Advanced Search
Volume 41 Issue 5
Oct.  2023
Turn off MathJax
Article Contents

LI JiaoLi, WANG JianQiang, PENG Heng, LI KeLiang, FENG XiaoLin, ZHANG DongDong. Detrital Zircon U-Pb Dating and Provenance Significance of the Lower Cretaceous Yijun Formation in the Southern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1609-1623. doi: 10.14027/j.issn.1000-0550.2022.022
Citation: LI JiaoLi, WANG JianQiang, PENG Heng, LI KeLiang, FENG XiaoLin, ZHANG DongDong. Detrital Zircon U-Pb Dating and Provenance Significance of the Lower Cretaceous Yijun Formation in the Southern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1609-1623. doi: 10.14027/j.issn.1000-0550.2022.022

Detrital Zircon U-Pb Dating and Provenance Significance of the Lower Cretaceous Yijun Formation in the Southern Ordos Basin

doi: 10.14027/j.issn.1000-0550.2022.022
Funds:

National Natural Science Foundation of China 41972153

Scientific Research Program Funded by Education Department of Shanxi Provincial Government 22JP086

  • Received Date: 2021-12-16
  • Accepted Date: 2022-03-18
  • Rev Recd Date: 2022-02-08
  • Available Online: 2022-03-18
  • Publish Date: 2023-10-10
  • The Early Cretaceous was the latest evolution period of the Mesozoic Ordos Basin. The tectonic environment and sedimentary provenance system have undergone significant changes since then that are of great significance to the evolution of the basin and the exploration of multi-energy mineral reservoirs and/or mineralization. This study takes the Lower Cretaceous Yijun Formation in the southern Ordos Basin as the main research object, uses the detrital zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) uranium-lead (U-Pb) dating method, and analyses the characteristics of zircon U-Pb age spectrum peaks and structural evolution characteristics of surrounding blocks to trace the provenance of the Yijun Formation and discuss its geological significance. The results show that the detrital zircons U-Pb ages from the Yijun Formation are distributed in the Early Mesozoic (ca. 195⁃250 Ma) and Early Paleozoic (ca. 400⁃500 Ma) periods, with peak ages of ca. 218 Ma and ca. 450 Ma, respectively, which are consistent with the age of the widely exposed rock masses in the North Qinling area today. The Proterozoic-Archaean zircon ages are not only small in number, but have no obvious age peaks. Based on comparison of the regional geological background, the provenance comes from the North Qinling orogenic belt. It was uplifted and exposed to the surface at the beginning of the Cretaceous, providing a large amount of material to the southern Ordos Basin. This study restrained the uplift and exhumation of Qinling in the Late Mesozoic to a certain extent and restricts the time limit for the development of the Weibei uplift. The research has a certain guiding role in determining the uranium ore sources and ore-forming distribution of Mesozoic sandstone-type uranium deposits in the southern part of the basin.
  • [1] 刘池洋,赵红格,桂小军,等. 鄂尔多斯盆地演化—改造的时空坐标及其成藏(矿)响应[J]. 地质学报,2006,80(5):617-638.

    Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638.
    [2] 王建强. 鄂尔多斯盆地南部中新生代演化—改造及盆山耦合关系[D]. 西安:西北大学,2010.

    Wang Jianqiang. Mesozoic-Cenozoic basin evolution-reforming and basin-mountain coupling in southern Ordos Basin[D]. Xi'an: Northwest University, 2010.
    [3] 张天福,苗培森,程先钰,等. 鄂尔多斯盆地早白垩世含铀岩系的新发现及其层序地层[J]. 大地构造与成矿学,2020,44(4):633-647.

    Zhang Tianfu, Miao Peisen, Cheng Xianyu, et al. Stratigraphic characteristics of a newly discovered uranium-bearing stratum in the Lower Cretaceous, Ordos Basin[J]. Geotectonica et Metallogenia, 2020, 44(4): 633-647.
    [4] 任战利,祁凯,刘润川,等. 鄂尔多斯盆地早白垩世构造热事件形成动力学背景及其对油气等多种矿产成藏(矿)期的控制作用[J]. 岩石学报,2020,36(4):1213-1234.

    Ren Zhanli, Qi Kai, Liu Runchuan, et al. Dynamic background of Early Cretaceous tectonic thermal events and its control on various mineral accumulations such as oil and gas in the Ordos Basin[J]. Acta Petrologica Sinica, 2020, 36(4): 1213-1234.
    [5] 庞军刚,李文厚,国吉安,等. 鄂尔多斯盆地白垩纪沉积体系及古地理演化[J]. 西北大学学报(自然科学版),2021,51(2):314-324.

    Pang Jungang, Li Wenhou, Guo Ji'an, et al. Depositional system and paleogeographic evolution of the Cretaceous of Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(2): 314-324.
    [6] 禹江. 鄂尔多斯盆地西南缘早白垩世宜君组沉积环境及构造意义[D]. 西安:长安大学,2018.

    Yu Jiang. Sedimentary environment and tectonic significance of the Early Cretaceous Yijun Formation in the southwestern Ordos Basin[D]. Xi'an: Chang'an University, 2018.
    [7] 程先钰,张天福,苗培森,等.鄂尔多斯盆地西南缘洛河组下段含铀砂岩锆石U-Pb年代学:对岩石圈伸展作用的启示[J]. 中国地质,2023,50(3):853-871.

    Cheng Xianyu, Zhang Tianfu, Miao Peisen, et al. Detrital zircon U-Pb geochronology of uranium-bearing sandstone in the Lower member of Luohe Formation in the southwest margin of the Ordos Basin: Implications for the lithospheric extension[J]. Geology in China, 2023, 50(3): 853-871.
    [8] 孙栋华,江民忠,陈江源,等. 鄂尔多斯盆地西南部多元地学特征及其找铀意义[J]. 铀矿地质,2020,36(4):293-301.

    Sun Donghua, Jiang Minzhong, Chen Jiangyuan, et al. The characteristics of multi-source geo-information and its significance to uranium exploration in the southwest of Ordos Basin[J]. Uranium Geology, 2020, 36(4): 293-301.
    [9] 朱强,李建国,苗培森,等. 鄂尔多斯盆地西南部洛河组储层特征和深部铀成矿地质条件[J]. 地球科学与环境学报,2019,41(6):675-690.

    Zhu Qiang, Li Jianguo, Miao Peisen, et al. Reservoir characteristics of Luohe Formation and metallogenic geological conditions of deep uranium in the southwestern margin of Ordos Basin, China[J]. Journal of Earth Sciences and Environment, 2019, 41(6): 675-690.
    [10] 徐阳,凌明星,薛硕,等. 鄂尔多斯盆地双龙地区砂岩型铀矿富集、迁移和成矿机制[J]. 大地构造与成矿学,2020,44(5):937-957.

    Xu Yang, Ling Mingxing, Xue Shuo, et al. Enrichment, transportation and ore forming mechanism of sandstone-type uranium deposits in Shuanglong area, Ordos Basin[J]. Geotectonica et Metallogenia, 2020, 44(5): 937-957.
    [11] 陈江源,牛家骥,郭佳,等. 鄂尔多斯盆地南缘崇信—泾川地区航放异常特征及铀矿找矿前景分析[J]. 地质与勘探,2020,56(3):551-565.

    Chen Jiangyuan, Niu Jiaji, Guo Jia, et al. Characteristics of aerial radioactive anomalies and prospect of uranium exploration in the Chongxin-Jingchuan area, southern margin of Ordos Basin[J]. Geology and Exploration, 2020, 56(3): 551-565.
    [12] 张字龙,范洪海,贺锋,等. 鄂尔多斯盆地西南缘下白垩统铀成矿条件分析[J]. 铀矿地质,2018,34(4):193-200.

    Zhang Zilong, Fan Honghai, He Feng, et al. Analysis of sandstone type uranium metallogenic conditions of Lower Cretaceous in the southwest margin of Ordos Basin[J]. Uranium Geology, 2018, 34(4): 193-200.
    [13] Košler J, Sylvester P J. Present trends and the future of zircon in geochronology: Laser ablation ICPMS[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 243-275.
    [14] 张岳桥,廖昌珍. 晚中生代—新生代构造体制转换与鄂尔多斯盆地改造[J]. 中国地质,2006,33(1):28-40.

