Advanced Search
Volume 41 Issue 4
Aug.  2023
Turn off MathJax
Article Contents

LIU XinYu, HU XiuMian, XU YiWei, JIANG JingXin, SUN GaoYuan. Late Cretaceous Carbonate Microfacies and Sedimentary Environmental Evolution in the Lurestan-Fars Areas, Iran[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1124-1137. doi: 10.14027/j.issn.1000-0550.2021.169
Citation: LIU XinYu, HU XiuMian, XU YiWei, JIANG JingXin, SUN GaoYuan. Late Cretaceous Carbonate Microfacies and Sedimentary Environmental Evolution in the Lurestan-Fars Areas, Iran[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1124-1137. doi: 10.14027/j.issn.1000-0550.2021.169

Late Cretaceous Carbonate Microfacies and Sedimentary Environmental Evolution in the Lurestan-Fars Areas, Iran

doi: 10.14027/j.issn.1000-0550.2021.169
Funds:

National Natural Science Foundation of China 91755209

420 72124, 41888101 42072124

 41888101

  • Received Date: 2021-04-27
  • Accepted Date: 2022-01-20
  • Rev Recd Date: 2021-12-22
  • Available Online: 2022-01-20
  • Publish Date: 2023-08-10
  • The Arab region in the Middle East has developed extremely thick carbonate deposits since the Late Cretaceous, creating favorable reservoirs for oil and gas resources. The evolution of its sedimentary environment has long been a focus of the international academic community. In this study, three stratigraphic sections (Kermanshan-KM section, Khoramabad-AD section, Hkhormoj-HM section) are taken as the research objects located in the Lurestan-Fars areas on the northern margin of the Arabian Plate (Zagros, Iran). Detailed field observation and thin section analysis of the Upper Cretaceous Savark, Ilam and Gurpi Formations are conducted. In total, 13 carbonate microfacies were identified and grouped into 3 sedimentary facies: outer, middle, and inner ramps. During the Santonian, these three sections were in a deep-water outer ramp environment, while in the Campanian, the AD and KM sections changed from outer to inner ramp, indicating a sudden shallowing of paleo-water depth. However, at the same time, the HM section was still in outer ramp. Considering the different distances between three sections from the ophiolite belt, we suggest that the shallowing events recorded in sections KM & AD of the Lurestan area during the Campanian are related to the ophiolite obduction in the north, while the HM section in the Fars area is too far away from the ophiolite belt.
  • [1] Hollis C. Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate[J]. Petroleum Geoscience, 2011, 17(3): 223-241.
    [2] Beydoun Z R. Arabian Plate oil and gas: Why so rich and so prolific?[J]. Episodes, 1998, 21(2): 74-81.
    [3] James G A, Wynd J G. Stratigraphic nomenclature of Iranian oil consortium agreement area[J]. AAPG Bulletin, 1965, 49(12): 2182-2245.
    [4] Alavi M. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution[J]. American Journal of Science, 2004, 304(1): 1-20.
    [5] Motiei H. Stratigraphy of zagros[J]. Treatise on the Geology of Iran, 1993, 1: 60-151.
    [6] Ahmadipour R M. The role of Sarvak Formation in supplying Pol-e Dokhtar town (Iran) with drinking water[J]. Acta Carsologica, 2011, 31(2): 93-103.
    [7] Mehrabi H, Rahimpour-Bonab H. Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian-early Turonian carbonate reservoirs, Dezful Embayment, SW Iran[J]. Facies, 2014, 60(1): 147-167.
    [8] Mashhadi Z S, Rabbani A R, Kamali M R. Geochemical characteristics and hydrocarbon generation modeling of the Kazhdumi (Early Cretaceous), Gurpi (Late Cretaceous) and Pabdeh (Paleogene) formations, Iranian sector of the Persian Gulf[J]. Marine and Petroleum Geology, 2015, 66: 978-997.
    [9] Zarei E, Ghasemi-Nejad E. Sequence stratigraphy of the Gurpi Formation (Campanian-Paleocene) in southwest of Zagros, Iran, based on palynomorphs and foraminifera[J]. Arabian Journal of Geosciences, 2015, 8(6): 4011-4023.
    [10] Afghah M, Fadaei H R. Biostratigraphy of Cenomanian succession in Zagros area (southwest of Iran)[J]. Geosciences Journal, 2015, 19(2): 257-271.
    [11] Beiranvand B, Ghasemi-Nejad E. High resolution planktonic foraminiferal biostratigraphy of the Gurpi Formation, K/Pg boundary of the Izeh zone, SW Iran[J]. Revista Brasileira de Paleontologia, 2013, 16(1): 5-26.
    [12] Murris R J. Middle East: Stratigraphic evolution and oil habitat[J]. AAPG Bulletin, 1980, 64(5): 597-618.
    [13] Koop W J, Stoneley R. Subsidence history of the Middle East Zagros Basin, Permian to recent[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1982, 305(1489): 149-168.
    [14] Martin A Z. Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences[J]. GeoArabia, 2001, 6(3): 445-504.
    [15] Ghabeishavi A, Vaziri-Moghaddam H, Taheri A, et al. Microfacies and depositional environment of the Cenomanian of the Bangestan anticline, SW Iran[J]. Journal of Asian Earth Sciences, 2010, 37(3): 275-285.
    [16] Mehrabi H, Rahimpour-Bonab H, Hajikazemi E, et al. Controls on depositional facies in Upper Cretaceous carbonate reservoirs in the Zagros area and the Persian Gulf, Iran[J]. Facies, 2015, 61(4): 23.
    [17] Mehrabi H, Rahimpour-Bonab H, Enayati-Bidgoli A H, et al. Depositional environment and sequence stratigraphy of the Upper Cretaceous Ilam Formation in central and southern parts of the Dezful Embayment, SW Iran[J]. Carbonates and Evaporites, 2014, 29(3): 263-278.
    [18] Zarei E, Ghasemi-Nejad E. Sedimentary and organic facies investigation of the Gurpi Formation (Campanian-Paleocene) in southwest of Zagros, Iran[J]. Arabian Journal of Geosciences, 2014, 7(10): 4265-4278.
    [19] Piryaei A, Reijmer J J G, van Buchem F S P, et al. The influence of Late Cretaceous tectonic processes on sedimentation patterns along the northeastern Arabian Plate margin (Fars province, SW Iran)[J]. Geological Society, London, Special Publications, 2010, 330(1): 211-251.
    [20] Homke S, Vergés J, Serra-Kiel J, et al. Late Cretaceous-Paleocene formation of the Proto-Zagros foreland basin, Lurestan province, SW Iran[J]. GSA Bulletin, 2009, 121(7/8): 963-978.
    [21] Sarfi M, Ghasemi-Nejad E, Mahanipour A, et al. Integrated biostratigraphy and geochemistry of the Lower Cretaceous Radiolarian Flood Zone of the base of the Garau Formation, northwest of Zagros Mountains, Iran[J]. Arabian Journal of Geosciences, 2015, 8(9): 7245-7255.
    [22] Homke S, Vergés J, Garcés M, et al. Magnetostratigraphy of Miocene-Pliocene Zagros foreland deposits in the front of the Push-e Kush Arc (Lurestan province, Iran)[J]. Earth and Planetary Science Letters, 2004, 225(3/4): 397-410.
    [23] 吴福元,万博,赵亮,等. 特提斯地球动力学[J]. 岩石学报,2020,36(6):1627-1674.

