Advanced Search
Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents

LI Hua, HE MingWei, QIU ChunGuang, WANG YingMin, HE YouBin, XU YanXia, HE RuiWu. Research Processes on Deep-water Interaction Between Contour Current and Gravity Flow Deposits, 2000 to 2022[J]. Acta Sedimentologica Sinica, 2023, 41(1): 18-36. doi: 10.14027/j.issn.1000-0550.2022.027
Citation: LI Hua, HE MingWei, QIU ChunGuang, WANG YingMin, HE YouBin, XU YanXia, HE RuiWu. Research Processes on Deep-water Interaction Between Contour Current and Gravity Flow Deposits, 2000 to 2022[J]. Acta Sedimentologica Sinica, 2023, 41(1): 18-36. doi: 10.14027/j.issn.1000-0550.2022.027

Research Processes on Deep-water Interaction Between Contour Current and Gravity Flow Deposits, 2000 to 2022

doi: 10.14027/j.issn.1000-0550.2022.027
Funds:

National Natural Science Foundation of China 42272113

National Natural Science Foundation of China 42272115

National Science and Technology Major Project 2017ZX05032-002-003

Natural Science Foundation of Hubei Province, No. 2020C FB745 2020CFB745

Open Foundation of Top Disciplines in Yangtze University of China 2019KFJJ0818010

  • Received Date: 2022-01-10
  • Accepted Date: 2022-03-18
  • Rev Recd Date: 2022-02-27
  • Available Online: 2022-03-18
  • Publish Date: 2023-02-10
  • Contours current and gravity flow are common hydrodynamic forces in deep-water environments, which can affect each other and form interaction deposits. Based on the latest research, sedimentary type, identification marker, formation mechanism, and geological significance of the interaction between contour currents and gravity flow deposits had been summarized. (1) Interaction between contour currents and gravity flow deposits could been divided into interbedded contourite and turbidite, contour current reworked gravity flow deposits, and interaction of synchronous contour and turbidity currents; (2) Effective identifications of contourites and gravity flow deposits are the foundation of research on interbedded contourites and turbidites. (3) Gravity flow and tractive current structures are developed in contour current reworked gravity flow deposits, especially bi-directional cross bedding. There are two directions in the flow system; one is parallel to slope, and the other one is perpendicular to slope. One-, bipartie-, tripartite subdivisions on the cumulative frequency curves, etc. (4) Unidirectionally migrating channels, asymmetric channel-levee systems, and deflected lobes are formed by the interaction of synchronous contour and turbidity currents. (5) Formation mechanisms are primarily discussed based on the relative energy of contour current and gravity flow. Gravity flow deposits are favored when gravity flows are active. In contrast, contourites are developed during last- and intermittent-periods of gravity flow, which may result in interbedded contourites and gravity flow deposits. Contour currents can rework gravity flow deposits when the contour current has relative higher energy and lead to contour current reworked gravity flow deposits. Unidirectionally migrating channels, asymmetric channel-levee systems, and deflected lobes can be formed when the contour current is strong, and gravity flow is weak; the contour current is sufficient to laterally carry the gravity flow sediment. (6) The facing problem and direction of work on the interaction between contour current and gravity flow in the future were proposed as fallows: (1) Focus on comprehensive research and add examples. (2) Perfect identification marks and popularize research results. (3) Comprehensive discussion on processes and main controlling factors by Multi-methods, -scales, -conditions, and-dimensions. (4) Reinforce work potential of hydrocarbon exploration, paleoenvironment evolution, and geological hazard precautions.
  • [1] Sømme T O, Helland-Hansen W, Martinsen O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative Characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387.
    [2] Gong C L, Steel R J, Wang Y M, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101.
    [3] Weger W D, Hernández-Molina F J, Flecker R, et al. Late Miocene contourite channel system reveals intermittent overflow behavior[J]. Geology, 2020, 48: 1194-1199.
    [4] Wang Z, Fan R Y, Zong R W, et al. Middle Ordovician bottom current deposits in the western margin of the North China Craton: Evidence from sedimentary and magnetic fabrics[C]. Sedimentology, 2022,69(3):1424-1455.
    [5] Counts J W, Amy L, Georgiopoulou A, et al. A review of sand detachment in modern deep marine environments: Analogues for upslope stratigraphic traps[J]. Marine and Petroleum Geology, 2021, 132: 105184.
    [6] Mayall M, Jones E, Casey M. Turbidite channel reservoirs: Key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841.
    [7] Kane I A, Clare M A, Miramontes E, et al. Seafloor microplastic hotspots controlled by deep-sea circulation[J]. Science, 2020, 368(6495): 1140-1145.
    [8] Reading H G, Richards M. Turbidite systems in deep-water basin margins classified by grain size and feeder system[J]. AAPG Bulletin, 1994, 78(5): 792-822.
    [9] Stow D A V, Mayall M. Deep-water sedimentary systems: New models for the 21st century[J]. Marine and Petroleum Geology, 2000, 17(2): 125-135.
    [10] Heezen B C, Hollister C D. Deep sea current evidence from abyssal sediments[J]. Marine Geology, 1964, 1: 141-174.
    [11] Michels K H, Rogenhagen J, Kuhn G. Recognition of contour-current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica[J]. Marine Geophysical Researches, 2001, 22(5/6): 465-485.
    [12] Rasmussen S, Lykke-Andersen H, Kuijpers A, et al. Post-Miocene sedimentation at the continental rise of Southeast Greenland: The interplay between turbidity and contour currents[J]. Marine Geology, 2003, 196(1/2): 37-52.
    [13] Salles T, Marchès E, Dyt C, et al. Simulation of the interactions between gravity processes and contour currents on the Algarve Margin (South Portugal) using the stratigraphic forward model Sedsim[J]. Sedimentary Geology, 2010, 229(3): 95-109.
    [14] Mulder T, Faugères J C, Gonthier E. Mixed turbidite-contourite Systems[M]//Ainsley M, Ashworth P J, Best J L, et al. Developments in sedimentology. Amsterdam: Elsevier, 2008: 435-456.
    [15] 李华,王英民,徐强,等. 南海北部珠江口盆地重力流与等深流交互作用沉积特征、过程及沉积模式[J]. 地质学报,2014,88(6):1120-1129.

