Advanced Search
Volume 40 Issue 3
Jun.  2022
Turn off MathJax
Article Contents

WANG ZhiYu, YUAN LongMiao, LIU YanHong, MA Rong, WU YingQin. Screening and Degradation Characteristics of High Efficiency Saline Alkali-resistant Petroleum Hydrocarbon Degrading Bacteria[J]. Acta Sedimentologica Sinica, 2022, 40(3): 849-860. doi: 10.14027/j.issn.1000-0550.2022.003
Citation: WANG ZhiYu, YUAN LongMiao, LIU YanHong, MA Rong, WU YingQin. Screening and Degradation Characteristics of High Efficiency Saline Alkali-resistant Petroleum Hydrocarbon Degrading Bacteria[J]. Acta Sedimentologica Sinica, 2022, 40(3): 849-860. doi: 10.14027/j.issn.1000-0550.2022.003

Screening and Degradation Characteristics of High Efficiency Saline Alkali-resistant Petroleum Hydrocarbon Degrading Bacteria

doi: 10.14027/j.issn.1000-0550.2022.003
Funds:

National Natural Science Foundation of China 42072180, 41772147, 41272147

Technical Innovation Project of Instrument and Equipment Function Development of Chinese Academy of Sciences E0280101

  • Received Date: 2021-12-01
  • Rev Recd Date: 2022-01-07
  • Publish Date: 2022-06-10
  • To repair petroleum hydrocarbon pollution of saline alkaline soil in the arid area of northwestern China using an efficient environmental protection method, petroleum hydrocarbon degrading bacteria were screened, isolated and degraded at ten sampling points close to the Changqing oilfield, Qingyang, Gansu province. The following tests were carried out with the four selected strains 5-5, 5-X, 9-2 and 10-3: Gram staining, colony morphology observation, microscopic morphology, biochemical and physicochemical property tests and 16S rDNA sequencing. It was confirmed that the four petroleum hydrocarbon degrading bacteria were Acinetobacter calcoaceticusAcinetobacter sp., Pseudomonas monteilii and A. lactucae, respectively. The degradation results for 1 mL/100 mL petroleum hydrocarbons showed that the degradation rates of 5-5, 5-X, 9-2 and 10-3 reached 50.92%, 51.27%, 78.30% and 44.39%, respectively, at 30 °C, 150 r/min and pH 7.0 after 14 days of degradation experiments. In addition, the strain Pseudomonas sp. 9-2, which has excellent degradation performance, was studied for its degradation of petroleum hydrocarbon components. It was found that it degraded 94.65% n-alkanes, 69.73% isoalkanes and 59.07% polycyclic aromatic hydrocarbons. It also showed excellent degradation performance for high carbon number n-alkanes and high ring number polycyclic aromatic hydrocarbons. In the stress-resistance experiment, Pseudomonas sp. 9-2 showed a tolerance to pH from 5.0 to 10.0, and a tolerance of 0.5%-6.0% salinity. Therefore, the petroleum hydrocarbon degrading bacteria screened in this study are completely suitable for microbial remediation of the petroleum hydrocarbon pollution of saline alkaline soil in the northwestern arid regions.
  • [1] 康跃惠,盛国英,傅家谟,等. 珠江澳门河口沉积物柱样品正构烷烃研究[J]. 地球化学,2000,29(3):302-310.

    Kang Yuehui, Sheng Guoying, Fu Jiamo, et al. The study of n-alkanes in a sedimentary core from Macao Estuary, Pearl River[J]. Geochimica, 2000, 29(3): 302-310.
    [2] Baud-Grasset F, Baud-Grasset S, Safferman S I. Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests[J]. Chemosphere, 1993, 26(7): 1365-1374.
    [3] 王传远,杨翠云,孙志高,等. 黄河三角洲生态区土壤石油污染及其与理化性质的关系[J]. 水土保持学报,2010,24(2):214-217.

    Wang Chuanyuan, Yang Cuiyun, Sun Zhigao, et al. Contamination characteristics and its relationship with physico-chemical properties of oil polluted soils in the Yellow River delta swamp[J]. Journal of Soil and Water Conservation, 2010, 24(2): 214-217.
    [4] Wang S, Wang D, Yu Z C, et al. Advances in research on petroleum biodegradability in soil[J]. Environmental Science: Processes & Impacts, 2021, 23(1): 9-27.
    [5] Vasudevan N, Rajaram P. Bioremediation of oil sludge-contaminated soil[J]. Environment International, 2001, 26(5/6): 409-411.
    [6] 李培军,郭书海,孙铁珩,等. 不同类型原油污染土壤生物修复技术研究[J]. 应用生态学报,2002,13(11):1455-1458.

    Li Peijun, Guo Shuhai, Sun Tieheng, et al. Bio-remediation techniques of crude oil contaminated soils[J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1455-1458.
    [7] Abbasian F, Lockington R, Mallavarapu M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria[J]. Applied Biochemistry and Biotechnology, 2015, 176(3): 670-699.
    [8] 惠云芳,王鸿飞. 石油污染土壤的生物修复研究进展[J]. 西北农业学报,2018,27(4):451-458.