    Wu Fuyuan, Wan Bo, Zhao Liang, et al. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627-1674.
    [24] 张洪瑞,侯增谦. 伊朗扎格罗斯造山带构造演化与成矿[J]. 地质学报,2015,89(9):1560-1572.

    Zhang Hongrui, Hou Zengqian, Tectonic evolution and metallogeny of Zagros, Iran[J]. Acta Geologica Sinica, 2015, 89(9): 1560-1572.
    [25] Piryaei A, Reijmer J J G, Borgomano J, et al. Late Cretaceous tectonic and sedimentary evolution of the Bandar Abbas area, Fars region, southern Iran[J]. Journal of Petroleum Geology, 2011, 34(2): 157-180.
    [26] Berberian M, King G C P. Towards a paleogeography and tectonic evolution of Iran[J]. Canadian Journal of Earth Sciences, 1981, 18(2): 210-265.
    [27] Agard P, Omrani J, Jolivet L, et al. Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation[J]. International Journal of Earth Sciences, 2005, 94(3): 401-419.
    [28] Farzipour-Saein A, Yassaghi A, Sherkati S, et al. Basin evolution of the Lurestan region in the Zagros fold-and-thrust belt, Iran[J]. Journal of Petroleum Geology, 2009, 32(1): 5-19.
    [29] Hallam A. Geology and plate tectonics interpretation of the sediments of the Mesozoic radiolarite-ophiolite complex in the Neyriz region, southern Iran[J]. GSA Bulletin, 1976, 87(1): 47-52.
    [30] Alavi M, Mahdavi M A. Stratigraphy and structures of the Nahavand region in western Iran, and their implications for the Zagros tectonics[J]. Geological Magazine, 1994, 131(1): 43-47.
    [31] Bordenave M L. Gas prospective areas in the Zagros domain of Iran and in the gulf Iranian waters[M]. Houston: AAPG Annual Meeting, 2003.
    [32] Afghah M, Ghiyasi A A. Biostratigraphy of Gurpi Formation (Late Cretaceous) in Interior Fars: Bavan area, central Zagros (southwestern Iran)[J]. Journal of Earth Science & Climatic Change, 2013, 4(3): 1000137J.
    [33] Rahimpour-Bonab H, Mehrabi H, Enayati-Bidgoli A H, et al. Coupled imprints of tropical climate and recurring emergence on reservoir evolution of a mid Cretaceous carbonate ramp, Zagros Basin, southwest Iran[J]. Cretaceous Research, 2012, 37: 15-34.
    [34] Sepehr M, Cosgrove J W. Structural framework of the Zagros fold-thrust belt, Iran[J]. Marine and Petroleum Geology, 2004, 21(7): 829-843.
    [35] Wrobel-Daveau J C, Ringenbach J C, Tavakoli S, et al. Evidence for mantle exhumation along the Arabian margin in the Zagros (Kermanshah area, Iran)[J]. Arabian Journal of Geosciences, 2010, 3(4): 499-513.
    [36] Glennie K W. Cretaceous tectonic evolution of Arabia’s eastern plate margin: A tale of two oceans[M]//Alsharhan A S, Scott R W. Middle East models of Jurassic/Cretaceous carbonate systems. SEPM, Tulsa, 2000.
    [37] Wilson H H, Glennie D K W. “The age of the Hawasina and other problems of Oman mountains geology”[J]. Journal of Petroleum Geology, 2001, 24(4): 477-484.
    [38] Sherkati S, Letouzey J, Frizon de Lamotte D. Central Zagros fold-thrust belt (Iran): New insights from seismic data, field observation, and sandbox modeling[J]. Tectonics, 2006, 25(4): TC4007.
    [39] Sharland P R, Archer R, Casey D M, et al. Arabian Plate sequence stratigraphy[M]. Bahrain: GeoArabia, Special Publication, Gulf PetroLink, Bahrain, 2001.
    [40] Alavi M. Structures of the Zagros fold-thrust belt in Iran[J]. American Journal of Science, 2007, 307(9): 1064-1095.
    [41] Golonka J. Cambrian-Neogene plate tectonic maps[M]. Krakoẃ: Wydawnictwa Uniwersytetu Jagielloñskiego, 2000.
    [42] Dunham R J. Classification of carbonate rocks according to depositional textures[M]//Ham W E. Classification of carbonate rocks — A symposium. Tulsa: American Association of Petroleum Geologists, 1962: 108-121.
    [43] Embry A F, Klovan J E. A Late Devonian reef tract on northeastern banks island, N.W.T.[J]. Bulletin of Canadian Petroleum Geology, 1971, 19(4): 730-781.
    [44] Fügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin, Heidelberg: Springer, 2010.
    [45] Mohseni H, Al-Aasm I S. Tempestite deposits on a storm-influenced carbonate ramp: An example from the Pabdeh Formation (Paleogene), Zagros Basin, SW Iran[J]. Journal of Petroleum Geology, 2004, 27(2): 163-178.
    [46] Masse J P. The Lower Cretaceous Mesogean benthic ecosystems: Palaeoecologic aspects and palaeobiogeographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 91(3/4): 331-345.
    [47] Li J, Hu X M, Garzanti E, et al. Late Cretaceous topographic doming caused by initial upwelling of Deccan magmas: Stratigraphic and sedimentological evidence[J]. GSA Bulletin, 2020, 132(3/4): 835-849.
    [48] Farahpour M, Hessami K. Cretaceous sequence of deformation in the SE Zagros fold-thrust belt[J]. Journal of the Geological Society, 2012, 169(6): 733-743.
    [49] Delaloye M, Desmons J. Ophiolites and melange terranes in Iran: A geochronological study and its paleotectonic implications[J]. Tectonophysics, 1980, 68(1/2): 83-111.
    [50] Ghazi A M, Hassanipak A A. Geochemistry of subalkaline and alkaline extrusives from the Kermanshah ophiolite, Zagros suture zone, western Iran: Implications for Tethyan plate tectonics[J]. Journal of Asian Earth Sciences, 1999, 17(3): 319-332.
    [51] Karim K H, Koyi H, Baziany M M, et al. Significance of angular unconformities between Cretaceous and Tertiary strata in the northwestern segment of the Zagros fold-thrust belt, Kurdistan region, NE Iraq[J]. Geological Magazine, 2011, 148(5/6): 925-939.
    [52] Fard I A, Braathen A, Mokhtari M, et al. Interaction of the Zagros fold-thrust belt and the Arabian-type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran[J]. Petroleum Geoscience, 2006, 12(4): 347-362.
    [53] Heydari E. Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran[J]. Tectonophysics, 2008, 451(1/2/3/4): 56-70.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(1)