    Li Hua, Wang Yingmin, Xu Qiang, et al. Interactions between down-slope and along-slope processes on the northern slope of South China Sea: Products, processes, and depositional model[J]. Acta Geologica Sinica, 2014, 88(6): 1120-1129.
    [16] Hsü K J. Cross-laminations in graded bed sequences[J]. Journal of Sedimentary Research, 1964, 34(2): 379-388.
    [17] Hubert J F. Textural evidence for deposition of many western North Atlantic deep-sea sands by ocean-bottom currents rather than turbidity currents[J]. The Journal of Geology, 1964, 72(6): 757-785.
    [18] Lovell J P B, Stow D A W. Identification of ancient sandy contourites[J]. Geology, 1981, 9(8): 347-349.
    [19] Alonso B, Ercilla G, Casas D, et al. Contourite vs gravity-flow deposits of the Pleistocene faro drift (gulf of Cadiz): Sedimentological and mineralogical approaches[J]. Marine Geology, 2016, 377: 77-94.
    [20] Ercilla G, Juan C, Periáñez R, et al. Influence of alongslope processes on modern turbidite systems and canyons in the Alboran Sea (southwestern Mediterranean)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 144: 1-16.
    [21] Gauchery T, Rovere M, Pellegrini C, et al. Post-LGM multi-proxy sedimentary record of bottom-current variability and downslope sedimentary processes in a contourite drift of the Gela Basin (Strait of Sicily)[J]. Marine Geology, 2021, 439: 106564.
    [22] Marchès E, Mulder T, Gonthier E, et al. Perched lobe formation in the Gulf of Cadiz: Interactions between gravity processes and contour currents (Algarve Margin, southern Portugal)[J]. Sedimentary Geology, 2010, 229(3): 81-94.
    [23] Mencaroni D, Urgeles R, Camerlenghi A, et al. A mixed turbidite-contourite system related to a major submarine canyon: The Marquês de Pombal Drift (south-west Iberian margin)[J]. Sedimentology, 2021, 68(5): 2069-2096.
    [24] Mulder T, Lecroart P, Hanquiez V, et al. The western part of the Gulf of Cadiz: Contour currents and turbidity currents interactions[J]. Geo-Marine Letters, 2006, 26(1): 31-41.
    [25] van Rooij D, Iglesias J, Hernández-Molina F J, et al. The Le Danois Contourite depositional system: Interactions between the Mediterranean outflow water and the Upper Cantabrian slope (North Iberian margin)[J]. Marine Geology, 2010, 274(1/2/3/4): 1-20.
    [26] Saller A H, Noah J T, Ruzuar A P, et al. Linked lowstand delta to basin-floor fan deposition, offshore Indonesia: An analog for deep-water reservoir systems[J]. AAPG Bulletin, 2004, 88(1): 21-46.
    [27] Gonthier E, Faugères J C, Viana A, et al. Upper Quaternary deposits on the Sao Tomé deep-sea channel levee system (South Brazilian Basin): Major turbidite versus contourite processes[J]. Marine Geology, 2003, 199(1/2): 159-180.
    [28] Massé L, Faugères J C, Hrovatin V. The interplay between turbidity and contour current processes on the Columbia Channel fan drift, southern Brazil Basin[J]. Sedimentary Geology, 1998, 115(1/2/3/4): 111-132.
    [29] Pandolpho B T, Da Fontoura Klein A H, Dutra I, et al. Seismic record of a cyclic turbidite-contourite system in the northern Campos Basin, SE Brazil[J]. Marine Geology, 2021, 434: 106422.
    [30] Georgiopoulou A, Owens M, Haughton P D W. Channel and inter-channel morphology resulting from the long-term interplay of alongslope and downslope processes, NE Rockall Trough, NE Atlantic[J]. Marine Geology, 2021, 441: 106624.
    [31] Gong C L, Wang Y M, Rebesco M, et al. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels?[J]. Geology, 2018, 46(6): 551-554.
    [32] Li W, Li S, Alves T M, et al. The role of sediment gravity flows on the morphological development of a large submarine canyon (Taiwan Canyon), north-east South China Sea[J]. Sedimentology, 2021, 68(3): 1091-1108.