    Zhang Yueqiao, Liao Changzhen. Transition of the Late Mesozoic-Cenozoic tectonic regimes and modification of the Ordos Basin[J]. Geology in China, 2006, 33(1): 28-40.
    [15] Peng H, Liu C Y, Wang J Q, et al. Discovery of multiple tectonic reformations of the eastern Yingen-Ejinaqi Basin: Evidence from detrital chronology[J]. Acta Geologica Sinica (English Edition), 2021, 95(2): 693-695.
    [16] 赵红格,刘池洋,王海然,等. 鄂尔多斯盆地西北缘早—中侏罗世延安期碎屑锆石LA-ICP-MS定年及其物源意义[J]. 地学前缘,2015,22(3):184-193.

    Zhao Hongge, Liu Chiyang, Wang Hairan, et al. LA-ICP-MS detrital zircon dating and its provenance significance in Yan'an Formation of the Early-Middle Jurassic in the northwestern margin of Ordos Basin[J]. Earth Science Frontiers, 2015, 22(3): 184-193.
    [17] Zhao X C, Liu C Y, Wang J Q, et al. Detrital zircon U-Pb ages of Paleozoic sedimentary rocks from the eastern Hexi Corridor Belt (NW China): Provenance and geodynamic implications[J]. Sedimentary Geology, 2016, 339: 32-45.
    [18] 彭恒,刘显阳,刘池洋,等. 鄂尔多斯盆地西南缘中生代中晚期构造体制转化过程及其动力学背景[J]. 地质学报,2022,96(2):387-402.

    Peng Heng, Liu Xianyang, Liu Chiyang, et al. Spatial-temporal evolution and the dynamic background of the translation of Mid-Late Mesozoic tectonic regimes of the southwest Ordos Basin margin[J]. Acta Geologica Sincia,2022,96(2):387-402.
    [19] 张文龙,陈刚,章辉若,等. 唐王陵昭陵组砾岩碎屑锆石U-Pb年代学分析[J]. 沉积学报,2016,34(3):497-505.

    Zhang Wenlong, Chen Gang, Zhang Huiruo, et al. Detrital zircon U-Pb geochronology from Zhaoling Formation in Tangwangling[J]. Acta Sedimentologica Sinica, 2016, 34(3): 497-505.
    [20] 韩会平,武春英,白清华,等. 鄂尔多斯盆地乌审旗地区上古生界砂岩碎屑锆石U-Pb年龄及其地质意义[J]. 沉积学报,2014,32(4):643-653.

    Han Huiping, Wu Chunying, Bai Qinghua, et al. Zircon U-Pb dating of clastic sandstone in the Upper Paleozoic from Wushenqi area, Ordos Basin and its geological significance[J]. Acta Sedimentologica Sinica, 2014, 32(4): 643-653.
    [21] 王建强,贾楠,刘池洋,等. 鄂尔多斯盆地西南部下白垩统宜君组砾岩砾组分析及其意义[J]. 沉积学报,2011,29(2):226-234.

    Wang Jianqiang, Jia Nan, Liu Chiyang, et al. Fabric analysis of Yijun gravels of Lower Cretaceous in the southwestern Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(2): 226-234.
    [22] 庞军刚,国吉安,李文厚,等. 古沙漠记录的沉积体系及层序地层研究进展:以鄂尔多斯盆地白垩系为例[J]. 地层学杂志,2011,35(1):95-102.

    Pang Jungang, Guo Ji'an, Li Wenhou, et al. Advance of depositional system and sequence stratigraphy in paleo-desert record: Taking the Cretaceous strata in Ordos Basin as an example[J]. Journal of Stratigraphy, 2011, 35(1): 95-102.
    [23] 李孝泽,董光荣,靳鹤龄,等. 鄂尔多斯白垩系沙丘岩的发现[J]. 科学通报,1999,44(8):874-877.

    Li Xiaoze, Dong Guangrong, Jin Heling, et al. Discovery of Ordos Cretaceous dune rock and its significance[J]. Chinese Science Bulletin, 1999, 44(8): 874-877.
    [24] 谢渊,王剑,李明辉,等. 鄂尔多斯盆地早白垩世岩相古地理与地下水水质和分布的关系[J]. 地质通报,2004,23(11):1094-1102.

    Xie Yuan, Wang Jian, Li Minghui, et al. Relations of the Early Cretaceous lithofacies-paleogeography to groundwater quality and distribution in the Ordos Basin[J]. Geological Bulletin of China, 2004, 23(11): 1094-1102.
    [25] 王建强. 鄂尔多斯盆地西南部早白垩世原盆恢复及其演化[D]. 西安:西北大学,2007.

    Wang Jianqiang. Reconstruction of the Early Crataceous basin and its evolution in southwest Ordos[D]. Xi'an: Northwestern University, 2007.
    [26] 王建强,刘池洋,刘鑫,等. 鄂尔多斯盆地南部下白垩统演化改造特征[J]. 西北大学学报(自然科学版),2011,41(2):291-297.

    Wang Jianqiang, Liu Chiyang, Liu Xin, et al. Geologic characteristic and its evolution and reformation of Lower Cretaceous in southern Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2011, 41(2): 291-297.
    [27] 秦江锋. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D]. 西安:西北大学,2010.

    Qin Jiangfeng. Petrogenesis and geodynamic implications of the Late-Triassic Granitoids from the Qinling orogenic belt[D]. Xi'an: Northwest University, 2010.
    [28] 刘池洋,王建强,张东东,等. 鄂尔多斯盆地油气资源丰富的成因与赋存—成藏特点[J]. 石油与天然气地质,2021,42(5):1011-1029.

    Liu Chiyang, Wang Jianqiang, Zhang Dongdong, et al. Genesis of rich hydrocarbon resources and their occurrence and accumulation characteristics in the Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1011-1029.
    [29] 谢渊,王剑,李令喜,等. 鄂尔多斯盆地白垩系粘土矿物的分布特征及其沉积—成岩环境意义[J]. 地质通报,2010,29(1):93-104.

    Xie Yuan, Wang Jian, Li Lingxi, et al. Distribution of the Cretaceous clay minerals in Ordos Basin, China and its implication to sedimentary and diagenetic environment[J]. Geological Bulletin of China, 2010, 29(1): 93-104.
    [30] 程守田,刘星,郭秀蓉,李志德.古沙漠沉积及其层序单元:以鄂尔多斯白垩纪内陆古沙漠盆地为例[J]. 中国地质大学学报(地球科学版),2000(06):587-591.

    Chen Shoutian, Liu Xin,Guo, et al. Xiurong Palaeo-desert deposition and sequence stratigraphic units:An example from cret aceous continent palaeo-desert basin in Ordos[J]. Journal of China University of Geosciences (Earth Science Edition),2000(06):587-591.
    [31] 何登发,包洪平,开百泽,等. 鄂尔多斯盆地及其邻区关键构造变革期次及其特征[J]. 石油学报,2021,42(10):1255-1269.

    He Dengfa, Bao Hongping, Baize Kai, et al. Critical tectonic modification periods and its geologic features of Ordos Basin and adjacent area[J]. Acta Petrolei Sinica, 2021, 42(10): 1255-1269.
    [32] 黄永波. 早白垩世鄂尔多斯南部沙漠起源与演化:志丹群磁性地层年代及沉积物磁化率测量[D]. 兰州:兰州大学,2010.

    Huang Yongbo. The origin and evolution of the desert in southern Ordos in Early Cretaceous: Constraint from magnetostratigraphy of Zhidan Group and magnetic susceptibility of its sediment[D]. Lanzhou: Lanzhou University, 2010.
    [33] Ballard J R, Palin J M, Williams I S, et al. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP[J]. Geology, 2001, 29(5): 383-386.
    [34] Zhang H F, Zhang B R, Harris N, et al. U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China: Constraints on petrogenesis and tectonic affinity[J]. Journal of Asian Earth Sciences, 2006, 27(6): 751-764.
    [35] 魏方辉,裴先治,李瑞保,等. 甘肃天水地区早古生代黄门川花岗闪长岩体LA-ICP-MS锆石U-Pb定年及构造意义[J]. 地质通报,2012,31(9):1496-1509.