Article Metrics

Article views(129) PDF downloads(65) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-04-27
  • Revised:  2021-12-22
  • Accepted:  2022-01-20
  • Published:  2023-08-10

Late Cretaceous Carbonate Microfacies and Sedimentary Environmental Evolution in the Lurestan-Fars Areas, Iran

doi: 10.14027/j.issn.1000-0550.2021.169
Funds:

National Natural Science Foundation of China 91755209

420 72124, 41888101 42072124

 41888101

Abstract: The Arab region in the Middle East has developed extremely thick carbonate deposits since the Late Cretaceous, creating favorable reservoirs for oil and gas resources. The evolution of its sedimentary environment has long been a focus of the international academic community. In this study, three stratigraphic sections (Kermanshan-KM section, Khoramabad-AD section, Hkhormoj-HM section) are taken as the research objects located in the Lurestan-Fars areas on the northern margin of the Arabian Plate (Zagros, Iran). Detailed field observation and thin section analysis of the Upper Cretaceous Savark, Ilam and Gurpi Formations are conducted. In total, 13 carbonate microfacies were identified and grouped into 3 sedimentary facies: outer, middle, and inner ramps. During the Santonian, these three sections were in a deep-water outer ramp environment, while in the Campanian, the AD and KM sections changed from outer to inner ramp, indicating a sudden shallowing of paleo-water depth. However, at the same time, the HM section was still in outer ramp. Considering the different distances between three sections from the ophiolite belt, we suggest that the shallowing events recorded in sections KM & AD of the Lurestan area during the Campanian are related to the ophiolite obduction in the north, while the HM section in the Fars area is too far away from the ophiolite belt.

LIU XinYu, HU XiuMian, XU YiWei, JIANG JingXin, SUN GaoYuan. Late Cretaceous Carbonate Microfacies and Sedimentary Environmental Evolution in the Lurestan-Fars Areas, Iran[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1124-1137. doi: 10.14027/j.issn.1000-0550.2021.169
Citation: LIU XinYu, HU XiuMian, XU YiWei, JIANG JingXin, SUN GaoYuan. Late Cretaceous Carbonate Microfacies and Sedimentary Environmental Evolution in the Lurestan-Fars Areas, Iran[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1124-1137. doi: 10.14027/j.issn.1000-0550.2021.169
  • 中东地区阿拉伯板块蕴藏着丰富的油气资源[1]。绝大多数的储层位于阿拉伯板块东北缘[2],即现今的伊拉克—伊朗—阿拉伯盆地。在长达3 000 km、宽达2 000 km的阿拉伯东北缘陆架上,连续沉积了巨厚的白垩纪地层,其碳酸盐岩储层保存良好,区域封闭性强,发育巨大的背斜圈闭,使得此区域发育多套含油气系统[2]

    本文研究地区位于阿拉伯板块北缘,现今伊朗扎格罗斯褶皱冲断带。前人对其地质演化以及地层格架做过系统研究,将扎格罗斯褶皱冲断带晚白垩世碳酸盐岩地层分为Savark组、Ilam组和Gurpi组[35],均为重要的烃源岩层位[67],且各组地层厚度和岩相变化较大[5]。这些地层变化受到构造活动、海平面升降以及古气候条件的综合影响[7]

    前人针对阿拉伯北缘不同地区烃源岩层位开展沉积环境、地球化学[89]以及生物地层[1011]的工作。Murris[12]和Koop et al.[13]提出阿拉伯北缘地区晚白垩世广泛发育碳酸盐岩缓坡沉积。其中Savark组碳酸盐岩普遍沉积在阿拉伯板块被动大陆边缘的浅水环境[1416],Ilam组同样为浅水碳酸盐岩,发育集合粒[1617],Gurpi组为盆地相泥灰岩。Piryaei et al.[19]对晚白垩世构造事件对阿拉伯板块东北缘沉积模式的影响做了研究。但是,结合阿拉伯北缘东—西部不同区域展开的晚白垩世沉积微相以及垂向沉积演化特征等对比研究工作尚未见文献报道。