    Hui Yunfang, Wang Hongfei. Progress on bioremediation in oil-contaminated soil[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(4): 451-458.
    [9] Barathi S, Vasudevan N, Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil[J]. Environment International, 2001, 26(5/6): 413-416.
    [10] Throne-Holst M, Wentzel A, Ellingsen T E, et al. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874[J]. Applied and Environmental Microbiology, 2007, 73(10): 3327-3332.
    [11] 彭鸽威,阎光绪,刘晓春,等. 原油降解菌的分离及其降解性能[J]. 化工进展,2008,27(4):531-534,557.

    Peng Gewei, Yan Guangxu, Liu Xiaochun, et al. Isolation of a bacteria strain degrading crude oil and its degradation characteristics[J]. Chemical Industry and Engineering Progress, 2008, 27(4): 531-534, 557.
    [12] Li H, Liu Y H, Luo N, et al. Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22[J]. Research in Microbiology, 2006, 157(7): 629-636.
    [13] 张海荣,唐景春,孙克静,等. 耐盐碱石油烃降解菌的筛选、鉴定及其耐盐碱性研究[J]. 生物技术通报,2015,31(1):151-159.

    Zhang Hairong, Tang Jingchun, Sun Kejing, et al. Isolation and identification of saline-alkaline tolerant hydrocarbon-degrading strains and study on their saline-alkaline tolerant characteristics[J]. Biotechnology Bulletin, 2015, 31(1): 151-159.
    [14] 井明博,周天林,梁健,等. 4种适生植物对陇东地区油污土壤场地生态修复的响应[J]. 水土保持通报,2019,39(1):286-293.

    Jing Mingbo, Zhou Tianlin, Liang Jian, et al. Response of four kinds of adaptable plants to ecological restoration of crude-oil contaminated soil in eastern Gansu province[J]. Bulletin of Soil and Water Conservation, 2019, 39(1): 286-293.
    [15] 周德庆,徐德强. 微生物学实验教程[M]. 3版. 北京:高等教育出版社,2013:33-35.

    Zhou Deqing, Xu Deqiang. Essential microbiology[M]. 3rd ed. Beijing: Higher Education Press, 2013: 33-35.
    [16] Wang X B, Chi C Q, Yong N, et al. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain[J]. Bioresource Technology, 2011, 102(17): 7755-7761.
    [17] Lu M, Zhang Z Z, Qiao W, et al. Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 604-611.
    [18] Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiology Ecology, 2009, 68(1): 1-13.
    [19] Kirk J L, Klironomos J N, Lee H, et al. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil[J]. Environmental Pollution, 2005, 133(3): 455-465.
    [20] 夏铭谦. 石油污染土壤生物修复研究:以加州北部—污染场地为例[D]. 南京:东南大学,2019:22-23.

    Xia Mingqian. Bioremediation of petroleum hydrocarbon contaminated soil: Case study of a solid waste management site in northern California[D]. Nanjing: Southeast University, 2019: 22-23.
    [21] Logeshwaran P, Megharaj M, Chadalavada S, et al. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches[J]. Environmental Technology & Innovation, 2018, 10: 175-193.
    [22] Zeng Z T, Liu Y, Zhong H, et al. Mechanisms for rhamnolipids-mediated biodegradation of hydrophobic organic compounds[J]. Science of the Total Environment, 2018, 634: 1-11.
    [23] Paudyn K, Rutter A, Rowe R K, et al. Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming[J]. Cold Regions Science and Technology, 2008, 53(1): 102-114.
    [24] Singh S N. Microbial degradation of xenobiotics[M]. Berlin, Heidelberg: Springer, 2012: 439-450.
    [25] Van Hamme J, Singh A, Ward O P. Recent advances in petroleum microbiology[J]. Microbiology and Molecular Biology Reviews, 2003, 67(4): 503-549.
    [26] 陈春云,岳珂,陈振明,等. 微生物降解多环芳烃的研究进展[J]. 微生物学杂志,2007,27(6):100-103.

    Chen Chunyun, Yue Ke, Chen Zhenming, et al. Advances in microbial degradation of polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Microbiology, 2007, 27(6): 100-103.
    [27] 闫双堆,刘利军,曹燕篆,等. 3株多环芳烃高效降解菌株的分离鉴定及降解特性[J]. 应用生态学报,2021,32(12):4439-4446.

    Yan Shuangdui, Liu Lijun, Cao Yanzhuan, et al. Isolation, identification, and degradation characteristics of three effective PAHs degradation strains[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4439-4446.
    [28] Govarthanan M, Khalifa A Y Z, Kamala-Kannan S, et al. Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons[J]. Chemosphere, 2020, 243: 125389.
    [29] 吴洁婷,许琪,张营,等. 微生物降解典型高分子量多环芳烃的研究进展[J]. 环境科学研究,2021,34(8):1981-1990.