    [33] Li H, Wang Y M, Zhu W L, et al. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea[J]. Marine and Petroleum Geology, 43: 370-380.
    [34] Wang X X, Zhuo H T, Wang Y M, et al. Controls of contour currents on intra-canyon mixed sedimentary processes: Insights from the Pearl River Canyon, northern South China Sea[J]. Marine Geology, 2018, 406: 193-213.
    [35] Kenyon N H, Akhmetzhanov A M, Twichell D C. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands[J]. Marine Geology, 192(1/2/3): 297-307.
    [36] Kuvaas B, Kristoffersen Y, Guseva J, et al. Interplay of turbidite and contourite deposition along the Cosmonaut Sea/Enderby Land margin, East Antarctica[J]. Marine Geology, 2005, 217(1/2): 143-159.
    [37] Lobo F J, López-Quirós A, Hernández-Molina F J, et al. Recent morpho-sedimentary processes in Dove Basin, southern Scotia Sea, Antarctica: A basin-scale case of interaction between bottom currents and mass movements[J]. Marine Geology, 2021, 441: 106598.
    [38] Miramontes E, Thiéblemont A, Babonneau N, et al. Contourite and mixed turbidite-contourite systems in the Mozambique Channel (SW Indian Ocean): Link between geometry, sediment characteristics and modelled bottom currents[J]. Marine Geology, 2021, 437: 106502.
    [39] Mosher D C, Campbell D C, Gardner J V, et al. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic[J]. Marine Geology, 2017, 393: 245-259.
    [40] Normandeau A, Campbell D C, Cartigny M J B. The influence of turbidity currents and contour currents on the distribution of deep-water sediment waves offshore eastern Canada[J]. Sedimentology, 2019, 66(5): 1746-1767.
    [41] de Castro S, Hernández-Molina F J, Rodríguez-Tovar F J, et al. Contourites and bottom current reworked sands: Bed facies model and implications[J]. Marine Geology, 2020, 428: 106267.
    [42] Fonnesu M, Palermo D, Galbiati M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique[J]. Marine and Petroleum Geology, 2020, 111: 179-201.
    [43] Fuhrmann A, Kane I A, Clare M A, et al. Hybrid turbidite-drift channel complexes: An integrated multiscale model[J]. Geology, 2020, 48(6): 562-568.
    [44] Luan X W, Lu Y T, Fan G Z, et al. Deep-water sedimentation controlled by interaction between bottom current and gravity flow: A case study of Rovuma Basin, East Africa[J]. Journal of African Earth Sciences, 2021, 180: 104228.
    [45] Sansom P. Hybrid turbidite-contourite systems of the Tanzanian margin[J]. Petroleum Geoscience, 2018, 24(3): 258-276.
    [46] Gong C L, Wang Y M, Zheng R C, et al. Middle Miocene reworked turbidites in the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea margin: Processes, genesis, and implications[J]. Journal of Asian Earth Sciences, 2016, 128: 116-129.
    [47] Gong C L, Wang Y M, Zhu W L, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea[J]. AAPG Bulletin, 2013, 97(2): 285-308.
    [48] Zhu M Z, Graham S, Pang X, et al. Characteristics of migrating submarine canyons from the Middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea[J]. Marine and Petroleum Geology, 2010, 27(1): 307-319.
    [49] Zhou W, Wang Y M, Gao X Z, et al. Architecture, evolution history and controlling factors of the Baiyun submarine canyon system from the Middle Miocene to Quaternary in the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 389-407.
    [50] He Y L, Xie X N, Kneller B C, et al. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2013, 41: 264-276.
    [51] 黄银涛,姚光庆,朱红涛,等. 莺歌海盆地东方区黄流组重力流砂体的底流改造作用[J]. 石油学报,2016,37(7):855-866.