    本文通过分析阿拉伯北缘西部Lurestan和Fars地区3个剖面晚白垩世Savark组、Ilam组、Gurpi组岩相发育特征(图1),确定了沉积相类型,探究晚白垩世沉积微相、沉积相在空间上演化的特征以及沉积环境变化,并结合前人研究成果讨论其可能的环境控制因素。

    Figure 1.  Geological map of the study areas on the northern margin of the Arabian Plate (modified from references [20⁃21])

  • 现今伊朗由北部欧亚大陆、中部伊朗地块以及南部的阿拉伯板块三个地块在不同时期拼合而成[23]。扎格罗斯造山带位于伊朗西南部,北起伊朗—土耳其边境,南至巴基斯坦莫克兰地区[24],长约1 200 km,为北西—南东向延伸。扎格罗斯造山带由三个近NW—SE向平行的构造单元组成(图1a):1)Urumieh-Dokhtar岩浆弧(UDMA);2)Sanandaj-Sirjan岩浆变质带(SSZ),西南侧为扎格罗斯推覆带(ZIZ),是一个由非洲—阿拉伯被动大陆边缘变质和未变质岩片组成的逆断层带;3)扎格罗斯褶皱冲断带(ZFTB),是造山带外部受应力作用较小的部分,由大约12 km厚的阿拉伯板块的沉积层(自元古代)组成[4,25]。扎格罗斯褶皱冲断带具有复杂的地质演化历史,南侧以扎格罗斯山前断裂(MFF)与阿拉伯板块未变形区域接触,北侧以扎格罗斯主逆冲断裂(MZT)与Sanandaj-Sirjan岩浆变质带相隔[24]

    阿拉伯板块北缘侏罗纪—早白垩世地层为新特提斯洋被动大陆边缘沉积,晚白垩世受蛇绿岩仰冲事件影响[2627]。随后阿拉伯板块与欧亚板块发生碰撞。阿拉伯板块北缘的主要构造变形发生在晚白垩世—上新世晚期[4,13,2830]。扎格罗斯造山带的形成至少是两期主要构造事件的结果,第一期是晚白垩世新特提斯洋开始初始闭合,发生逆冲作用与蛇绿岩仰冲,导致Savark组、Ilam组与中东其他地区同期地层受到不同程度的侵蚀(图2[3,3132],地层在侧向上发生明显的变化[4,3334],区域上同期碳酸盐岩地层在沉积学、古生物学和地球化学特征等方面也表现出不同的沉积特征,并逐渐形成扎格罗斯前陆盆地[4]。第二期是陆陆碰撞[35],导致新特提斯洋的完全闭合[3638],同时变形在阿拉伯板块内部传播,形成了扎格罗斯褶皱冲断带[36]。根据古地磁的研究,阿拉伯板块北缘在白垩纪处于赤道附近[4,12,3941]

    Figure 2.  Lithostratigraphic units of the Lurestan⁃Fars area in Zagros

  • 3条实测剖面位于现今伊朗Zagros盆地Lurestan地区Kermanshan城(简称为KM剖面,全文相同)、Khoramabad城(简称为AD剖面)和Fars地区的Hkhormoj城(简称为HM剖面)附近(图1b~d)。KM剖面位于Kermanshan城西南部约20 km(34°15′44.435″ N,47°3′20.862″ E)处,采样间距为2~3 m,共计116块岩石样品。AD剖面位于Khoramabad城东北约20 km(33°04′21.7″ N,47°19′14.4″ E)处,采样间距为2~3 m,共计120块岩石样品。HM剖面位于Hkhormoj城东南约25 km处(28°37′8.94″ N,51°34′53.41″ E),采样间距为2~3 m,共计86块岩石样品。

    3条剖面采集的样品均为碳酸盐岩,命名依据Dunham[42]提出,Embry et al.[43]修订后的分类方案。基于野外沉积特征,结合镜下322个灰岩薄片的观察,获取岩石的颗粒成分、基质类型、沉积组构、生物组合来进行沉积微相(microfacies, MF)划分和沉积环境的恢复,并与Flügel[44]修订的标准微相(standard microfacies, SMF)和缓坡微相(ramp microfacies, RMF)划分方案对比。

  • James et al.[3]对阿拉伯北缘自西向东划分为4个区域Lurestan、Khuzestan、Coastal Fars、Interior Fars,将上白垩统一般划分为Savark组、Ilam组、Gurpi组3个地层单元(图2)。本次研究区位于Lurestan、Costal Fars地区,研究剖面覆盖了主要的地层单元。

    在Fars地区,Savark组时代为Cenomanian-Turonian,主要由灰白色灰岩组成,富含藻和固着蛤[5],与上覆Ilam组不整合接触[3]。Ilam组时代为Santonian早期-Campanian早期,厚约50 m,岩性为泥灰岩夹灰岩(图3a),灰岩单层厚15~40 cm,以浮游有孔虫Rotalia、藻类和底栖有孔虫Archaecyclus生物组合为主[3],与上覆Gurpi组整合接触(图3d)。Gurpi组时代为Campanian早期-Maastrichtian,厚约130 m,岩性为灰白色厚层灰岩—泥灰岩(图3b)。

    Figure 3.  Outcrop photographs of the Upper Cretaceous Savark/ Ilam/ Gurpi Formations in the Lurestan⁃Fars areas, Iran

    在Lurestan地区,Savark组未见底,主要由中厚层灰白色灰岩组成(图3c),偶见薄层钙质页岩,与上覆Ilam组整合接触。Ilam组厚约150 m,时代为Coniacian- Campanian早期,岩性为灰白色块状灰岩—泥灰岩(图3f),具Globotruncana、PlanoglobinaCalcisphaerula的生物组合,与上覆Gurpi组整合接触(图3e)。Gurpi组厚约147 m,时代为Campanian早期-Maastrichtian,主要由深灰色泥灰岩组成,在KM剖面具夹灰岩砾石层的大套厚层生屑灰岩(图3g),AD剖面顶部发育薄层生屑介壳灰岩(图3h)。