    Wu Jieting, Xu Qi, Zhang Ying, et al. Progress in microbial degradation of typical HMW-PAHs[J]. Research of Environmental Sciences, 2021, 34(8): 1981-1990.
    [30] Cajthaml T, Möder M, Kačer P, et al. Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection[J]. Journal of Chromatography A, 2002, 974(1/2): 213-222.
    [31] 王晓旭. DDTs-PAHs复合污染农田土壤微生物修复技术研究[D]. 沈阳:沈阳大学,2018:20.

    Wang Xiaoxu. Research on microbial remediation of DDTS-PAHs in co-contaminated farmland soil[D]. Shenyang: Shenyang University, 2008: 20.
    [32] Qin W, Zhu Y, Fan F Q, et al. Biodegradation of benzo(a)pyrene by Microbacterium sp. strain under denitrification: Degradation pathway and effects of limiting electron acceptors or carbon source[J]. Biochemical Engineering Journal, 2017, 121: 131-138.
    [33] 张宝宝,余天飞,艾加敏,等. 3株石油降解菌鉴定与降解特性研究[J]. 延安大学学报(自然科学版),2021,40(1):32-37.

    Zhang Baobao, Yu Tianfei, Ai Jiamin, et al. Identification and degradation characteristics of three petroleum degrading bacteria[J]. Journal of Yanan University (Natural Science Edition), 2021, 40(1): 32-37.
    [34] Shi J, Chen Y C, Liu X F, et al. Rhamnolipid production from waste cooking oil using newly isolated halotolerant Pseudomonas aeruginosa M4[J]. Journal of Cleaner Production, 2021, 278: 123879.
    [35] 穆驰,王曙光. 西北干旱区岩兰草对不同盐分浓度胁迫的响应特征研究[J]. 西部大开发(土地开发工程研究),2019,4(8):43-50.

    Mu Chi, Wang Shuguang. Response characteristics of vetiver to salt stress in arid areas of northwest China[J]. Western Development (Land Development and Engineering Research), 2019, 4(8): 43-50.
    [36] 顾文婷,金文杰,杨陶丽薇,等. 中国西北干旱地区盐渍化土壤盐分和养分的分布特征:以甘肃产业园区为例[J]. 中国农学通报,2015,31(9):212-215.

    Gu Wenting, Jin Wenjie, Yang Taoliwei, et al. Distribution characteristics of soil nutrients and salt content of northwest arid region in China: Taking the industrial park in Gansu as an example[J]. Chinese Agricultural Science Bulletin, 2015, 31(9): 212-215.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)  / Tables(2)

Article Metrics

Article views(142) PDF downloads(51) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-12-01
  • Revised:  2022-01-07
  • Published:  2022-06-10

Screening and Degradation Characteristics of High Efficiency Saline Alkali-resistant Petroleum Hydrocarbon Degrading Bacteria

doi: 10.14027/j.issn.1000-0550.2022.003
Funds:

National Natural Science Foundation of China 42072180, 41772147, 41272147

Technical Innovation Project of Instrument and Equipment Function Development of Chinese Academy of Sciences E0280101

Abstract: To repair petroleum hydrocarbon pollution of saline alkaline soil in the arid area of northwestern China using an efficient environmental protection method, petroleum hydrocarbon degrading bacteria were screened, isolated and degraded at ten sampling points close to the Changqing oilfield, Qingyang, Gansu province. The following tests were carried out with the four selected strains 5-5, 5-X, 9-2 and 10-3: Gram staining, colony morphology observation, microscopic morphology, biochemical and physicochemical property tests and 16S rDNA sequencing. It was confirmed that the four petroleum hydrocarbon degrading bacteria were Acinetobacter calcoaceticusAcinetobacter sp., Pseudomonas monteilii and A. lactucae, respectively. The degradation results for 1 mL/100 mL petroleum hydrocarbons showed that the degradation rates of 5-5, 5-X, 9-2 and 10-3 reached 50.92%, 51.27%, 78.30% and 44.39%, respectively, at 30 °C, 150 r/min and pH 7.0 after 14 days of degradation experiments. In addition, the strain Pseudomonas sp. 9-2, which has excellent degradation performance, was studied for its degradation of petroleum hydrocarbon components. It was found that it degraded 94.65% n-alkanes, 69.73% isoalkanes and 59.07% polycyclic aromatic hydrocarbons. It also showed excellent degradation performance for high carbon number n-alkanes and high ring number polycyclic aromatic hydrocarbons. In the stress-resistance experiment, Pseudomonas sp. 9-2 showed a tolerance to pH from 5.0 to 10.0, and a tolerance of 0.5%-6.0% salinity. Therefore, the petroleum hydrocarbon degrading bacteria screened in this study are completely suitable for microbial remediation of the petroleum hydrocarbon pollution of saline alkaline soil in the northwestern arid regions.