    Wei Fanghui, Pei Xianzhi, Li Ruibao, et al. LA-ICP-MS zircon U-Pb dating of Early Paleozoic Huangmenchuan granodiorite in Tianshui area of Gansu province and its tectonic significance[J]. Geological Bulletin of China, 2012, 31(9): 1496-1509.
    [36] 陈隽璐,李好斌,王洪亮,等. 秦祁结合部位王家岔石英闪长岩体锆石LA-ICPMS定年及地质意义[J]. 吉林大学学报(地球科学版),2007,37(3):423-431.

    Chen Junlu, Li Haobin, Wang Hongliang, et al. LA-ICPMS zircon U-Pb dating of a quartz diorite pluton from Wangjiacha, the junction area between the Qinling and Qilian orogenic belts and its tectonic significance[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(3): 423-431.
    [37] 裴先治,孙仁奇,丁仨平,等. 陇东地区阎家店闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义[J]. 中国地质,2007,34(1):8-16.

    Pei Xianzhi, Sun Renqi, Ding Saping, et al. LA-ICP-MS zircon U-Pb dating of the Yanjiadian diorite in the eastern Qilian mountains and its geological significance[J]. Geology in China, 2007, 34(1): 8-16.
    [38] 何艳红,陈亮,孙勇,等. 陇县地区新街片麻岩套锆石年龄及其地质意义[J]. 西北大学学报(自然科学版),2005,35(5):625-627,632.

    He Yanhong, Chen Liang, Sun Yong, et al. Zircon chronology of Xinjie complex in Longxian County and its geological significance[J]. Journal of Northwest University (Natural Science Edition), 2005, 35(5): 625-627, 632.
    [39] 裴先治,李佐臣,李瑞保,等. 祁连造山带东段早古生代葫芦河群变质碎屑岩中碎屑锆石LA-ICP-MSU-Pb年龄:源区特征和沉积时代的限定[J]. 地学前缘,2012,19(5):205-224.

    Pei Xianzhi, Li Zuochen, Li Ruibao, et al. LA-ICP-MS U-Pb ages of detrital zircons from the meta-detrital rocks of the Early Palaeozoic Huluhe Group in eastern part of Qilian orogenic belt: Constraints of material source and sedimentary age[J]. Earth Science Frontiers, 2012, 19(5): 205-224.
    [40] Lerch M F, Xue F, Kröner A, et al. A Middle Silurian-Early Devonian magmatic arc in the Qinling mountains of central China[J]. The Journal of Geology, 1995, 103(4): 437-449.
    [41] Xue F, Kröner A, Reischmann T, et al. Palaeozoic pre- and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks[J]. Journal of the Geological Society, 1996, 153(3): 409-417.
    [42] 徐学义,李婷,陈隽璐,等. 西秦岭西段花岗岩浆作用与成矿[J]. 西北地质,2012,45(4):76-82.

    Xu Xueyi, Li Ting, Chen Junlu, et al. The granitoids magmatism and mineralization in west section of the Western Qinling, NW China[J]. Northwestern Geology, 2012, 45(4): 76-82.
    [43] 陈隽璐,徐学义,王洪亮,等. 北秦岭西段唐藏石英闪长岩岩体的形成时代及其地质意义[J]. 现代地质,2008,22(1):45-52.

    Chen Junlu, Xu Xueyi, Wang Hongliang, et al. LA-ICPMS zircon U-Pb dating of Tangzang quartz-diorite pluton in the west segment of North Qinling mountains and its tectonic significance[J]. Geoscience, 2008, 22(1): 45-52.
    [44] 王涛,王晓霞,田伟,等. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J]. 中国科学(D辑):地球科学,2009,39(7):949-971.

    Wang Tao, Wang Xiaoxia, Tian Wei, et al. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China[J]. Science China (Seri. D): Earth Sciences, 2009, 39(7): 949-971.
    [45] Qin J F, Lai S C, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos, 2009, 112(3/4): 259-276.
    [46] 王天刚,倪培,孙卫东,等. 西秦岭勉略带北部黄渚关和厂坝花岗岩锆石U-Pb年龄及源区性质[J]. 科学通报,2010,55(36):3493-3505.

    Wang Tiangang, Ni Pei, Sun Weidong, et al. Zircon U-Pb ages of granites at Changba and Huangzhuguan in Western Qinling and implications for source nature[J]. Chinese Science Bulletin, 2010, 55(36): 3493-3505.
    [47] 路东宇,叶会寿,曹晶,等. 西秦岭江里沟复式岩体LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素特征及其地质意义[J]. 岩石学报,2017,33(3):942-962.

    Lu Dongyu, Ye Huishou, Cao Jing, et al. LA-ICP-MS zircon U-Pb ages, Hf isotopic compositions, geochemistry characteristics and its geological significance of Jiangligou composite granite, West Qingling orogen[J]. Acta Petrologica Sinica, 2017, 33(3): 942-962.
    [48] 刘树文,杨朋涛,李秋根,等. 秦岭中段印支期花岗质岩浆作用与造山过程[J]. 吉林大学学报(地球科学版),2011,41(6):1928-1943.

    Liu Shuwen, Yang Pengtao, Li Qiugen, et al. Indosinian granitoids and orogenic processes in the middle segment of the Qinling orogen, China[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(6): 1928-1943.
    [49] Wang X X, Wang T, Zhang C L. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129-151.
    [50] Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.
    [51] 杨华,辛补社,付金华,等. 鄂尔多斯盆地西南缘崆峒山组砾岩中的碎屑锆石LA-ICP-MS U-Pb定年及其构造意义[J]. 地质论评,2014,60(3):677-692.

    Yang Hua, Xin Bushe, Fu Jinhua, et al. LA-ICP-MS U-Pb dating of detrital zircons from Kongtongshan Formation conglomerate in the southwestern margin of Ordos Basin and its tectonic significance[J]. Geological Review, 2014, 60(3): 677-692.
    [52] 高春云,郭安林,李兴辉,等. 北秦岭柳叶河盆地石炭系—二叠系含砾砂岩碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质通报,2015,34(9):1689-1698.

    Gao Chunyun, Guo Anlin, Li Xinghui, et al. LA-ICP-MS U-Pb dating of detrital zircon from Liuyehe Basin in North Qinling mountains[J]. Geological Bulletin of China, 2015, 34(9): 1689-1698.
    [53] Li N, Chen Y J, Santosh M, et al. Compositional polarity of Triassic granitoids in the Qinling orogen, China: Implication for termination of the northernmost paleo-Tethys[J]. Gondwana Research, 2015, 27(1): 244-257.
    [54] 宫相宽,蔡宏明,郭瑞清,等. 北秦岭西段早侏罗世A型花岗岩及其地质意义[J]. 地质科学,2021,56(1):158-181.

    Gong Xiangkuan, Cai Hongming, Guo Ruiqing, et al. Early Jurassic A-type granites in the western North Qinling orogen, central China, and its geological significance[J]. Chinese Journal of Geology, 2021, 56(1): 158-181.
    [55] 王元元,裴先治,刘成军,等. 西秦岭舒家坝地区泥盆纪舒家坝群碎屑锆石LA-ICP-MSU-Pb年龄:源区特征与形成时代[J]. 地质通报,2014,33(7):1015-1027.

    Wang Yuanyuan, Pei Xianzhi, Liu Chengjun, et al. Detrial zircon LA-ICP-MS U-Pb ages of the Devonian Shujiaba Group in Shujiaba area of the West Qinling tectonic zone: Constraints on material source and sedimentaryage[J]. Geological Bulletin of China, 2014, 33(7): 1015-1027.
    [56] 周澍,张贺,陈福坤.北秦岭五垛山花岗岩锆石U-Pb年代学和地球化学特征及成因[J].高校地质学报,2019,25(6) :901-913.

    Zhou Shu, Zhang He, Chen Fukun. Zircon U-Pb geochronology, geochemistry and petrogenesis of granites from the Wuduoshan pluton, the North Qinling terrane[J]. Geological Journal of China Universities,2019,25(6):901-913.
    [57] 张红. 秦岭北麓现代河流碎屑锆石U-Pb年代学研究及其地质意义[D]. 西安:西北大学,2008.