    Huang Yintao, Yao Guangqing, Zhu Hongtao, et al. Reworking of gravity flow sandbody by bottom-current from Huangliu Formation in Dongfang area of Yinggehai Basin, northwestern South China Sea[J]. Acta Petrolei Sinica, 2016, 37(7): 855-866.
    [52] 李俞锋,蒲仁海,唐明,等. 一种新型底流与浊流交互作用形成的储集砂体:以北礁凹陷为例[J]. 岩性油气藏,2018,30(6):55-66.

    Li Yufeng, Pu Renhai, Tang Ming, et al. A new reservoir sand body resulted from interaction between turbidity flows and bottom currents: A case from Beijiao Sag of Qiongdongnan Basin[J]. Lithologic Reservoirs, 2018, 30(6): 55-66.
    [53] Shanmugam G, Spalding T D, Rofheart D H. Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands (sandy contourites): An example from the Gulf of Mexico[J]. AAPG Bulletin, 1993, 77(7): 1241-1259.
    [54] Anketell J M, Lovell J P B. Upper Llandoverian Grogal sandstones and Aberystwyth grits in the New Quay area, central wales: A possible upwards transition from contourites to turbidites[J]. Geological Journal, 1976, 11(2): 101-108.
    [55] Bein A, Weiler Y. The Cretaceous Talme Yafe Formation: A contour current shaped sedimentary prism of calcareous detritus at the continental margin of the Arabian Craton[J]. Sedimentology, 1976, 23(4): 511-532.
    [56] Hovikoski J, Uchman A, Weibel R, et al. Upper Cretaceous bottom current deposits, north-east Greenland[J]. Sedimentology, 2020, 67(7): 3619-3654.
    [57] Hüneke H, Hernández-Molina F J, Rodríguez-Tovar F J, et al. Diagnostic criteria using microfacies for calcareous contourites, turbidites and pelagites in the Eocene-Miocene slope succession, southern Cyprus[J]. Sedimentology, 2021, 68(2): 557-592.
    [58] Kähler G, Stow D A V. Turbidites and contourites of the Palaeogene Lefkara Formation, southern Cyprus[J]. Sedimentary Geology, 1998, 115(1/2/3/4): 215-231.
    [59] Rodrigues S, Hernández-Molina F J, Kirby A. A Late Cretaceous mixed (turbidite-contourite) system along the Argentine margin: Paleoceanographic and conceptual implications[J]. Marine and Petroleum Geology, 2021, 123: 104768.
    [60] Stanley D J. Model for turbidite-to-contourite continuum and multiple process transport in deep marine settings: Examples in the rock record[J]. Sedimentary Geology, 1993, 82(1/2/3/4): 241-255.
    [61] De Weger W, Hernández-Molina F J, Miguez-Scalas O, et al. Contourite depositional system after the exit of a strait: Case study from the Late Miocene South Rifian Corridor, Morocco[J]. Sedimentology, 2021, 68(7): 2996-3032.
    [62] Ito M. Sandy contourites of the Lower Kazusa group in the Boso Peninsula, Japan; Kuroshio-current-influenced deep-sea sedimentation in a Plio-Pleistocene Forearc Basin[J]. Journal of Sedimentary Research, 1996, 66(3): 587-598.
    [63] 李华,何幼斌. 鄂尔多斯盆地西南缘奥陶系平凉组改造砂沉积特征及意义[J]. 石油与天然气地质,2018,39(2):384-397.