WANG ZhiYu, YUAN LongMiao, LIU YanHong, MA Rong, WU YingQin. Screening and Degradation Characteristics of High Efficiency Saline Alkali-resistant Petroleum Hydrocarbon Degrading Bacteria[J]. Acta Sedimentologica Sinica, 2022, 40(3): 849-860. doi: 10.14027/j.issn.1000-0550.2022.003
Citation: WANG ZhiYu, YUAN LongMiao, LIU YanHong, MA Rong, WU YingQin. Screening and Degradation Characteristics of High Efficiency Saline Alkali-resistant Petroleum Hydrocarbon Degrading Bacteria[J]. Acta Sedimentologica Sinica, 2022, 40(3): 849-860. doi: 10.14027/j.issn.1000-0550.2022.003
  • 石油作为战略物资和工业命脉,在现代经济的发展中具有举足轻重的作用。然而,由于不当操作或事故造成的溢油污染事件频发,给周边环境造成了严重污染。石油烃是石油中最主要的成分之一,主要由烷烃、芳香烃构成,也含有少量的含硫、含氮化合物。其中烷烃逐渐沉积到土壤、地下水与海洋中,极易造成持久性环境污染,还会对底栖生物造成威胁[1],芳香烃中多环芳烃不但难以降解而且具有致癌性,会通过食物链进入人体,威胁着人类的生命健康[2]。同时,溢油会使土壤中总有机碳上升,碳氮比例失调,改变土壤的理化性质从而影响土壤微生物数量及群落结构,对土壤环境造成破坏。因此,石油污染土壤的修复具有潜在意义[3]

    目前,针对土壤石油污染的修复主要有物理、化学和生物修复[46],其中生物修复是通过生物代谢活动来吸收转化污染物,使其转化为无毒无害的二氧化碳和水的方法[7]。相较于物理和化学修复而言,生物修复具有成本低、环境友好等优势[8]。因此,本研究主要聚焦于生物修复中的微生物修复。目前已有超过两百种具有石油烃降解能力的微生物被发现并报道,包括细菌、真菌、藻类等,且由于合成磷脂能力强,细菌对石油的降解效率往往远高于真菌和藻类[9]。不动杆菌(Acinetobacter)、假单胞菌(Pseudomonas)、棒杆菌(Corynebacterium)、微球菌(Micrococcus)、节细菌(Arthrobacter)、产碱杆菌(Alcaligenes)等是常见的土壤石油降解细菌[10]。但微生物降解菌通常受环境因素的限制,如温度、盐度、pH等,其最适pH为7.0左右,偏酸性或碱性都会抑制微生物的生长及活性,同时高盐度也会使微生物数量及成活率急剧下降[11]。Li et al.[12]在大庆油田附近的盐碱土中分离出的耐冷嗜盐性菌Planococcus sp. ZD227可利用苯及同系物作为碳源,张海荣等[13]从大港油田油泥中筛选出十株石油烃降解菌,研究发现过高pH值及盐度均会严重影响大多数菌株的生长。因此,要得到能在西北高盐碱环境中对石油污染进行原位修复的石油烃降解菌,则需从当地污染土壤中筛选并培养出优势菌株。本研究选取长庆油田为研究区域,该区域地处西北,由于常年干旱少水,盐碱积累,土壤高pH、高盐度等特性成了石油烃污染微生物修复的主要阻力[14]。因此,亟需一种低成本、高效、环保的修复方案来针对性地解决该地区盐碱土壤的石油污染问题。

    研究通过对鄂尔多斯盆地长庆油田附近的10个石油污染土样进行微生物培养,从中筛选出了4株高效原油降解菌株,并对其进行生化理化试验和分子生物学鉴定。通过降解实验研究了其对原油不同组分(烷烃、芳烃)的降解特性及其抗逆性,为西北地区盐碱土壤石油烃污染修复提供一定的科学依据。

  • 实验所用土样采自鄂尔多斯盆地长庆油田周边,分布在庆城县和西峰区两个区域(图1)。供试土壤样品总有机碳含量为3.12~4.12 g/kg,盐度为1.43%~2.03%,pH为7.1~8.6,呈中性及弱碱性。具体采样位置见表1

    Figure 1.  Schematic diagram of sampling points in Changqing Oilfield

  • PBS缓冲溶液(磷酸盐缓冲溶液):K2HPO4 2.75 g,KH2PO4 0.24 g,NaCl 8.14 g,用超纯水定容至1 000 mL,pH为7.4,于121 ℃高压灭菌20 min。

    微量元素溶液:FeSO4 0.054 g,MnSO4 2.3 g,CuSO4 0.032 g,用超纯水定容至1 000 mL。

    无机盐培养基:KH2PO4 2.42 g,K2HPO4 7.3 g,(NH42SO4 2 g,NaCl 2 g,MgSO4 0.3 g,CaCl2 0.03 g,微量元素溶液1 mL,用超纯水定容至1 000 mL,pH为7.0。于121 ℃高压灭菌20 min。