    Zhang Hong. The chronological study on U-Pb dating of modern river detrital zircon in north piedmont of Qinling and its geological indication[D]. Xi'an: Northwest University, 2008.
    [58] Dong Y P, Liu X M, Neubauer F, et al. Timing of Paleozoic amalgamation between the North China and South China Blocks: Evidence from detrital zircon U-Pb ages[J]. Tectonophysics, 2013, 586: 173-191.
    [59] Li Y Q, He D F, Li D, et al. Detrital zircon U-Pb geochronology and provenance of Lower Cretaceous sediments: Constraints for the northwestern Sichuan pro-foreland basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453: 52-72.
    [60] 刘宝星,裴先治,李瑞保,等. 南秦岭勉略构造带横现河地区变质沉积岩形成时代及物源:来自LA-ICP-MS碎屑锆石U-Pb年龄的证据[J]. 西北地质,2020,53(2):77-101.

    Liu Baoxing, Pei Xianzhi, Li Ruibao, et al. Age and provenance of the metasedimentary rocks of Hengxianhe area in Mianlue tectonic belt of Southern Qinling: Evidence from detrital zircons LA-ICP-MS U-Pb dating[J]. Northwestern Geology, 2020, 53(2): 77-101.
    [61] 李振华. 南秦岭泥盆纪与扬子板块北缘新元古代晚期—早古生代碎屑锆石研究及其地质意义[D]. 西安:西北大学,2019.

    Li Zhenhua. Research on detrital zircons from the Devonian clatic sequence in the South Qinling belt and the Late Neoproterozoic to Early Paleozoic sedimentary rocks at the northern margin of the Yangtze Block and its geological significancence[D]. Xi'an: Northwest University, 2019.
    [62] 杨贵才. 西秦岭阳山金矿带印支期花岗岩成因及金成矿作用[D]. 北京:中国地质大学(北京),2019.

    Yang Guicai. Petrogenesis of indosinian granites and gold metallogeny of Yangshan gold belt in Western Qinling[D]. Beijing: China University of Geosciences (Beijing), 2019.
    [63] 孟旭阳,王晓霞,柯昌辉,等. 南秦岭华阳花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学和Hf同位素组成:对五龙岩体群成因的约束[J]. 地质通报,2013,32(11):1704-1719.

    Meng Xuyang, Wang Xiaoxia, Ke Changhui, et al. LA-ICP-MS zircon U-Pb age, geochemistry and Hf isotope of the granitoids from Huayang pluton in South Qinling orogen: Constraints on the genesis of Wulong plutons[J]. Geological Bulletin of China, 2013, 32(11): 1704-1719.
    [64] 毛世东,陈衍景,周振菊,等. 南秦岭东河群碎屑锆石U-Pb年龄及其板块构造意义[J]. 岩石学报,2013,29(1):67-82.

    Mao Shidong, Chen Yanjing, Zhou Zhenju, et al. U-Pb ages of detrital zircon grains from the Donghe Group in the Southern Qinling microcontinent: Implications for tectonic evolution[J]. Acta Petrologica Sinica, 2013, 29(1): 67-82.
    [65] 杨力,陈福坤,杨一增,等. 丹凤地区秦岭岩群片麻岩锆石U-Pb年龄:北秦岭地体中—新元古代岩浆作用和早古生代变质作用的记录[J]. 岩石学报,2010,26(5):1589-1603.

    Yang Li, Chen Fukun, Yang Yizeng, et al. Zircon U-Pb ages of the Qinling Group in Danfeng area: Recording Mesoproterozoic and Neoproterozoic magmatism and Early Paleozoic metamorphism in the North Qinling terrain[J]. Acta Petrologica Sinica, 2010, 26(5): 1589-1603.
    [66] 弓虎军,朱赖民,孙博亚,等. 南秦岭地体东江口花岗岩及其基性包体的锆石U-Pb年龄和Hf同位素组成[J]. 岩石学报,2009,25(11):3029-3042.

    Gong Hujun, Zhu Laimin, Sun Boya, et al. Zircon U-Pb ages and Hf isotopic composition of the Dongjiangkou granitic pluton and its mafic enclaves in the South Qiniing terrain[J]. Acta Petrologica Sinica, 2009, 25(11): 3029-3042.
    [67] Yuan W, Yang Z Y. The Alashan terrane was not part of North China by the Late Devonian: Evidence from detrital zircon U-Pb geochronology and Hf isotopes[J]. Gondwana Research, 2015, 27(3): 1270-1282.
    [68] Yan Z, Xiao W J, Windley B F, et al. Silurian clastic sediments in the North Qilian Shan, NW China: Chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan Plateau[J]. Sedimentary Geology, 2010, 231(3/4): 98-114.
    [69] Xu Y J, Du Y S, Cawood P A, et al. Provenance record of a foreland basin: Detrital zircon U-Pb ages from Devonian strata in the North Qilian orogenic belt, China[J]. Tectonophysics, 2010, 495(3/4): 337-347.
    [70] Xu Y J, Du Y S, Cawood P A, et al. Detrital zircon record of continental collision: Assembly of the Qilian orogen, China[J]. Sedimentary Geology, 2010, 230(1/2): 35-45.
    [71] Gehrels G E, Yin A, Wang Y F. Detrital-zircon geochronology of the northeastern Tibetan Plateau[J]. GSA Bulletin, 2003, 115(7): 881-896.
    [72] 柯昌辉,王晓霞,李金宝,等. 华北地块南缘黑山—木龙沟地区中酸性岩的锆石U-Pb年龄、岩石化学和Sr-Nd-Hf同位素研究[J]. 岩石学报,2013,29(3):781-800.

    Ke Changhui, Wang Xiaoxia, Li Jinbao, et al. Zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic geochemistry of the intermediate-acid rocks from the Heishan-Mulonggou area in the southern margin of North China Block[J]. Acta Petrologica Sinica, 2013, 29(3): 781-800.
    [73] 卢仁,梁涛,刘小丽. 华北克拉通南缘南召县郭庄岩体锆石U-Pb年龄报道[J]. 中国地质,2021,48(4):1296-1297.

    Lu Ren, Liang Tao, Liu Xiaoli. The report on zircon U-Pb age of the Guozhuang intrusive in the Nanzhao county, southern margin of the North China Carton[J]. Geology in China, 2021, 48(4): 1296-1297.
    [74] 段友强,张正伟,杨晓勇. 华北克拉通南缘张士英岩体大陆动力学背景:来自地球化学、锆石U-Pb年龄和Hf同位素的证据[J]. 岩石学报,2015,31(7):1995-2008.

    Duan Youqiang, Zhang Zhengwei, Yang Xiaoyong. The continental dynamics of Zhangshiying pluton at the southern margin of the North China Craton: Evidence from geochemical, zircon U-Pb geochronology and Hf isotopic compositions[J]. Acta Petrologica Sinica, 2015, 31(7): 1995-2008.
    [75] 苏文博,李怀坤,徐莉,等. 华北克拉通南缘洛峪群—汝阳群属于中元古界长城系:河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMSU-Pb年龄的直接约束[J]. 地质调查与研究,2012,35(2):96-108.

    Su Wenbo, Li Huaikun, Xu Li, et al. Luoyu and Ruyang Group at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian system: Direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China[J]. Geological Survey and Research, 2012, 35(2): 96-108.
    [76] 胡国辉,赵太平,周艳艳,等. 华北克拉通南缘五佛山群沉积时代和物源区分析:碎屑锆石U-Pb年龄和Hf同位素证据[J]. 地球化学,2012,41(4):326-342.

    Hu Guohui, Zhao Taiping, Zhou Yanyan, et al. Depositional age and provenance of the Wufoshan Group in the southern margin of the North China Craton: Evidence from detrital zircon U-Pb ages and Hf isotopic compositions[J]. Geochimica, 2012, 41(4): 326-342.
    [77] 田雯,王永诗,马立驰,等. 鄂尔多斯盆地西南缘二叠系上石盒子组碎屑锆石U-Pb年龄与地质意义[J]. 矿物学报,2017,37(6):782-790.

    Tian Wen, Wang Yongshi, Ma Lichi, et al. U-Pb age and geological significance of detrital zircon in the Upper Shihezi Formation Permian system from the southwestern margin of Ordos Basin[J]. Acta Mineralogica Sinica, 2017, 37(6): 782-790.
    [78] 师江朋,杨浩田,杨德彬,等. 华北克拉通南缘太古宙地壳生长和再造:登封地区五指岭组碎屑锆石U-Pb-Hf同位素制约[J]. 大地构造与成矿学,2018,42(2):379-391.