    Li Hua, He Youbin. Sedimentary characteristics and significance of reworked sands in the Ordovician Pingliang Formation, southwestern margin of Ordos Basin[J]. Oil & Gas Geology, 2018, 39(2): 384-397.
    [64] Li H, van Loon A J, He Y B. Interaction between turbidity currents and a contour current-A rare example from the Ordovician of Shaanxi province, China[J]. Geologos, 2019, 25(1): 15-30.
    [65] Li H, van Loon A J, He Y B. Cannibalism of contourites by gravity flows: Explanation of the facies distribution of the Ordovician Pingliang Formation along the southern margin of the Ordos Basin, China[J]. Canadian Journal of Earth Sciences, 2020, 57(3): 331-347.
    [66] Li H, Zhao H Y, Xu Y X, et al. Characteristics of debrites, turbidites, and contourites in the Upper Ordovician Pingliang Formation along southwestern margin of the Ordos Basin, western China[J]. Arabian Journal of Geosciences, 2021, 14(17): 1730.
    [67] Li H, van Loon A J, He Y B. When turbidity currents cross contour currents: A struggle for life in the Ordovician along the southern margin of the Ordos Basin (China)[M]//Yang R C, van Loon A J. The Ordos Basin: Sedimentological research for hydrocarbons exploration. Amsterdam: Elsevier, 2022: 269-285.
    [68] Wang Z, Fan R Y, Zong R W, et al. Composition and spatiotemporal evolution of the mixed turbidite-contourite systems from the Middle Ordovician, in western margin of the North China Craton[J]. Sedimentary Geology, 2021, 421: 105943.
    [69] Stow D, Smillie Z. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites[J]. Geosciences, 2020, 10(2): 68.
    [70] 吴嘉鹏,王英民,王海荣,等. 深水重力流与底流交互作用研究进展[J]. 地质论评,2012,58(6):1110-1120.

    Wu Jiapeng, Wang Yingmin, Wang Hairong, et al. The interaction between deep-water turbidity and bottom currents: A review[J]. Geological Review, 2012, 58(6): 1110-1120.
    [71] Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[M]//Middleton G V, Bouma A H. Turbidites and deepwater sedimentation. Los Angeles: Society of Economic Paleontologists and Mineralogists, 1973: 1-38.
    [72] 何幼斌,王文广. 沉积岩与沉积相[M]. 2版. 北京:石油工业出版社,2017:301-311.

    He Youbin, Wang Wenguang. Sedimentary rock and facies[M]. 2nd ed. Beijing: Petroleum Industry Press, 2017: 301-311.
    [73] Slootman A, Cartigny M J B. Cyclic steps: Review and aggradation-based classification[J]. Earth-Science Reviews, 2020, 201: 102949.
    [74] Zavala C. Hyperpycnal (over density) flows and deposits[J]. Journal of Palaeogeography, 2020, 9(3): 267-287.
    [75] Ono K, Plink-Björklund P. Froude supercritical flow bedforms in deepwater slope channels? Field examples in conglomerates, sandstones and fine-grained deposits[J]. Sedimentology, 2018, 65(3): 639-669.
    [76] 杨仁超,金之钧,孙冬胜,等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报,2015,33(1):10-20.

    Yang Renchao, Jin Zhijun, Sun Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.
    [77] Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. GSA Bulletin, 2015, 127(5/6): 804-824.
    [78] 操应长,杨田,王艳忠,等. 超临界沉积物重力流形成演化及特征[J]. 石油学报,2017,38(6):607-621.