    富集培养基:牛肉膏5 g,蛋白胨10 g,NaCl 5 g,超纯水1 000 mL,pH为7.4,于高121 ℃高压灭菌20 min。

    斜面保藏培养基:牛肉膏5 g,蛋白胨10 g,NaCl 5 g,琼脂粉15 g,超纯水1 000 mL,

    编号 采样区域 坐标 采样地点 菌种数量
    1 西峰 35.660 8° N, 107.632 2° E 某石化公司内
    2 西峰 35.616 4° N, 107.606 7° E 油井平台附近 4
    3 西峰 35.620 0° N, 107.615 8° E 油井平台油污附近 1
    4 庆城 36.119 1° N, 107.791 9° E 长庆路油井平台附近 8
    5 西峰 35.652 5° N, 107.630 6° E 某石化公司周边绿化带 7
    6 庆城 36.110 0° N, 107.826 9° E 长庆路油井平台附近 5
    7 西峰 35.625 0° N, 107.609 2° E 油井平台附近 3
    8 西峰 35.616 7° N, 107.619 7° E 油井平台附近 4
    9 西峰 35.619 7° N, 107.623 6° E 油井平台附近 2
    10 西峰 35.631 4° N, 107.634 4° E 油井平台附近 5

    Table 1.  Collection sites of soil samples containing microorganisms

  • 将5 g石油污染土壤接入装有200 mL无菌水锥形瓶中,于30 ℃,130 r/min条件下恒温震荡培养24 h。然后取出5 mL上述培养液转接入装有100 mL无机盐培养基中,加入1.0%原油为唯一碳源,30 ℃,180 r/min培养10 d。取5 mL培养液加入1.0%原油无机盐培养基中,相同条件下培养7 d,如此转接5次后。用1 μL接种棒以平板划线法接种到固体富集培养基中,30 ℃条件下培养48 h,对长出的菌种进行计数。待菌落长出后经过多次划线分离后得到单一菌株,接种于牛肉膏蛋白胨斜面上在4 ℃条件下保存,并将纯化菌液与甘油1∶1混合后冻存于-80 ℃冰箱中保存。

  • 将单株菌用平板划线法接种到固体富集培养基上,观察群落形态。然后用接种环取出小块菌苔涂在滴加了无菌水的载玻片上,并对其进行革兰氏染色,在显微镜下观察其颜色和形态。根据已有资料[15]中的方法对分离的菌株进行生化理化性质鉴定

    在纯化后的菌体中提取细菌的基因组DNA,使用相应的引物27F(5’-AGAGTTTGATCCTGGCTCAG-3’)/1492R(5’-TACCTTGTTACGACTT-3’)进行聚合酶链式反应(PCR)扩增。PCR反应体系为:灭菌蒸馏水22 μL,10×Buffer 2 μL,dNTP 1 μL,27F和1492R引物各1 μL,DNA模板1 μL(30~100 ng),Taq酶25 μL。PCR升温程序设定为:94 ℃预变性5 min,94 ℃变性30 s,53 ℃退火30 s,72 ℃延伸30 s,循环30次,72 ℃延伸8 s。扩增产物由广东美格基因科技有限公司使用ABI3730测序平台进行测序。将测序结果在NCBI上进行对比,根据BLAST结果用邻接法构建系统发育树。

  • 将菌株在100 mL富集培养基中培养48 h,用灭菌的PBS溶液配制光密度为OD600=0.5的纯菌液,再以5%的接种量接种到无机盐培养基中进行降解实验(此培养基以1.0%原油为唯一碳源)。以未接种菌株的培养基为对照组,每组设置3个平行样,在30 ℃、180 r/min的条件下培养14 d后,用20 mL石油醚与样品混合,经摇床震荡10 min、180 W超声波细胞破碎仪提取10 min后,用分液漏斗进行萃取。将萃取过程重复三次,合并萃取液,离心,Na2SO4去除水分转移至容量瓶,待溶剂挥发后,再用石油醚定容至20 mL。充分摇匀后用移液枪取出200 μL样品两份,分别加入100 μL 0.3 mg/mL C24D50和500 μL 0.05 mg/mL氘代萘(Nap-D)作为内标备用。利用安捷伦6890N(GC)/5973B(MSD)气相色谱质谱联用仪对样品进行分析。色谱条件:HP-5MS柱(30 m × 0.25 mm × 0.25 μm),载气为氦气,进样口温度280 ℃,色谱柱程序升温条件:80 ℃(恒温1 min),以4 ℃/min升至290 ℃(恒温30 min)。进样量1.6 μL,无分流。质谱条件为:增强型EI源,电离能量70 eV,四极杆温度:150 ℃;离子源温度:230 ℃;质量范围:50~650 amu;谱库:NIST12。扫描方式:全扫描。

    在气相色谱中不同物质的相对丰度为该物质的峰面积与内标物峰面积的比值[16]。降解率为降解前后物质的相对丰度差值与降解前物质相对丰度的比值。以未接种菌剂为对照组,由此可得到出石油烃各组分以及总石油烃降解率:

    η = A E G · A C K - A E G · A C K A E G · A C K (1)

    式中:A EG 为实验组内标物峰面积,AEG 为实验组石油烃各组分峰面积,A CK 为空白组内标物峰面积,ACK 为空白组石油烃各组分峰面积。

  • 用NaCl、NaOH、盐酸配制不同盐度(0.5%、1.0%、2.0%、3.0%、4.0%、5.0%、6.0%、7.0%、8.0%)及不同pH(3.0、4.0、5.0、6.0、7.0、9.0、10.0、11.0)的富集培养基100 mL,每个梯度设置三个平行组,然后将菌株接种到培养基中,在30 ℃、150 r/min下培养48 h,以灭菌的富集培养基作为对照组,每4 h取样,用紫外可见分光光度计(UV-6000)测量吸光度(λ=600 nm)。