    本研究中的生物地层鉴定工作由英国伦敦大学地球科学系Marcelle BouDagher-Fadel博士合作完成,研究成果另文发表,本文直接引用该研究结果。

  • 对研究区晚白垩世3条剖面进行详细的室内薄片鉴定与微相分析,共划分出13种碳酸盐岩微相类型(MF1~MF13,表1)。

    微相代码微相名称岩石颗粒组分沉积构造对应的标准微相和缓坡微相 Fügel[44]沉积环境解释古水深
    骨骼颗粒非骨骼颗粒
    MF1小钙球粒泥灰岩钙球,浮游有孔虫,棘皮碎屑生物扰动,潜穴RMF1、SMF1低能外缓坡风暴浪基面之下
    MF2浮游有孔虫粒泥灰岩浮游有孔虫,钙球,海绵骨针,棘皮碎屑海绿石生物扰动,潜穴RMF5、SMF3低能外缓坡风暴浪基面之下
    MF3钙球生屑粒泥—泥粒灰岩钙球,浮游有孔虫生物扰动,潜穴RMF3、SMF4低能中—外缓坡受风暴浪基面影响
    MF4含海绿石底栖—浮游有孔虫泥粒灰岩浮游有孔虫,底栖小有孔虫,介形虫,棘皮碎屑海绿石生物扰动,缝合线RMF7、SMF10低能外—中缓坡,风暴沉积正常浪基面与风暴浪基面之间
    MF5内碎屑—生屑泥粒灰岩浮游有孔虫,生物碎屑,底栖小有孔虫似球粒RMF8、SMF5低能外—中缓坡,风暴沉积正常浪基面与风暴浪基面之间
    MF6生屑粒泥—漂砾灰岩浮游有孔虫,棘皮,双壳,海绵骨针碎屑内碎屑冲刷面RMF9、SMF5中缓坡正常浪基面与风暴浪基面之间
    MF7生屑漂砾—砾状灰岩棘皮,双壳(固着蛤)碎屑,底栖有孔虫内碎屑、似球粒RMF10、SMF5中缓坡,受陆缘碎屑影响正常浪基面与风暴浪基面之间
    MF8含底栖大有孔虫粒泥灰岩棘皮,双壳,绿藻,固着蛤,底栖有孔虫RMF13、SMF18内缓坡,开阔海正常浪基面之上
    MF9生屑泥粒—粒泥灰岩固着蛤,棘皮,双壳,粟孔虫,藻,介形虫,苔藓虫类碎屑似球粒生物潜穴RMF14、SMF12内缓坡,开阔海正常浪基面之上
    MF10固着蛤—内碎屑颗粒灰岩固着蛤,棘皮,底栖有孔虫,苔藓虫类碎屑似球粒生物潜穴RMF26内缓坡,浅滩正常浪基面之上
    MF11皮粒颗粒灰岩粟孔虫,固着蛤,棘皮类碎屑似球粒SMF11内缓坡,浅滩正常浪基面之上
    MF12似球粒颗粒灰岩底栖有孔虫,双壳,棘皮类碎屑似球粒RMF27、SMF16内缓坡,潟湖,浅滩正常浪基面之上
    MF13粗枝藻—底栖大有孔虫粒泥灰岩粗枝藻,底栖有孔虫,腹足,双壳, 棘皮类碎屑生物扰动RMF17、SMF18内缓坡,潟湖正常浪基面之上
  • 该微相见于AD剖面Savark组下部。薄片下呈现泥晶支撑,生屑含量为5%~25%,以小钙球为主(粒径0.03~0.05 mm)(图4a),偶见小浮游有孔虫和海绵骨针,可见生物扰动和潜穴痕迹。

    Figure 4.  MF1⁃MF7: Typical microfacies of outer⁃middle ramp in the Lurestan⁃Fars area

    白垩纪以来,钙球和浮游有孔虫为典型的远洋生物组合[42],而泥晶基质指示低能环境。因此,该微相可能形成于风暴浪基面以下的低能外缓坡沉积环境,分别对应标准微相SMF1和缓坡微相RMF1。

  • 该微相见于KM剖面Ilam组、Gurpi组;AD剖面Savark组中上部以及HM剖面Ilam组、Gurpi组。碳酸盐岩中生屑含量10%~40%,粒径0.03~0.1 mm,以钙球、浮游有孔虫为主,偶见丝状体、海绿石、棘皮。基质为泥晶方解石,存在基质的重结晶现象,见微弱的生物扰动构造(图4b)。偶见浮游有孔虫壳体呈聚集状,部分生屑存在一定程度的定向性在AD剖面部分MF2中棘屑含量较为丰富(图4c)。

    MF2的生物组合仍以远洋生物为主,但是相较于MF1,MF2中出现定向的生屑排列,表明沉积时受到较强的水动力作用。且MF2中生屑含量、种类均高于MF1,因此,MF2沉积时古水深可能浅于MF1,位于风暴浪基面附近。MF2对应标准微相和缓坡微相分别为 SMF3、RMF5[42]

  • 该微相见于AD剖面Savark组中上部,野外表现为厚层状灰岩。颗粒含量小于80%,颗粒支撑或灰泥支撑。生屑以钙球和浮游有孔虫为主,伴随出现一些小底栖有孔虫和棘皮碎片(图4d),粒径0.03~0.15 mm,稍大于MF1中生屑粒径,且浮游有孔虫含量向上逐渐减少,偶见生物扰动现象。

    MF3中仍以开阔海生物化石组合为主,指示风暴浪基面之下的外缓坡沉积环境,与MF2指示的古水深相近,对应标准微相和缓坡微相分别为SMF4、RMF3[42]

  • 该微相位于AD剖面Gurpi组下部以及KM剖面Gurpi组上部。颗粒含量达80%,破碎程度中等,粒径0.05~0.5 mm,颗粒支撑。生物碎屑为浮游有孔虫,底栖有孔虫、棘皮为主,呈密集堆积,偶呈定向性(图4e)。基质以泥晶为主,少量绿泥石,局部见生物扰动痕迹、压溶作用、裂隙及缝合线构造。