    Cao Yingchang, Yang Tian, Wang Yanzhong, et al. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow[J]. Acta Petrolei Sinica, 2017, 38(6): 607-621.
    [79] Stow D A V, Pudsey C J, Howe J A, et al. Deep-water contourite systems: Modern drifts and ancient series, seismic and sedimentary characteristics[M]. London: The Geological Society, 2002.
    [80] Stow D A V, Lovell J P B. Contourites: Their recognition in modern and ancient sediments[J]. Earth-Science Reviews, 1979, 14(3): 251-291.
    [81] Faugères J C, Stow D A V, Imbert P, et al. Seismic features diagnostic of contourite drifts[J]. Marine Geology, 1999, 162(1): 1-38.
    [82] Rebesco M, Hernández-Molina F J, van Rooij D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations[J]. Marine Geology, 2014, 352: 111-154.
    [83] Stow D A V, Faugères J C. Contourite facies and the facies model[M]//Rebesco M, Camerlenghi A. Developments in sedimentology. Amsterdam: Elsevier, 2008: 223-256.
    [84] 李华,何幼斌,黄伟,等. 鄂尔多斯盆地南缘奥陶系平凉组等深流沉积[J]. 古地理学报,2016,18(4):631-642.

    Li Hua, He Youbin, Huang Wei, et al. Contourites of the Ordovician Pingliang Formation in southern margin of Ordos Basin[J]. Journal of Palaeogeography, 2016, 18(4): 631-642.
    [85] 高振中. 深水牵引流沉积:内潮汐、内波和等深流沉积研究[M]. 北京:科学出版社,1996:47-86.

    Gao Zhenzhong. Deep-water tractive current deposits: The study of internal-tide, internal-wave, and contour current deposits[M]. Beijing: Science Press, 1996: 47-86.
    [86] Nielsen T, Knutz P C, Kuijpers A. Seismic expression of contourite depositional systems[M]//Rebesco M, Camerlenghi A. Developments in sedimentology. Amsterdam: Elsevier, 2008: 301-321.
    [87] Stow D A V, Faugères J C, Viana A, et al. Fossil contourites: A critical review[J]. Sedimentary Geology, 1998, 115(1/2/3/4): 3-31.
    [88] Hüneke H, Stow D A V. Identification of ancient contourites: Problems and palaeoceanographic significance[M]//Rebesco M, Camerlenghi A. Developments in sedimentology. Amsterdam: Elsevier, 2008: 323-344.
    [89] Shanmugam G. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons[J]. Marine and Petroleum Geology, 2003, 20(5): 471-491.
    [90] Shanmugam G. Deep-water bottom currents and their deposits[M]//Rebesco M, Camerlenghi A. Developments in sedimentology. Amsterdam: Elsevier, 2008: 59-81.
    [91] Campbell D C, Mosher D C. Geophysical evidence for widespread Cenozoic bottom current activity from the continental margin of Nova Scotia, Canada[J]. Marine Geology, 2016, 378: 237-260.
    [92] Lu Y T, Luan X W, Shi B Q, et al. Migrated hybrid turbidite-contourite channel-lobe complex of the Late Eocene Rovuma Basin, East Africa[J]. Acta Oceanologica Sinica, 2021, 40(2): 81-94.
    [93] Hernández-Molina F J, Llave E, Stow D A V. Continental slope contourites[M]//Rebesco M, Camerlenghi A. Developments in sedimentology. Amsterdam: Elsevier, 2008: 379-408.
    [94] 周伟. 深水单向迁移水道建造模式与成因机制研究进展[J]. 古地理学报,2021,23(6):1082-1093.

    Zhou Wei. Research progress on architectural patterns and formation mechanisms of deep-water unidirectionally migrating channels[J]. Journal of Palaeogeography, 2021, 23(6): 1082-1093.
    [95] Chen Y H, Yao G S, Wang X F, et al. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels: An example from the Oligocene channels in the Rovuma Basin, offshore Mozambique[J]. Sedimentary Geology, 2020, 404: 105680.
    [96] Miramontes E, Eggenhuisen J T, Jacinto R S, et al. Channel-levee evolution in combined contour current-turbidity current flows from flume-tank experiments[J]. Geology, 2020, 48(4): 353-357.
    [97] 张功成,屈红军,赵冲,等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学,2017,28(10):1447-1477.