  • 研究以长庆油田采油厂周围被石油污染的土壤为石油烃降解菌菌源,经过5个周期的驯化筛选后,将10个样品分离出的菌株的菌种数量进行比较(表1)。除了1号样品未筛选出石油降解菌,其余9个样品都得到了不同数量的菌株。这可能是由于石化公司院内采集的1号土壤样为新鲜土壤,几乎未遭受石油污染。而已有研究发现,与石油污染土壤相比,无污染土壤中石油降解细菌数量相对较少,其数量不足微生物总量的百分之一[17]

    另外,通过对不同采样点石油烃降解菌数量进行比较,周边有植物绿化的采样点(4号、5号、6号)较无绿化的采样点(1号、2号、3号、7号、8号、9号、10号)来说,经驯化培养后可提取的石油烃降解菌的数量相对较多,说明植物可能对土壤细菌数量和菌落结构产生影响,这与很多学者研究的结果一致[1820]:说明植物对细菌具有促生作用,因此,在石油污染修复过程中植物根系对有机污染物的附着作用提高了原油利用率,使石油烃降解菌群落更加丰富。3号的油污土壤筛选菌株在富集平板上的种类、数量都相对较少,可能是高浓度的石油烃产生了较大的毒性所致。有学者指出,一定程度上的石油污染会使其污染土壤中有效石油降解菌得到富集,但高浓度的石油会对土壤和石油降解细菌产生毒性作用,明显降低石油降解细菌的活性,甚至导致其死亡[21]

  • 对初筛菌株进行了复筛和降解率的计算。对其中降解率较高的4株降解菌进行了生化理化鉴定(表2)。4株降解菌均为革兰氏阴性菌;吲哚试验、淀粉水解试验、M.R及V.P.试验均为阴性,接触酶试验均为阳性,即四株菌株均为需氧菌或兼性厌氧菌,不能分解色氨酸产生吲哚,代谢葡萄糖过程中不产酸,且不能利用淀粉。可利用该结果对菌株的菌种进行初步的判定。

    通过菌落形态和显微照片对4株石油烃降解菌的理化特性进行了进一步的观察(图23)。菌株5-5为乳白色革兰氏阴性菌,菌落边缘整齐,单菌呈短杆状。菌株5-X为乳白色革兰氏阴性菌,菌落边缘不规则,单菌呈短杆状。菌株9-2为乳白色革兰氏阴性菌,菌落边缘不规则,单菌呈杆状。菌株10-3为乳白色革兰氏阴性菌,菌落边缘不规则,单菌呈短杆状。结合表2生化理化鉴定结果,初步判断5-5,5-X,10-3为不动杆菌属(Acinetobacter),9-2为假单胞菌属(Pseudomonas)。

  • 为了对石油烃降解菌的种属进行进一步鉴定,对4株石油烃降解菌进行了DNA提取,PCR扩增和测序,与NCBI数据库进行BLAST比对后,结果显示5-5为醋酸钙不动杆菌Acinetobacter calcoaceticus,与已发表菌株(MN250321.1)相似度为100%;5-X为不动杆菌Acinetobacter sp.,与已发表菌株(MK602435.1)相似度为100%;10-3为乳酸不动杆菌Acinetobacter lactucae,与已发表菌株(MH880845.1)相似度为100%;9-2为蒙氏假单胞菌Pseudomonas monteilii,与已发表菌株(CP043396.1)相似度为100%。根据测序结果,用MEGA软件对5-5、5-X、9-2、10-3四株降解菌用邻接法构建系统发育树(图45)。

  • 14d内菌株5-5、5-X、9-2、10-3对总石油烃(1.0%)的降解率分别为50.92%、51.27%、78.3%、44.39%(图6)。同时,在降解过程中接种了这四种菌株的锥形瓶中均出现了原油的乳化现象,而接种其他菌株的对照组未出现该现象(图7),这表明菌株可能会产生一些生物表面活性剂。这是由于部分微生物新陈代谢过程中会产生生物表面活性剂,可通过降低水相与有机污染物间的表面张力使疏水相在水相中充分分散,从而增大了菌株细胞膜与有机物间的接触面积,从而提高碳源的利用率促使降解率升高[22]。在4株降解菌中,菌株9-2的降解率可达到78.3%,表现出了良好的降解效果,因此选定菌株9-2进行进一步研究。石油烃降解菌Pseudomonas monteilii 9-2已于2021年10月25日保藏于中国微生物菌种保藏管理委员会普通微生物中心,编号CGMCC No.23666。