    MF4中生物杂乱、紧密堆积,指示较强的水动力条件,可能为风暴作用下的事件沉积。该微相特征与Zagros盆地早始新世Pabdeh组保存的风暴沉积特征相似[45],因此,MF4沉积于正常浪基面之下,风暴浪基面之上的中缓坡,水深比MF3浅,对应标准微相和缓坡微相分别为SMF10、RMF7[42]

  • 该微相位于HM剖面Savark组中部,为灰白色瘤状灰岩,岩石中颗粒含量约90%,以生物碎屑(约80%)和似球粒(约10%)为主,较为破碎(图4f),为颗粒支撑。生物碎屑主要为浮游有孔虫、棘皮、底栖有孔虫和双壳,粒径较小,为0.05~0.2 mm,普遍可见重结晶作用。MF5中大量破碎的底栖、浮游有孔虫及丰富的内碎屑,指示一种正常浪基面之下的风暴沉积,对应标准微相和缓坡微相分别为SMF5、RMF8[42]

  • 该微相位于KM剖面Gurpi组。野外出现风暴砾岩层以及生物碎屑灰岩。岩石中颗粒含量35%~50%,灰泥支撑。颗粒粒径呈双峰状,大粒径颗粒(0.4~3 mm)含量为10%~20%,成分以棘皮、双壳为主。内碎屑为亮晶胶结的颗粒灰岩岩屑,且含有大量固着蛤碎片,与此微相中原始生物明显组合不同。小粒径颗粒以浮游有孔虫、钙质骨针、棘皮碎片为主,且颗粒呈现长轴方向基本一致的排列状态(图4g),局部可见颗粒灰岩与生屑粒泥灰岩间的冲刷面。

    双峰式的粒度分布为风暴沉积的典型特征。MF6中颗粒种类既包含远洋生屑颗粒,又存在浅水滩相的内碎屑,表明风暴作用将浅水颗粒与深水颗粒混合。侵蚀面指示存在周期性的强水动力条件。因此,MF6沉积于位于正常浪基面之下、风暴浪基面之上的中缓坡环境,对应标准微相和缓坡微相分别为SMF5、RMF9[42]

  • 该微相位于KM剖面Gurpi组。野外出现灰岩砾石的角砾岩,砾石呈棱角状,分选差,粒径1~10 cm。砾岩层底部见凹凸不平的侵蚀面(图3b),且含有层状燧石条带,燧石团块长轴约10 cm。岩石中颗粒含量40%~70%,为灰泥—颗粒支撑,泥晶胶结。颗粒种类多样,包括皮粒、似球粒、内碎屑、固着蛤、棘皮、双壳以及少量底栖有孔虫等(图4h),其中内碎屑主要为亮晶胶结的颗粒灰岩岩屑。部分双壳、内碎屑粒径大于5 mm,普遍介于1~3 mm,磨圆中等,分选差。

    MF7中的内碎屑中见大量颗粒灰岩岩屑,特征类似MF11,表明岩石在浅滩附近固结后再次搬运。且差的分选和砾岩层底部侵蚀面表明其可能处于受风暴控制的高能环境。而MF7中缺少远洋生物组合,表明其古水深浅于MF6。因此,MF7很可能位于风暴能量较强的正常浪基面之下的中缓坡上部,靠近内缓坡,对应标准微相和缓坡微相分别为SMF5、RMF10[42]

  • 该微相位于AD剖面Gurpi组下部。野外为约2 m的介壳灰岩层(图3g),壳体较为破碎。岩石中颗粒含量40%~70%,灰泥支撑。颗粒基本为生物碎屑(图5a),包括底栖大有孔虫、棘皮、绿藻、苔藓虫、腕足、双壳和浮游有孔虫。且生物碎屑粒径较大(0.3~5 mm),完整程度中—较好,表明为原地沉积。

    Figure 5.  MF8⁃MF13: Typical microfacies of middle⁃inner ramp in the Lurestan⁃Fars areas

    MF8与MF4相邻但相较于MF4,远洋生屑含量极少,浅水生屑(绿藻等)含量多,因此,MF8可能沉积于正常浪基面附近内缓坡开阔海环境,对应标准微相和缓坡微相分别为SMF18、RMF13[42]

  • 该微相位于KM剖面Gurpi组,野外为厚层状生物碎屑灰岩层。岩石中颗粒含量25%~65%,灰泥支撑—颗粒支撑(图5b)。颗粒包括生屑和似球粒,生屑种类丰富,包括固着蛤、棘皮、苔藓虫、底栖有孔虫、介形虫、粟孔虫。部分双壳碎屑较为破碎(0.2~1 mm),分选中—差,磨圆中—差。常见生物潜穴现象。

    固着蛤、棘皮和粟孔虫组合表明水体环境较浅。大量破碎的固着蛤碎片指示较强水动力环境。在剖面上,MF9中固着蛤碎片与MF10中固着蛤类似,但含量少于MF10,因此,该微相可能沉积于正常浪基面之上的固着蛤浅滩附近,对应标准微相和缓坡微相分别为SMF12、RMF14[42]

  • 该微相位于KM剖面Gurpi组中上部,野外为厚层状生物碎屑灰岩层。岩石中颗粒含量60%~80%,颗粒支撑(图5c)。颗粒以生物碎屑为主(50%~70%),粒径0.1~0.3 mm。颗粒主要为固着蛤碎片,其次为棘皮、苔藓虫,底栖有孔虫。此外见较多似球粒和内碎屑(10%~20%)。偶见生物钻孔现象,双壳等生物碎屑发育泥晶套结构,且颗粒内部存在重结晶现象。

    固着蛤为白垩纪中期的典型浅水生物[46]。大量固着蛤碎片磨圆程度差—中等,缺少泥晶基质,表明较强的水动力条件。因此,MF10可能沉积于正常浪基面之上的固着蛤浅滩沉积环境,对应缓坡微相RMF26[42]