    Zhang Gongcheng, Qu Hongjun, Zhao Chong, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration[J]. Natural Gas Geoscience, 2017, 28(10): 1447-1477.
    [98] Viana A R, Almeida W, Nunes M C V, et al. The economic importance of contourites[M]//Viana A R, Rebesco M. Economic and palaeoceanographic significance of contourite deposits. London: The Geological Society, 2007: 1-24.
    [99] Yu X H, Stow D, Smillie Z, et al. Contourite porosity, grain size and reservoir characteristics[J]. Marine and Petroleum Geology, 2020, 117: 104392.
    [100] Bailey W, McArthur A, McCaffrey W. Sealing potential of contourite drifts in deep-water fold and thrust belts: Examples from the Hikurangi margin, New Zealand[J]. Marine and Petroleum Geology, 2021, 123: 104776.
    [101] Hernández-Molina F J, Soto M, Piola A R, et al. A contourite depositional system along the Uruguayan continental margin: Sedimentary, oceanographic and paleoceanographic implications[J]. Marine Geology, 2016, 378: 333-349.
    [102] 李华,何幼斌. 等深流沉积研究进展[J]. 沉积学报,2017,35(2):228-240.

    Li Hua, He Youbin. Research processes on contourites[J]. Acta Sedimentologica Sinica, 2017, 35(2): 228-240.
    [103] Knutz P C. Palaeoceanographic significance of contourite drifts[M]//Rebesco M, Camerlenghi A. Developments in sedimentology. Amsterdam: Elsevier, 2008: 511-535.
    [104] 李华,何幼斌,黄伟,等. 鄂尔多斯盆地南缘奥陶系平凉组深水沉积特征及其与古环境关系:以陕西富平赵老峪地区为例[J]. 沉积学报,2018,36(3):483-499.

    Li Hua, He Youbin, Huang Wei, et al. Research on relationship between characteristics of deep-water deposits and palaeoenvironment in the Ordovician, Pingliang Formation, southern margin of the Ordos Basin: A case of Zhaolaoyu countryside, Fuping town, Shaanxi province[J]. Acta Sedimentologica Sinica, 2018, 36(3): 483-499.
    [105] 孙启良,解习农,吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘,2021,28(2):258-270.

    Sun Qiliang, Xie Xinong, Wu Shiguo. Submarine landslides in the northern South China Sea: Characteristics, geohazard evaluation and perspectives[J]. Earth Science Frontiers, 2021, 28(2): 258-270.
    [106] 周庆杰,李西双,徐元芹,等. 一种基于水深梯度原理的海底滑坡快速识别方法:以南海北部陆坡白云深水区为例[J]. 海洋学报,2017,39(1):138-147.

    Zhou Qingjie, Li Xishuang, Xu Yuanqin, et al. A rapid method to recognize submarine landslides based on the principle of water depth gradient: A case of Baiyun deep-water area, north slope of the South China Sea[J]. Haiyang Xuebao, 2017, 39(1): 138-147.
    [107] 马云,李三忠,梁金强,等. 南海北部琼东南盆地海底滑坡特征及其成因机制[J]. 吉林大学学报(地球科学版),2012,42(增刊3):196-205.

    Ma Yun, Li Sanzhong, Liang Jinqiang, et al. Characteristics and mechanism of submarine landslides in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(Suppl.3): 196-205.
    [108] 孙运宝,吴时国,王志君,等. 南海北部白云大型海底滑坡的几何形态与变形特征[J]. 海洋地质与第四纪地质,2008,28(6):69-77.

    Sun Yunbao, Wu Shiguo, Wang Zhijun, et al. The geometry and deformation characteristics of Baiyun submarine landslide[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 69-77.
    [109] Miramontes E, Garziglia S, Sultan N, et al. Morphological control of slope instability in contourites: A geotechnical approach[J]. Landslides, 2018, 15(6): 1085-1095.
    [110] Masson D G, Watts A B, Gee M J R, et al. Slope failures on the flanks of the western Canary Islands[J]. Earth-Science Reviews, 2002, 57(1/2): 1-35.
    [111] Sultan N, Cochonat P, Canals M, et al. Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach[J]. Marine Geology, 2004, 213(1/2/3/4): 291-321.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(4)

Article Metrics

Article views(611) PDF downloads(375) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-01-10
  • Revised:  2022-02-27
  • Accepted:  2022-03-18
  • Published:  2023-02-10

Research Processes on Deep-water Interaction Between Contour Current and Gravity Flow Deposits, 2000 to 2022

doi: 10.14027/j.issn.1000-0550.2022.027
Funds:

