅质岩成因并不是完全的自生化学成因或热液成因,而是由两种成因类型混合而成,恰克马克铁什Ⅰ号剖面西山布拉克组硅质岩以正常沉积为主,恰克马克铁什Ⅱ号剖面西山布拉克组硅质岩以热水沉积为主。

    Figure 14.  Al⁃Fe⁃Mn ternary diagram of the study area

    前人研究表明,V、Cr、Ni、As、Sr、Mo、Ag、Cd、Sb、Ba和U等这些元素在泥质岩和硅质岩中的高度富集,常与深部物源密切相关[35]。从研究区恰克马克铁什Ⅰ号剖面和恰克马克铁什Ⅰ号剖面西山布拉克组样品的微量元素平均含量来看(表3),V、Cr、Ni、As、Sr、Mo、Ag、Cd、Sb、Ba、U等元素含量比地壳中同类岩石丰度明显增加,说明西山布拉克组硅质岩具有受到深部物源影响的特征。

    元素VCrNiSrMoCdSbBaU
    恰马Ⅰ西山布拉克组587.95440.9733.14302.4429.574.423.961 663.5011.26
    恰马Ⅱ西山布拉克组1 546.16641.3880.64119.0746.294.374.151 610.9022.10
    黏土岩130.0100.068.0450.02.00.32.0800.03.2
    注:黏土岩的数据据文献[36]。

    从研究区V、Cr、Ni、As、Sr、Mo、Ag、Cd、Sb、Ba、U等与深部物源有关的微量元素垂向变化特征(图15)中可以看出,总体上这些元素在西山布拉克组呈多期次的富集,其中恰克马克铁什Ⅰ号剖面受到深部物源影响的样品点约占38%,恰克马克铁什Ⅱ号剖面受到深部物源影响的样品点约占50%。根据前文主量元素交会图(图13)以及Al-Fe-Mn三元图(图14)的结果,结合早寒武世塔里木盆地处于强烈拉张环境的背景,以及深部物源的影响,可以判断研究区西山布拉克组硅质岩沉积时总体处于伸展构造的背景,硅质岩为海水沉积和热液沉积混合而成。其中恰克马克铁什Ⅰ号剖面硅质岩以海水成因为主,部分遭到陆源碎屑输入的破坏,恰克马克铁什Ⅱ号剖面硅质岩受热液影响的程度更高。

    Figure 15.  Variation characteristics diagram of some trace elements in the study area

  • 通过对研究区西山布拉克组和西大山组泥页岩进行古气候及物源分析,还原了该套泥页岩的成因模式,绘制了研究区早寒武世泥页岩沉积模式图。研究区构造环境为克拉通边缘坳陷盆地,沉积时主要为深水盆地环境。西山布拉克组—西大山组气候逐渐变得寒冷干旱,沉积序列由一套深海混合成因硅质岩逐渐转变为浅海自生碳酸盐岩。

    西山布拉克组主要沉积一整套灰黑色硅质岩(图16),沉积时气候温暖湿润,岩石风化作用加强,陆源碎屑输入的强度增加,表现为地层中的Al2O3和TiO2等元素含量的增加,形成硅质岩夹层中的页岩,同时海平面上升,沉积物形成的构造环境为深水盆地,此时硅质岩的成因以海水沉积成因和深部热液成因为主。

    Figure 16.  Genetic pattern diagram of Lower Cambrian Xishanbulake Formation in the study area

    西大山组主要沉积浅海碳酸盐岩(图17),气候比西山布拉克组较为寒冷干旱,岩石化学风化作用减弱,陆源碎屑输入的强度降低,同时海平面下降,沉积物形成的构造环境为大陆边缘,海水沉积的作用进一步加强,岩性以灰色泥质灰岩、灰黄色泥质灰岩、灰黑色钙质页岩为主。

    Figure 17.  Genetic pattern diagram of Lower Cambrian Xidashan Formation in the study area

  • (1) 研究区古气候背景总体处于湿润—半干旱条件,由埃迪卡拉纪进入寒武纪时期,气候条件由寒冷干旱转变为温暖湿润,寒武纪早期具有明显波动。

    (2) 西山布拉克组硅质岩的沉积背景为大洋盆地背景,其上覆的西大山组和下伏的汉格尔乔克组均显示出稳定的大陆边缘背景。

    (3) 恰克马克铁什Ⅰ号剖面物源可能来自中央隆起带中部前寒武系的花岗闪长岩、橄榄石花岗岩。恰克马克铁什Ⅱ号剖面除中央隆起带中部物源的输入外,还受到了海底铁镁质热液的影响。

    (4) 硅质岩为海水沉积和热液沉积混合而成,多期次深部热液的喷出影响了硅质岩的成因,其中恰克马克铁什Ⅰ号剖面硅质岩以海水成因为主,部分受到热液影响,恰克马克铁什Ⅱ号剖面硅质岩以热液成因为主。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return