  • 该微相位于KM剖面Gurpi组中上部,野外微晶灰岩夹生物碎屑灰岩。岩石中颗粒含量55%~70%,颗粒支撑,颗粒间胶结物为粒状方解石。大部分颗粒为皮粒(55%~70%),粒径0.3~1.5 mm,部分大于2 mm,偶见似球粒及固着蛤碎片。皮粒(图5d)内部基本被溶蚀,充填亮晶方解石,边部具有泥晶套(图5e)。部分皮粒内部可见原始生屑结构,为棘皮、双壳、底栖小有孔虫、腹足等生屑。颗粒磨圆度好,分选较差,不常见生物扰动现象。

    亮晶胶结、颗粒磨圆度高表明强的水动力条件。而具有薄泥晶套的皮粒多出现在经潮水冲刷的内缓坡砂质浅滩中[42],代表一种较慢的沉积速率。因此,MF11可能位于正常浪基面之上具有持续波浪活动的沉积环境,为内缓坡的浅滩沉积,对应标准微相SMF11[42]

  • 该微相位于KM剖面Gurpi组中上部,野外为含燧石条带的生物碎屑灰岩层。岩石中颗粒含量75%~90%,颗粒支撑(图5f),亮晶方解石胶结。颗粒包括似球粒(70%~85%)、底栖有孔虫(5%~10%)(图5g)、粟孔虫、棘皮、双壳碎屑。似球粒呈圆形,内部呈无纹层的泥晶或隐晶状,粒径0.1~0.5 mm。

    颗粒间亮晶方解石充填指示高能水动力条件,粟孔虫指示较浅的局限水体环境。似球粒一般被认为是浅海、低能、局限的海洋环境[42],因此,MF12可能沉积于潟湖内部的浅滩环境,对应标准微相和缓坡微相分别为SMF16、RMF27[42]

  • 该微相位于HM剖面Savark组,野外为灰白色瘤状灰岩。岩石中生屑含量15%~40%,粒径0.2~2 mm,灰泥支撑。生物碎屑以底栖有孔虫和粗枝藻为主,其次为棘皮、腹足、双壳、粟孔虫,见生物扰动现象。

    粗枝藻多发育在温暖、正常盐度,水深通常小于5 m的低—中能量水体中[42]。加之MF13中的粗枝藻保存完整(图5h),破碎程度低,表明为近原地沉积。灰泥支撑指示安静的水动力条件。因此,MF13沉积于内缓坡中潟湖环境,分别对应标准微相和缓坡微相SMF18、RMF17[42]

  • 综合研究区Savark组、Ilam组、Gurpi组微相特征,本文重建了该地区晚白垩世沉积模式(图6)。总体来说,研究剖面中沉积微相和古水深连续变化,且缺少生物礁建造,此外尽管剖面中存在浅滩相沉积,但这些生物碎屑浅滩位于潟湖内部而非台地边缘,因此,本研究区碳酸盐岩整体为缓坡沉积模式。其中外缓坡为处于风暴浪基面之下的盆地沉积,水体较深,沉积水体能量低,环境相对稳定。主要岩相类型为粒泥灰岩、泥灰岩,生物组合为钙球和浮游有孔虫,镜下可见生物扰动构造和纹层状层理。中缓坡环境处于正常浪基面与风暴浪基面之间、受到风暴浪改造的区域,偶尔处于相对动荡的水体环境,沉积水体能量低或高。主要岩相类型为泥粒灰岩、粒泥灰岩,颗粒中既包含浅水颗粒(滩相内碎屑、绿藻、固着蛤),也含有远洋生物组合(钙球和浮游有孔虫),并且远洋生物含量变化能够区分中缓坡距离滨岸带远近的变化趋势。内缓坡处于滨岸带与正常浪基面之间,发育颗粒滩、潟湖沉积环境,分别对应高能和低能水体环境,主要岩相类型为颗粒灰岩、泥粒灰岩、粒泥灰岩,生物组合为似球粒、固着蛤、绿藻和底栖有孔虫。

    Figure 6.  Depositional model of the Upper Cretaceous Savark⁃Ilam⁃Gurpi Formations in the Lurestan⁃Fars areas (modified from reference [47])

  • 该剖面识别出一次明显的沉积间断,出现在Ilam组与Savark组之间,缺失了Turonian中上部及Coniacian和Santonian早期之间的地层。沉积间断上下地层沉积环境也发生了明显变化,位于沉积间断之下的Savark组为内缓坡浅水潟湖环境(图7),生物组合以粗枝藻—底栖大有孔虫为代表(MF13)。而位于沉积间断面之上的Ilam组古水深明显加深,为外缓坡较深水环境,生物组合以浮游有孔虫为主(MF2)。其上Gurpi组沉积环境与Ilam组基本一致。因此,晚白垩世晚期(Santonian-Maastrichtian)此剖面古水深整体变化不大,在正常浪基面上下波动,均处于外缓坡环境。

    Figure 7.  Integrated stratigraphic logs of three Upper Cretaceous sections deposited in the Lurestan⁃Fars areas

  • 该剖面记录了一次短暂的古水深变浅事件,出现在Gurpi组中下部层位,对应时代为Campanian早期。该剖面下部Savark组-Ilam组沉积微相以小钙球粒泥灰岩(MF1)、浮游有孔虫粒泥灰岩(MF2)和钙球生屑粒泥—泥粒灰岩(MF3)为主,整体为外缓坡—中缓坡沉积环境(图7),古水深在风暴浪基面上下波动。其中Savark组中上部MF2与MF3交替出现,可能指示数次风暴沉积。Campanian早期Gurpi组演化为含海绿石底栖—浮游有孔虫泥粒灰岩(MF4),并逐渐过渡为以底栖大有孔虫等浅水生物组合为主的粒泥灰岩(MF8),指示正常浪基面附近及以上的中—内缓坡沉积环境,代表一次古水深变浅。Gurpi组上部沉积微相以浮游有孔虫粒泥灰岩(MF2)为主,表明沉积环境再次转变为较深水外缓坡沉积环境,且该环境持续至白垩世末期。