    Shi Jiangpeng, Yang Haotian, Yang Debin, et al. Archean crustal growth and reconstruction of the southern margin of North China Craton: Constraints from the U-Pb-Hf isotopic compositions of detrital zircon from the Wuzhiling Formation at the Dengfeng area[J]. Geotectonica et Metallogenia, 2018, 42(2): 379-391.
    [79] 钟焱,相振群,初航. 华北克拉通北缘的中元古代多旋回复合盆地及其地质意义:来自碎屑锆石U-Pb年龄的统计学证据[J]. 岩石学报,2019,35(8):2377-2406.

    Zhong Yan, Xiang Zhenqun, Chu Hang. A Mesoproterozoic multi-cycled composite basin in the northern margin of the North China Craton and its geological implications: Constraints from statistics of the detrital zircon U-Pb data[J]. Acta Petrologica Sinica, 2019, 35(8): 2377-2406.
    [80] 谭聪,卢远征,宋昊南,等. 华北克拉通西南缘高山河组凝灰岩锆石U-Pb年龄及其地质意义[J]. 地质学报,2019,93(5):1113-1124.

    Tan Cong, Lu Yuanzheng, Song Haonan, et al. Zircon U-Pb dating of the Gaoshanhe Formation tuff in the southwestern margin of the North China Craton, and its geological singificance[J]. Acta Geologica Sinica, 2019, 93(5): 1113-1124.
    [81] 张恒,高林志,周洪瑞,等. 华北克拉通南缘官道口群和洛峪群的年代学研究新进展:来自凝灰岩SHRIMP锆石U-Pb年龄的新证据[J]. 岩石学报,2019,35(8):2470-2486.

    Zhang Heng, Gao Linzhi, Zhou Hongrui, et al. Chronology progress of the Guandaokou and Luoyu Groups in the southern margin of North China Craton: Constraints on zircon U-Pb dating of tuff by means of the SHRIMP[J]. Acta Petrologica Sinica, 2019, 35(8): 2470-2486.
    [82] Bernet M. Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones[M]//Malusà M G, Fitzgerald P G. Fission-track thermochronology and its application to geology. Cham: Springer, 2019: 269-277.
    [83] 朱日祥,杨振宇,马醒华,等. 中国主要地块显生宙古地磁视极移曲线与地块运动[J]. 中国科学(D辑):地球科学,1998,28(增刊1):1-16.

    Zhu Rixiang, Yang Zhenyu, Ma Xinghua, et al. Phanerozoic paleomagnetic apparent pole shift curve and block movement of main blocks in China[J]. Science China (Seri. D): Earth Sciences, 1998, 28(Suppl.1): 1-16.
    [84] 张国伟,张本仁,袁学诚,等. 秦岭造山带与大陆动力学[M]. 北京:科学出版社,2001.

    Zhang Guowei, Zhang Benren, Yuan Xuecheng, et al. Qinling orogenic beit and continental dynamics[M]. Beijing: Science Press, 2001.
    [85] 梁文天. 秦岭造山带东西秦岭交接转换区陆内构造特征与演化过程[D]. 西安:西北大学,2009.

    Liang Wentian. Characteristics and evolution of intracontinental tectonics in the transition area between East and West Qinling in Qinling orogenic belt[D]. Xi'an: Northwest University, 2009.
    [86] 王建强,刘池洋,闫建萍,等. 鄂尔多斯盆地南部渭北隆起发育时限及其演化[J]. 兰州大学学报(自然科学版),2010,46(4):22-29.

    Wang Jianqiang, Liu Chiyang, Yan Jianping, et al. Development time and evolution characteristics of Weibei uplift in the south of Ordos Basin[J]. Journal of Lanzhou University (Natural Sciences), 2010, 46(4): 22-29.
    [87] 祁凯,任战利,张梦婷,等. 渭河地区及周缘晚古生代—中生代碎屑锆石年代学、地球化学及构造—沉积意义[J]. 岩石学报,2020,36(6):1897-1912.

    Qi Kai, Ren Zhanli, Zhang Mengting, et al. Characteristics of geochronology, geochemistry of Late Paleozoic and Mesozoic in Weihe region and its tectonic-sedimentary significance[J]. Acta Petrologica Sinica, 2020, 36(6): 1897-1912.
    [88] 任战利,崔军平,郭科,等. 鄂尔多斯盆地渭北隆起抬升期次及过程的裂变径迹分析[J]. 科学通报,2015,60(14):1298-1309.

    Ren Zhanli, Cui Junping, Guo Ke, et al. Fission-track analysis of uplift times and processes of the Weibei uplift in the Ordos Basin[J]. Chinese Science Bulletin, 2015, 60(14): 1298-1309.
    [89] 任战利,崔军平,李进步,等. 鄂尔多斯盆地渭北隆起奥陶系构造—热演化史恢复[J]. 地质学报,2014,88(11):2044-2056.

    Ren Zhanli, Cui Junping, Li Jinbu, et al. Tectonic-thermal history reconstruction of Ordovician in the Weibei uplift of Ordos Basin[J]. Acta Geologica Sinica, 2014, 88(11): 2044-2056.
    [90] 刘池洋,赵红格,赵俊峰,等. 能源盆地沉积学及其前沿科学问题[J]. 沉积学报,2017,35(5):1032-1043.

    Liu Chiyang, Zhao Hongge, Zhao Junfeng, et al. Sedimentology of energy basins and the frontier scientific problems[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1032-1043.
    [91] 李晓翠,刘武生,贾立城,等. 鄂尔多斯盆地南部砂岩型铀矿成矿预测[J]. 铀矿地质,2014,30(6):321-327.

    Li Xiaocui, Liu Wusheng, Jia Licheng, et al. Prognosis of sandstone hosted uranium deposit in southern Ordos Basin[J]. Uranium Geology, 2014, 30(6): 321-327.
    [92] Spirakis C S. The roles of organic matter in the formation of uranium deposits in sedimentary rocks[J]. Ore Geology Reviews, 1996, 11(1/2/3): 53-69.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(84) PDF downloads(45) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-12-16
  • Revised:  2022-02-08
  • Accepted:  2022-03-18
  • Published:  2023-10-10

Detrital Zircon U-Pb Dating and Provenance Significance of the Lower Cretaceous Yijun Formation in the Southern Ordos Basin

doi: 10.14027/j.issn.1000-0550.2022.022
Funds:

National Natural Science Foundation of China 41972153

Scientific Research Program Funded by Education Department of Shanxi Provincial Government 22JP086

Abstract: The Early Cretaceous was the latest evolution period of the Mesozoic Ordos Basin. The tectonic environment and sedimentary provenance system have undergone significant changes since then that are of great significance to the evolution of the basin and the exploration of multi-energy mineral reservoirs and/or mineralization. This study takes the Lower Cretaceous Yijun Formation in the southern Ordos Basin as the main research object, uses the detrital zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) uranium-lead (U-Pb) dating method, and analyses the characteristics of zircon U-Pb age spectrum peaks and structural evolution characteristics of surrounding blocks to trace the provenance of the Yijun Formation and discuss its geological significance. The results show that the detrital zircons U-Pb ages from the Yijun Formation are distributed in the Early Mesozoic (ca. 195⁃250 Ma) and Early Paleozoic (ca. 400⁃500 Ma) periods, with peak ages of ca. 218 Ma and ca. 450 Ma, respectively, which are consistent with the age of the widely exposed rock masses in the North Qinling area today. The Proterozoic-Archaean zircon ages are not only small in number, but have no obvious age peaks. Based on comparison of the regional geological background, the provenance comes from the North Qinling orogenic belt. It was uplifted and exposed to the surface at the beginning of the Cretaceous, providing a large amount of material to the southern Ordos Basin. This study restrained the uplift and exhumation of Qinling in the Late Mesozoic to a certain extent and restricts the time limit for the development of the Weibei uplift. The research has a certain guiding role in determining the uranium ore sources and ore-forming distribution of Mesozoic sandstone-type uranium deposits in the southern part of the basin.