  • 为了研究菌株9-2对石油烃不同组分的降解差异,分别对对照组和实验组降解14 d后的残油成分进行了GC-MS分析(图8)。另外,为避免气相色谱对不同类物质的响应度不同,选用了C24D50和Nap-D两种内标物分别进行饱和烃和芳烃组分的计算。经14 d降解后,石油中各组分都有了大幅度地显著下降,几乎降解了全部正构烷烃和大部分异构烷烃(图8),说明菌株9-2对原油中各组分的降解能力较好。

    Figure 2.  Colony morphology of four strains on enrichment medium

    Figure 3.  Micrographs of four strains after Gram staining

    降解菌编号 革兰氏染色 乳糖发酵试验 接触酶试验 吲哚试验 淀粉水解试验 明胶液化试验 M.R. V.P. 硝酸盐还原 乳化高度/cm
    5-5 G- + + 3.4
    5-X G- + 0.6
    9-2 G- + + 3.9
    10-3 G- + + + 4.6

    Table 2.  Biochemical and physicochemical characteristics of petroleum hydrocarbon degrading bacteria

    Figure 4.  Phylogenetic tree of petroleum hydrocarbon degrading bacteria 5-5, 5-X, 10-3

    Figure 5.  Phylogenetic tree of petroleum hydrocarbon degrading bacterium 9-2

    为了进一步探讨石油烃降解菌对原油中不同结构碳链化合物降解的差异,分析了菌株9-2对原油中正构烷烃、异构烷烃和和芳烃的降解率(图9),其降解率分别为94.65%、69.73%和59.07%,降解效果显著。此结果反应了菌株9-2对正构烷烃降解效率较高,对异构烷烃和芳烃的降解相对较低。这是由于类异戊二烯烷烃的分支结构比正构烷烃的线性结构更加具有抗生物降解的特性[23]。因此与异构烷烃相比,石油烃降解菌9-2更倾向于以正构烷烃做为碳源,这与前人的研究结果相一致[24]

    Figure 6.  Degradation rate of petroleum hydrocarbon by strains

    Figure 7.  Emulsification of petroleum hydrocarbon degradation by strains

    Figure 8.  Gas chromatogram of crude oil before and after degradation

    另外,为了更进一步地分析石油烃降解菌9-2对长链、中长链、短链正构烷烃和多环芳烃的降解特性,分别计算了降解14 d前后不同碳数的正构烷烃的相对含量和不同芳烃衍生物的相对含量及其降解率(图10~12)。经过14 d降解后nC13nC20的正构烷烃分别被降解了38.85%、69.88%、82.84%、90.38%、94.69%、98.13%、98.58% 和98.45%。降解前nC21nC33正构烷烃在石油烃中占到43.62%,降解后其含量均小于检出限,说明正构烷烃基本被完全降解。这可能是由于菌株9-2对nC21以上中长链及长链的正构烷烃利用率相对较高;也可能是长链烃在降解过程中被分解成短链烷烃,导致短链烷烃降解率较低。Throne⁃Holst et al.[10]在一株能降解nC10-nC40正构烷烃的不动杆菌中分离出了参与长链烷烃降解的基因almA,这表明不同编码基因决定了不同细菌对长链烷烃和短链烷烃的降解潜力不同。但菌株9-2降解中长链烷烃的具体途径还有待进一步的研究。

    对于芳烃,14 d内菌株9-2对萘、芘、菲、芴、䓛、苯并(k)荧蒽及苯并(e)芘及其衍生物分别降解了51.49%、62.41%、72.54%、60.86、74.53%、76.35%及79.21%。䓛、芘、苯并芘、苯并荧蒽等4环以上芳烃降解率高于2~3环。在微生物对石油烃各组分的降解中,一般对多环芳烃的降解要难于对单环芳烃和低分子量烷基芳烃的降解[2526],因此高环数多环芳烃的降解也是多环芳烃污染修复的重点之一。但并非所有多环芳烃降解菌都遵循此规律,如闫双堆等[27]以焦化厂周边土壤为菌源筛选的11株降解菌对芘的降解率均高于对蒽的降解率,其中六株对菲的降解率高于对萘的降解率,一株对芘的降解率高于对萘的降解率,Govarthanan et al.[28]分离得到的多环芳烃降解菌对芘的降解率(63.21%)高于对萘的降解率(60.12%)。在石油烃降解菌9-2的芳烃降解途径中,结果也显示芘系列等高环数芳香族物质相比于萘系列等低环数物质降解率更高。已有多个研究证明,某些高分子量多环芳烃具有转化为低环数多环芳烃的降解途径[29]。在菲的降解中,有生成萘衍生物中间体萘-1,2-二羧酸酸酐的潜力[30]。苯并[a]芘也可以通过还原生成7,8,9,10-四氢苯并[a]芘再生成芘,在4,5位上加氢生成4,5二氢芘生成中间体菲[31]。同时,苯并[a]芘也可以先生成中间体䓛,进而再生成菲,最终降解为CO2和水[32]。因此,各多环芳烃衍生物降解率的差异也可能是新的低环数中间体的生成导致的。本研究所用的原油中,高环数多环芳烃的相对含量远低于低环数多环芳烃系列衍生物的相对含量。浓度不一致的情况下,尽管高环数多环芳烃的降解率大于低环数多环芳烃,但并不能证明石油烃降解菌9-2对高环多环芳烃的效率高于低环数多环芳烃。然而,实验结果表明石油烃降解菌9-2具有降解高环多环芳烃的潜力,具体的降解途径和机理还需进行进一步实验探究。