  • 该剖面见一次明显的古水深变浅和一次古水深变深事件,分别出现在Gurpi组下部和顶部层位,对应时代为Campanian、Maastrichtian。剖面下部,Ilam组沉积微相以浮游有孔虫粒泥灰岩(MF2)为主,代表深水外缓坡沉积环境。自Campanian 早期Gurpi组起,古水深突然变浅,沉积微相由固着蛤—内碎屑颗粒灰岩(MF10)、生屑粒泥—漂砾灰岩(MF6)、生屑漂砾—砾状灰岩(MF7)、皮粒颗粒灰岩(MF11)、似球粒颗粒灰岩(MF12)所代替,沉积环境从深水外缓坡转变为较高水动力条件的暴浪基面之上—正常浪基面附近的中缓坡—内缓坡的沉积环境。自Maastrichtian早期Gurpi组中部起,古水深整体变深,由皮粒颗粒灰岩(MF11)转变为浮游有孔虫粒泥灰岩(MF2)为主的外缓坡环境。Maastrichtian晚期Gurpi顶部转变为中缓坡沉积环境下较为破碎且密集堆积的含海绿石底栖—浮游有孔虫泥粒灰岩(MF4),出现大量再旋回有孔虫,指示逐渐变浅的沉积环境(图7)。

  • Turonian期HM剖面Savark组与Ilam组之间出现沉积环境的突变,对应不整合接触。沉积环境由内缓坡变为外缓坡。一些研究者把这次不整合归咎于阿拉伯板块北缘蛇绿岩的侵位,并认为是扎格罗斯造山运动初始阶段的体现[19,48]。有学者认为Fars地区Savark组内发育了大量基底断层与盐丘,隆起的背斜地形与特定的古地理位置使得该组保存了大量浅海相沉积记录[16]。加之晚白垩世研究区湿润热带气候,具备良好的侵蚀条件,导致Fars地区Savark组地层厚度不一、地层记录缺失并与上覆地层不整合的现象。

    Campanian期Gurpi组在Lurestan的KM剖面和AD剖面中都出现了变浅事件(图8)。其中距离缝合带较近的KM剖面在Campanian中晚期发生环境突变,长时间处于浅水内缓坡环境,而AD剖面则短暂地出现浅水内缓坡环境,这次变浅事件很可能受到构造活动的影响。

    Figure 8.  Age⁃microfacies distribution figure of three Upper Cretaceous sections in the Lurestan⁃Fars area; the legends are the same as Fig.7

    前人研究表明,研究区域以北的Kermanshan蛇绿岩在Campanian时期发生仰冲[4950],代表着新特提斯洋壳仰冲到阿拉伯板块之上[4,24,5152]。距KM剖面东北处约70 km的Kermanshan冲断带中[20,33]记录了蛇绿岩仰冲。该区域Gurpi组被Amiran组碎屑岩沉积覆盖,且Amiran组中砂岩岩屑主要由蛇绿岩碎屑组成,代表了蛇绿岩仰冲导致沉积体系从深水碳酸盐岩转变为硅质碎屑沉积。其次,区域上Amiran组厚度向本文研究剖面(西南)方向逐渐减小,因此,KM、AD剖面没有受到陆源碎屑输入的影响,碳酸盐岩沉积受蛇绿岩仰冲运动的影响,表现出向上变浅的沉积序列。其中由于KM剖面距离蛇绿岩带最近,变浅持续事件较长,而AD剖面距离与蛇绿岩带较远,变浅事件持续时间较短。HM剖面由于距离蛇绿岩带距离超过200 km,因而蛇绿岩仰冲活动无法影响到该区域,从而该区域沉积环境没有发生大的波动,没有古水深变浅的记录。

    Maastrichtian早期的变深事件在Lurestan地区KM、AD剖面中都存在记录。此时扎格罗斯地区正处于海侵期,相对海平面较高[39,53],因此,这次古水深变深事件很有可能与Maastrichtian早期札格罗斯地区海侵相关。

  • 在实测野外地质剖面基础上,本文对伊朗阿拉伯北缘Lurestan地区西北部KM剖面,西南部AD剖面以及Fars地区南部HM剖面的上白垩统Savark组、Ilam组、Gurpi组进行了沉积微相和沉积环境研究。主要取得以下两点认识。

    (1) 扎格罗斯地区上白垩统Savark组、Ilam组、Gurpi组整体以灰岩沉积为主。在Lurestan-Fars地区KM、AD、HM剖面共识别出13种碳酸盐岩微相,包含沉积在外缓坡的MF1小钙球粒泥灰岩、MF2浮游有孔虫粒泥灰岩、MF3钙球生屑粒泥—泥粒灰岩、沉积在中缓坡的MF4含海绿石底栖—浮游有孔虫泥粒灰岩、MF5内碎屑—生屑泥粒灰岩、MF6生屑粒泥—漂砾灰岩、MF7生屑漂砾—砾状灰岩、MF8含底栖大有孔虫粒泥灰岩、和沉积在内缓坡MF9多种生屑泥粒—粒泥灰岩、MF10固着蛤—内碎屑颗粒灰岩、MF11皮粒颗粒灰岩、MF12似球粒颗粒灰岩、MF13粗枝藻—底栖大有孔虫粒泥灰岩。

    (2) 微相分析表明,上白垩统Gurpi组沉积环境古水深发生了明显变化。基于3条研究剖面以及前人研究成果,推测KM、AD剖面Gurpi组中上部沉积环境的变化可能为蛇绿岩仰冲活动的记录。而Fars地区HM剖面因古地理位置上远离蛇绿岩仰冲带等原因,未受到蛇绿岩仰冲活动的影响。建议后续工作结合地球化学以及生物地层学方法精细限定KM剖面环境突变的年龄,同时对KM剖面北部的Gurpi组地层展开研究,进一步限定蛇绿岩仰冲与沉积环境之间的关系。

Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return