LI JiaoLi, WANG JianQiang, PENG Heng, LI KeLiang, FENG XiaoLin, ZHANG DongDong. Detrital Zircon U-Pb Dating and Provenance Significance of the Lower Cretaceous Yijun Formation in the Southern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1609-1623. doi: 10.14027/j.issn.1000-0550.2022.022
Citation: LI JiaoLi, WANG JianQiang, PENG Heng, LI KeLiang, FENG XiaoLin, ZHANG DongDong. Detrital Zircon U-Pb Dating and Provenance Significance of the Lower Cretaceous Yijun Formation in the Southern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1609-1623. doi: 10.14027/j.issn.1000-0550.2022.022
  • 鄂尔多斯盆地为我国最重要的多能源盆地之一,其南部与秦岭造山带和祁连造山相邻,中古生代经历了多期复杂的沉积—构造演化过程,新生代早期渭河盆地的发育以及中晚期以来受青藏高原演化和向东北挤出的明显影响,构造活动频繁,后期改造强烈、地质特征复杂多样[12]。近年来,随着鄂尔多斯盆地油气、煤、砂岩型铀矿等能源矿产勘探开发的不断深入,盆地南部中生代以来的构造属性、物源体系及盆山关系等诸多问题,进一步引起了许多地质工作者关注和研究[34],但相对于富含石油、煤炭资源的中上三叠统延长组和侏罗系,下白垩统研究程度相对薄弱[48]。前人研究认为,鄂尔多斯盆地南部下白垩统早期沉积物源主要来自秦岭造山带[2,56],但缺乏年代学的有效约束;同时,晚白垩世以来,鄂尔多斯盆地经历了整体抬升和差异剥蚀,加之渭河盆地的断陷,盆地南部剥蚀改造强烈,下白垩统原有沉积格局发生改变,与相邻造山带的山盆关系不明[2,5]。此外,盆地南部下白垩统砂岩发育且具明显放射性异常,为砂岩型铀矿潜在的重要勘探层系[79],目前已发现了国家湾铀矿及镇原、崇信—彬县等多个铀异常矿化点[3,1012],但因早白垩世物源体系及盆山关系研究的薄弱,在一定程度上制约了该区砂岩型铀矿的进一步勘查。宜君组为鄂尔多斯盆地下白垩统发育的第一套地层,主要分布于现今盆地西南部,以河流、冲积扇相的砂砾岩沉积为主,代表了快速堆积的山麓相沉积[2],因而,是开展源汇示踪和盆山构造演化的理想对象。

    岩石中的锆石因其强的抗物理和化学风化能力,在沉积搬运过程中能够较好地保存下来,加之其稳定的U-Pb同位素体系[13],使得锆石U-Pb年龄谱特征已成为示踪源区和开展盆地古构造—古地理重建的重要纽带和手段,当前在相关研究中应用广泛[1420]。本文主要针对盆地南部早白垩世沉积物质来源问题,选择渭北隆起麟游、彬县地区典型下白垩统剖面,在野外考察的基础上,开展了碎屑锆石定年分析,并结合前人相关研究成果[26,2127],厘定了早白垩世宜君组物源特征,初步探讨了宜君期鄂尔多斯盆地南部的盆山关系,相关成果有望在蚀源区成矿物质来源方面为盆地南部下白垩统砂岩型铀矿勘查提供一定的依据。

  • 鄂尔多斯盆地位于华北板块西部,为中生界叠加在早、晚古生界之上的多重叠合盆地,除古生界志留系、泥盆系、下中石炭统及中生界上白垩统缺失外,地层发育相对齐全,具有多构造体系、多旋回演化及多类型沉积的特点[1]。今盆地周缘被新生代断陷盆地与诸多山系所分割,为一遭受多期改造的残留盆地,其面积约25×104 km2,是我国重要的多能源勘探和生产基地[28]。盆地可进一步划分为六个一级构造单元,其中,南部渭北隆起隔渭河新生代断陷盆地与北祁连、秦岭造山带相邻(图1);由南至北,依次出露元古界、古生界,中生界三叠系、侏罗系及下白垩统志丹群地层,总体呈北东—北东东向展布(图2)。

    Figure 1.  Regional tectonic map of the study area (modified from reference [2])

    Figure 2.  Geological map of the southern Ordos Basin, with sample locations (paleocurrent data from reference [25])

    下白垩统志丹群为中生代鄂尔多斯盆地沉积的最晚地层,最大残留地层厚度1 400余米,由老到新依次沉积了宜君组、洛河组、环河—华池组、罗汉洞组及泾川组(图2);其岩石类型和沉积相多样,不仅有河湖相砂、泥岩,也有风成及冲积扇相砂、砾岩等[2125,2930],主体经历了宜君组—环河华池组、罗汉洞组—泾川组2个由粗粒到细粒的沉积旋回[6]。盆地南部下白垩统各时代地层由东向西、由南向北出露依次变新(图2)。早白垩世以来也是盆地演化—改造的关键时期,早白垩世盆地发生了最显著的构造热事件[3],对下伏地层油气的生烃、成藏均有明显影响;早白垩世末期以来,盆地遭受了边部强内部弱的抬升剥蚀和改造[26,31],深刻地影响着盆地能源矿产的调整与最终定位,盆地南部、东部在早白垩世末期以来地层遭受剥蚀厚度可达2 000 m,下白垩统原始沉积范围远大于今残留范围,向南可达渭河盆地,甚或秦岭造山带北麓[26]

    宜君组为早白垩世盆地最早沉积的地层,盆地南部主要沿宜君、旬邑、彬县、麟游、陇县一线出露(图2),地层厚度在纵、横向上变化明显,介于0~203 m,与下伏不同时代地层呈角度不整合或平行不整合接触(图3,剖面位置见图2),总体向盆地内部呈楔形变薄尖灭或与上覆洛河组渐变。宜君组总体为一套粗碎屑沉积,呈灰紫、紫红、橘红色,砾石支撑,钙质、砂质胶结,砂岩透镜体发育,为干旱—半干旱环境,局部时段出现温暖、潮湿的气候[32],具多物源和快速堆积的特点[26],属盆地边部山麓相沉积,是探索盆地南部源汇特征及盆山演化的理想对象。

    Figure 3.  Profile contrast map of the Lower Cretaceous Yijun Formation in the southern Ordos Basin (modified from reference [25]; location is shown in Fig.2)

  • 为分析和探讨鄂尔多斯盆地南部早白垩世早期物源特点,本文重点对宜君组出露较好的麟游老铁钩和彬县虎家湾两地剖面开展了研究和样品采集(图1~3)。

    其中,麟游老铁沟剖面位于麟游县城西北约20 km处,该剖面宜君组厚约60 m,为棕红—暗棕色块状砾岩,夹砂岩透镜体(图4a,b),砾石成分以花岗岩为主,平均含量高达65%,其次为片麻岩(15%)、片岩(10%)、石英岩(3%)等,砾石砾径普遍在5~15 cm,最大可达50 cm,多见扁平度较高的砾石呈叠瓦状排列,分选磨圆中等;下伏地层为侏罗系直罗组,呈浅灰红色厚层状含细砾石英砂岩夹少量紫红色泥岩,两者呈微角度不整合接触(图4c);本次在该剖面下部和中部各采集了1件透镜体砂岩样品,分别为LY-28(N 34°43'26.7",E 107°42'52.7",H 1 092 m),LY-06(N 34°44'56.1",E 107°42'32.9",H 1 203 m)。彬县虎家湾剖面,位于彬县县城北侧10 km处,其宜君组为厚约30 m的紫红色砾岩夹中厚层透镜体砂岩(图4d),砾石以石英岩为主,平均含量可达50%,花岗岩(34%)、片岩(12%)次之,砾石砾径一般介于5~10 cm,最大可达30 cm,局部可见砾石呈叠瓦状排列,偶见交错层理。砾径较麟游地区有所变小,磨圆度、分选性也相应变好。下伏地层为安定组,呈紫红色砂质泥岩夹中厚层状砂岩、砂砾岩,两者之间亦呈微角度不整合接触(图4e)。在该剖面下部采集了1件透镜体砂岩样品,样号为BX-13(N 35°02'57.2",E 108°06'14.2",H 826 m)。

    Figure 4.  Outcrops of the Lower Cretaceous Yijun Formation and its contact with the under strata in the study area(the sample position is represented by yellow pentagram)