  • 通常酸碱度是影响菌株生长的重要外部因素之一。一般微生物在pH在6.0~8.0内拥有较高的活性和降解率,超过此范围微生物的性能和活性都会逐渐降低[11],因此,只有筛选出能适应当地弱碱性土壤条件的高效石油烃降解菌才能能大大提高其污染去除效率。在30 ℃、150 r/min下记录石油烃降解菌9-2在不同pH条件下的生长曲线(图13)。研究发现,菌株在pH为7.0和8.0时快速进入对数生长期,此时菌株生长速度最快。在24 h后,菌株浓度达到OD600 = 1.7左右,此时菌株进入衰亡期,开始出现菌株浓度下降的情况。而菌株浓度为OD600=1.5时进入生长稳定期,说明衰亡期可能是由于受外界影响的同时营养物质不足,菌株分解代谢超过合成代谢导致的。40 h后,菌株又重新进入生长期,这可能是由于外界影响因素解除导致的。同时发现,石油烃降解菌9-2在pH为3.0和4.0时不能生长;在pH为11.0时,菌株生长迟缓;在pH为5.0~10.0均表现出很高的生物活性,这表明该菌株能适应的pH范围较宽,完全能适应我国西北干旱地区土壤的碱性特征,适合作为西北地区石油污染的原位修复菌剂使用。

    Figure 9.  Degradation rates of different components of petroleum hydrocarbon

    Figure 10.  Comparison of relative contents of n⁃alkanes with different carbon numbers in saturated hydrocarbons before and after crude oil degradation by strain 9⁃2

    Figure 11.  Relative contents of different polycyclic aromatic hydrocarbons and their derivatives in total polycyclic aromatic hydrocarbons in crude oil before and after degradation

    Figure 12.  Degradation rates of polycyclic aromatic hydrocarbons and their derivatives by strain 9⁃2

    Figure 13.  48⁃hour growth curve of strain 9⁃2 at different pH values

  • 盐度同样是是影响菌株生长重要条件之一,盐度过高往往会导致细菌细胞膜内外渗透压改变,影响细菌生长,甚至导致细菌脱水死亡。目前对于石油烃降解菌的耐盐性也成为学者研究的重要方向之一:张宝宝等[33]从陕北地区石油污染土壤中分离的三株石油降解菌,对盐度耐受度最高可达6.0%。Shi et al.[34]在餐厨油污中提取的铜绿假单胞菌P. aeruginosa M4耐盐度可达到7.0%。因此,为了筛选适合我国西北盐碱地区石油烃降解菌株,本研究也进行了菌株的盐度耐受试验,在30 ℃、150 r/min条件下,记录了石油烃降解菌9-2在不同盐度条件下的生长曲线(图14)。在盐度为0.5%~4.0%的范围内菌株9-2生长均表现良好,尤其在盐度为0.5%时以对数生长期生长,其生长最快,此时菌株浓度最高可达到OD600=1.728。16 h后,盐度在4.0%以下的培养基中菌株生长进入衰退期,可能是由于营养物质不足造成的,而盐度在5.0%~6.0%的培养基中菌株生长进入稳定期。研究结果发现,石油烃降解菌9-2在0.5%~5.0%盐度下生长最适,在6.0%时生长相对减缓,在7.0%盐度下生长迟缓。据文献调查,我国西北地区的盐度范围大致在0.2%~3.1%[3536],而菌株9-2可耐受6.0%以下的盐度,这表明该菌株能可完全适应西北干旱地区土壤的盐度特征,适合作为西北地区石油污染的原位修复菌剂使用。

  • (1) 从庆阳市油井附近石油污染土壤中筛选出的4株石油烃降解菌,经分子生物学鉴定确定为醋酸钙不动杆菌5-5(Acinetobacter calcoaceticus)、不动杆菌5-X(Acinetobacter sp.)、蒙氏假单胞菌9-2(Pseudomonas monteilii)及乳酸不动杆菌10-3(Acinetobacter lactucae)。

    (2) 四株降解菌在降解过程中均出现培养基原油乳化现象,其降解率分别达到了50.92%、51.27%、78.30%及44.39%。另外,石油烃降解菌9-2的降解效果最显著,可降解94.65%正构烷烃,69.73%异构烷烃和59.07%多环芳烃,并且对nC21以上中长链及长链烷烃和高环数多环芳烃的降解度更高。

    Figure 14.  48⁃hour growth curve of strain 9⁃2 at different salinities

    (3) 抗逆性试验结果表明,石油烃降解菌9-2的酸碱度耐受范围为pH为5.0~10.0,盐度耐受范围为0.5%~6.0%。菌株9-2表现出优越的降解率和耐盐耐碱特性,可为西北地区盐碱土壤石油污染微生物修复提供一定的科学依据。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return