  • 本文采用激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)开展碎屑锆石U-Pb定年。锆石委托廊坊地调院分选,锆石制靶、阴极发光(CL)图像采集以及U-Pb定年测试则均在西北大学大陆动力学国家重点实验室完成。首先将分选的锆石颗粒随机挑选粘至有双面胶的载玻片上,并用环氧树脂灌注,待固结后抛磨制成锆石样靶;然后对制好的样靶进行反射光、透射光及阴极发光(CL)显微图像采集,揭示锆石形态及内部结构,以便更好地遴选测点位置;最后利用激光剥蚀电感耦合等离子体质谱仪(GeoLas Pro+Agilent 7500a)进行测定,激光束斑直径为30 μm。测试过程采用国际标准锆石91500作为外标标准物质,元素含量采用NIST610作为外标,29Si作内标,详细实验步骤和方法参见文献[33];数据处理采用Glitter4.0软件,年龄计算及图制作利用Isoplot 4.15程序。研究主要选择谐和度介于90%~110%的碎屑锆石年龄,其中小于1.0 Ga的采用206Pb/238U年龄,大于1.0 Ga的采用207Pb/206Pb年龄。

  • 从形态及颜色看,两地区碎屑锆石总体类似。大多数锆石呈浅棕色及棕红色,部分为无色透明或浅黄色;锆石粒径普遍在60~150 μm,主体呈次圆状,可见凹坑、沟槽及断口磨蚀痕迹,少量锆石呈短柱状,表面粗糙,显示锆石可能经历了一定距离的搬运。从锆石CL图像可以看到大多数锆石有核—幔结构,发育清晰规则的震荡环带,显示出岩浆成因锆石的特征;少量锆石结构表现出均匀或补丁状,且无震荡环带,有的边部还出现亮白色或暗色增生边,可能为变质成因锆石(图5)。

    Figure 5.  Cathode luminescence (CL) images of detrital zircons from the Low Cretaceous Yijun Formation in the Linyou⁃Binxian area

    本次测试的3件宜君组砂岩样品共获得249颗锆石谐和年龄数据,其中麟游地区的LY-28样品共获得95颗锆石年龄,LY-06样品获得67颗锆石年龄;彬县地区BX-13样品获得87颗锆石年龄。相关样品的锆石U-Pb谐和图、年龄直方图如图6

    Figure 6.  Uranium⁃lead (U⁃Pb) concordia and age histogram of detrital zircons from the Low Cretaceous Yijun Formation in the Linyou⁃Binxian area

    (1) 麟游地区LY-28样品的碎屑锆石U-Pb年龄分布范围介于193.8~2 657.2 Ma(n=95),主要集中于193.8~234.2 Ma(16颗)和386.7~507.1 Ma(68颗)2个年龄段,占到总量的88.4%,其峰值年龄分别为213 Ma和455 Ma;其余锆石年龄分布于947.6~2 657.2 Ma(11颗),数据点分散分布。

    (2) 麟游地区LY-06样品的碎屑锆石U-Pb年龄分布范围介于203.3~2 635 Ma(n=67),主要集中于203.3~238.9 Ma(25颗)和403.3~481.1 Ma(16颗)2个年龄段,占到总量的61%,峰值分别为220 Ma和455 Ma,与LY-28峰值年龄类似;其余年龄分布于597.4~2 635 Ma(25颗),亦未形成明显峰值。麟游地区两件样品的锆石Th/U比值介于0.07~2.01,其中大于0.4的占90%,表明样品锆石普遍具岩浆成因特点。

    (3) 彬县地区BX-13样品的碎屑锆石U-Pb年龄分布范围介于195~2 718 Ma(n=87),明显集中于195.6~263.6 Ma(57颗)和421.8~448 Ma(10颗)2个年龄段,占到总量的77%,其峰值年龄分别为218 Ma和447 Ma;其余锆石则较零散地分布于914.5~2 718 Ma(20颗)年龄段,数据点分散分布。该样品锆石Th/U比值介于0.06~2.06,比值大于0.4的占94%,表明样品锆石普遍具岩浆成因特点。

    综合分析上述3件宜君组砂岩样品的碎屑锆石U-Pb年龄直方图,可以看出总体上呈类似的谱峰特点,锆石年龄均主要集中在早中生代(195~250 Ma)和早古生代(400~500 Ma)时期,且具有类似的峰值年龄,分别为218 Ma和450 Ma,而元古宙—太古宙锆石年龄不但少且数据点分散分布。

  • 有关鄂尔多斯盆地南部早白垩世物源问题,前人曾不同程度开展了研究。如对宜君组,王建强等[26]采用砾岩砾组方法,分析了宜君组砾性、砾度、古水流(图2)等,指出宜君组沉积物源特征在横向上存在差异性,认为麟游—彬县地区物质主要来自北秦岭造山带,陇县—千阳地区主要来自陇山地区,同时指出渭北隆起南部及渭河地区早白垩世时期仍在接受沉积,其原始沉积南界至少在今渭河地区甚或达秦岭北麓;禹江[6]同样采用砾组分析方法,进一步对鄂尔多斯盆地西南部宜君组沉积环境及物源特征开展了研究,指出宜君组为干旱—半干旱环境下山麓洪积扇相沉积,为快速堆积的产物,也认为麟游地区主要来自北秦岭造山带,而彬县地区除来自北秦岭造山带外,极少量地混入了来自其下伏的碳酸盐岩地层。程先钰等[7]对盆地西南部镇原地区洛河组下段(即宜君组上覆地层)含铀砂岩开展碎屑锆石U-Pb定年,获得了166~370 Ma、388~472 Ma、1 744~2 150 Ma、2 241~2 740 Ma、615~1 623 Ma五个年龄区间,峰值年龄主要有272 Ma、427 Ma、1 899 Ma和2 493 Ma,认为该区洛河组砂岩为多物源区混合(需要指出的是前人研究表明洛河期鄂尔多斯盆地广泛发育风成砂岩环境沉积[2223,30])。上述研究均表明盆地南部下白垩统物源与其相邻的造山带存在密切的联系。本次测试结果进一步揭示,鄂尔多斯盆地南部宜君组砂岩碎屑锆石U-Pb年龄谱主要集中于早中生代和早古生代(图6),中新元宙—太古宙年龄较少且呈分散分布,本文重点以早古生代和早中生代2阶段为重点开展讨论。

    前人大量研究表明,早古生代锆石在北祁连东段岩体及相关地层中有大量发育,如草川铺花岗岩体(434±10 Ma)[34]、黄门川花岗闪长岩体(440.5±4.4 Ma)[35]、王家岔闪长岩体(454.7±1.7 Ma)[36]、阎家店闪长岩体(440.2±0.92 Ma)[37]、新街花岗质片麻岩(447±5.4 Ma)[38]、红土堡岩组变基性火山岩(443.4.7±1.7 Ma)及葫芦河群变质砂岩(426~493 Ma)[39]等;此外,古生代岩体在北秦岭地区广泛分布,南秦岭仅有零星出露(图1),如黑河花岗岩(401±14 Ma)[40]、闪长岩(442±7 Ma)[40]、花岗闪长岩(470±9 Ma)[41],凤县红花铺云英闪长岩(414±1.5 Ma)[42]、唐藏石英闪长岩体(455±1.9 Ma)[43]等,据统计秦岭古生代岩体锆石U-Pb年龄集中于505~400 Ma,其中450~422 Ma年龄段在北秦岭全区广布[44]。上述岩体或地层锆石年龄与本次样品的早古生代峰值年龄具有较好的一致性。

    早中生代相关锆石年龄的岩体在秦岭地区广泛分布,如沙河湾岩体(214~207 Ma)、糜署岭岩体(213±3 Ma和212±5 Ma)[45]、黄渚关花岗岩(214±1 Ma和 213± 3Ma)、厂坝花岗岩(213±2 Ma)[46]、江里沟复式岩体(229.1±1.8 Ma)[47]、宝鸡岩体(216~210 Ma)、华阳岩体(214~195 Ma)、光头山花岗岩(221~206 Ma)、老城花岗岩(221~210 Ma)[48]等。Wang et al.[49]根据岩石地球化学特征分析认为秦岭地区早中生代岩体可分为2期,其中250~240 Ma岩体相对较少,主要分布在西秦岭地区,而225~185 Ma岩体遍布于整个秦岭造山带,且集中分布于商州以西(图1),这与本次研究样品年龄峰值在时空上也具有明显的一致性。

    为了进一步明确麟游和彬县地区宜君组的物质来源,笔者分区块统计了鄂尔多斯盆地南部周缘相关地质体的锆石U-Pb年龄特征,具体包括北秦岭地区[4957]、南秦岭地区[5766]、北祁连地区[6771]及华北地块南缘[7281],共统计了3 563个年龄数据(图7),总体上可代表这些地区相关岩石的锆石年龄组成,这些同位素测年数据主要采用SHRIMP和LA-ICP-MS U-Pb定年方法。从统计结果看,北秦岭地区相关地质体的锆石年龄主要集中于190~250 Ma、400~500 Ma年龄段,大于500 Ma的锆石年龄虽分布广泛但未形成明显的峰值年龄;南秦岭地区相关地质体的锆石年龄主要集中在190~240 Ma、425~500 Ma和620~1 000 Ma年龄段,大于1 000 Ma的年龄亦分布,但峰值不明显;北祁连造山带地区相关地质体的锆石年龄主要集中于430~550 Ma、900~1 200 Ma、1 800~2 300 Ma及2 500 Ma±年龄段;而华北板块南缘地区相关地质体的锆石年龄主要集中于120~150 Ma,1 600~2 000 Ma及2 400~2 500 Ma年龄段。

    Figure 7.  Comparison of zircon age distribution between the Yijun Formation in the Linyou⁃Binxian area and its potential source regions

    综合对比各地区年龄谱峰特征,可以看到麟游与彬县宜君组的碎屑锆石U-Pb年龄谱峰与北秦岭地区年龄谱峰特征非常类似,与南秦岭地区总体相似,但在研究区未出现620~1 000 Ma的新元古代年龄峰;与北祁连地区相比较,可以看到古生代年龄峰特征相对一致,但元古宙—太古宙年龄谱峰特征明显不同;而与华北板块南缘在代表性峰值特征上则有比较明显的差异(图7)。综述上述分析,并结合当前研究区周边地区地质体出露的特点(图1),本文认为鄂尔多斯盆地南部麟游、彬县地区下白垩统宜君组物源应以北秦岭中段地区为主,同时可能有来自南秦岭北部地区的物源供给。

    对于研究区出现的未成明显峰值但广泛分布的元古宙—太古宙碎屑锆石年龄数据(图7),从周邻区域元古代岩体分布看,则主要分布于南秦岭东南部及扬子板块北缘(图1),很难成为本区的物源区,为此,本文认为宜君组中出现的元古宙—太古宙年龄的碎屑锆石应主要来自于北秦岭地区如秦岭群、宽坪群等岩系,这与研究区宜君组地层中砾石所展现的以花岗岩为主,同时含有石英岩、片岩及片麻岩等砾石的分布特征相一致(图4),由于这些古老变质岩系地层中锆石矿物含量相对较低,同时由于下伏岩体在该时期或之前的隆升剥露、致使上覆变质岩系地层出露范围变小,物质供应可能相对较少有关,也暗示着沉积区沉积物中碎屑锆石含量可能与源区岩体出露关系更为密切。

  • 造山带以高起伏为典型特征,使地质体暴露于风化和侵蚀之下,产生的碎屑物质被输送到毗邻的洼陷区域(沉积盆地),这种沉积填充物包含了有关物质从源到汇输送过程的关键信息,记录了盆山构造格局形成和演化历史,可用于探索沉积体系演化中构造和沉积因素之间的相互关系[82]。前人大量研究表明,秦岭造山带是我国华北与扬子两大板块于中晚三叠世(印支期)碰撞拼合形成的造山带[8384],碰撞造山后开始了更为强烈的陆内调整演化,经历了晚三叠世—早中侏罗世垮塌演化、晚侏罗世—白垩纪大规模陆内造山作用[85],上述演化过程在秦岭造山带内部及南部扬子板块北缘有明显的构造—沉积响应,但由于新生代渭河地堑的发育,使得在北侧的鄂尔多斯盆地表现不甚明了。

    本次通过对鄂尔多斯盆地早白垩世宜君组砂岩碎屑锆石U-Pb定年,一方面揭示了鄂尔多斯盆地南部下白垩统发育来自秦岭造山带的沉积物源;更为重要的是,宜君组碎屑锆石年龄中广泛记录着秦岭造山带所特有的早中生代(195~250 Ma)岩浆活动,这表明秦岭地区早中生代岩体最晚应在早白垩世初已抬升剥露至地表,并开始大量向造山带北侧沉积区提供物源。此外,渭北隆起区下白垩统普遍与下伏不同时代地层呈不整合接触关系,以及宜君组冲积扇相砾岩的发育(图3,4),这在区域上与秦岭造山带同期演化具有较好的一致性,印证了秦岭造山带晚侏罗世开始的大规模陆内造山作用已明显影响到了鄂尔多斯盆地南部。同时,鄂尔多斯盆地南部下白垩统发育大量来自秦岭造山带的沉积物源,从侧面也说明了此时渭北隆起区还未演化成阻隔秦岭造山带物质到来的隆起构造单元,支持渭北隆起主体隆升应为早白垩世末以来的观点[8689]

  • 蚀源区剥露的岩石类型和物质组成,直接制约盆地内的沉积建造和岩性特征,对沉积矿产的形成亦有重要影响[90]。就砂岩型铀矿而言,若条件具备,来自蚀源区铀源的成矿作用可发生在沉积、成岩和成岩后生作用的全过程[90]。众所周知,中酸性岩浆岩、古老变质岩系均为重要的富铀地质体,往往具有较高的放射性铀元素含量。

    研究表明,秦岭地区古生代、早中生代岩浆岩铀元素含量较高,铀含量为(4.1~6.9)×10-6[10],其原始铀含量最高可达10×10-6,而秦岭群、宽坪群等铀含量为(4~6)×10-6[91];结合上述物源分析,相关地层均可以成为鄂尔多斯盆地南部下白垩统重要的潜在铀元素来源区,然早白垩世沉积主体以高氧化环境为主,总体不利于砂岩型铀矿的富集,但下白垩统局部层段如环河—华池组、泾川组仍发育还原环境,适于铀元素发生还原沉淀[10];同时,U元素在氧化环境下较为活跃,极易被氧化而发生迁移[92],下白垩系砂体发育,透水性好,进入盆地内的铀元素后期可以发生迁移,在其下伏地层如侏罗系中进一步富集成矿。鄂尔多斯盆地南部砂岩型铀矿总体勘查程度较低,但目前已在下白垩统中发现了如国家湾砂岩型铀矿,镇原、崇信—泾川、陇县等铀矿化点或异常区[1012],在侏罗系中发现了店头、双龙铀矿床,焦平、庙湾、照金、彬县等铀矿化点[8,91],指示盆地南部砂岩型铀矿广阔的勘探前景。从蚀源区成矿物质来源角度探索矿藏形成,是深刻揭示成矿物质聚集与分布,探讨矿藏成岩和有效指导矿藏预测等内容的重要组成部分,值得进一步研究。

  • (1) 鄂尔多斯盆地南部麟游、彬县地区下白垩统宜君组碎屑锆石U-Pb定年表明,主要集中分布于早中生代(195~250 Ma)和早古生代(400~500 Ma)时期,峰值年龄分别为218 Ma和450 Ma,而元古宙—太古宙锆石年龄不但数量少且较为分散,与北秦岭地区相关地质体的锆石U-Pb年龄具明显的时空一致性,综合认为研究区物源主要来自于北秦岭地区。

    (2) 通过下白垩统宜君组碎屑锆石年代学及物源分析,指出秦岭造山带早中生代岩体侵位后,最晚在早白垩世已抬升剥露至地表,并开始向盆地南部提供大量物源,这在一定程度上为约束秦岭晚中生代隆升剥露及渭北隆起发育的时限提供间接的证据;进一步认为秦岭地区古生代及早中生代岩体为宜君组重要的物质来源,可为盆地南部提供丰富的铀元素,对该区铀矿资源勘查具有一定的指导意义。

Reference (92)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return