National Natural Science Foundation of China 42272113

National Natural Science Foundation of China 42272115

National Science and Technology Major Project 2017ZX05032-002-003

Natural Science Foundation of Hubei Province, No. 2020C FB745 2020CFB745

Open Foundation of Top Disciplines in Yangtze University of China 2019KFJJ0818010

Abstract: Contours current and gravity flow are common hydrodynamic forces in deep-water environments, which can affect each other and form interaction deposits. Based on the latest research, sedimentary type, identification marker, formation mechanism, and geological significance of the interaction between contour currents and gravity flow deposits had been summarized. (1) Interaction between contour currents and gravity flow deposits could been divided into interbedded contourite and turbidite, contour current reworked gravity flow deposits, and interaction of synchronous contour and turbidity currents; (2) Effective identifications of contourites and gravity flow deposits are the foundation of research on interbedded contourites and turbidites. (3) Gravity flow and tractive current structures are developed in contour current reworked gravity flow deposits, especially bi-directional cross bedding. There are two directions in the flow system; one is parallel to slope, and the other one is perpendicular to slope. One-, bipartie-, tripartite subdivisions on the cumulative frequency curves, etc. (4) Unidirectionally migrating channels, asymmetric channel-levee systems, and deflected lobes are formed by the interaction of synchronous contour and turbidity currents. (5) Formation mechanisms are primarily discussed based on the relative energy of contour current and gravity flow. Gravity flow deposits are favored when gravity flows are active. In contrast, contourites are developed during last- and intermittent-periods of gravity flow, which may result in interbedded contourites and gravity flow deposits. Contour currents can rework gravity flow deposits when the contour current has relative higher energy and lead to contour current reworked gravity flow deposits. Unidirectionally migrating channels, asymmetric channel-levee systems, and deflected lobes can be formed when the contour current is strong, and gravity flow is weak; the contour current is sufficient to laterally carry the gravity flow sediment. (6) The facing problem and direction of work on the interaction between contour current and gravity flow in the future were proposed as fallows: (1) Focus on comprehensive research and add examples. (2) Perfect identification marks and popularize research results. (3) Comprehensive discussion on processes and main controlling factors by Multi-methods, -scales, -conditions, and-dimensions. (4) Reinforce work potential of hydrocarbon exploration, paleoenvironment evolution, and geological hazard precautions.

LI Hua, HE MingWei, QIU ChunGuang, WANG YingMin, HE YouBin, XU YanXia, HE RuiWu. Research Processes on Deep-water Interaction Between Contour Current and Gravity Flow Deposits, 2000 to 2022[J]. Acta Sedimentologica Sinica, 2023, 41(1): 18-36. doi: 10.14027/j.issn.1000-0550.2022.027
Citation: LI Hua, HE MingWei, QIU ChunGuang, WANG YingMin, HE YouBin, XU YanXia, HE RuiWu. Research Processes on Deep-water Interaction Between Contour Current and Gravity Flow Deposits, 2000 to 2022[J]. Acta Sedimentologica Sinica, 2023, 41(1): 18-36. doi: 10.14027/j.issn.1000-0550.2022.027
  • 深海沉积是“源—汇”系统的终端部分[12],不仅蕴含了丰富的古海洋、古气候及古构造演化等重要信息[34],而且具有良好的油气勘探潜力[56],也是海洋污染研究的重要研究手段之一[7]。深海中重力流和等深流较为常见,在陆缘沉积体系形成过程中扮演着重要角色。重力流从陆架区经海底峡谷及水道顺斜坡向下输送沉积物可形成海底扇沉积[89]。等深流是由地球自转而成的温盐环流,大致平行斜坡运动,持续作用可形成大规模的等深流沉积[10]。在同一地区的深海环境中等深流及重力流可相互影响并形成交互作用沉积,也称等深流—重力流混合沉积[1115]。早在20世纪60年代,前人在研究等深流沉积特征及形成过程时就提到,等深流可以改造重力流沉积[10,1617]。Lovell et al.[18]在系统总结古代地层记录中砂质等深流沉积鉴别标志时,提出了7种等深流与浊流交互作用沉积概念模式,但未进行系统研究。随着地球物理、浅钻、岩心及水文测试等资料的不断丰富,等深流与重力流交互作用沉积研究不断深入,特别是近20余年,研究成果颇为丰富。本文基于近20余年国际沉积学领域及团队研究成果,对等深流与重力流交互作用的沉积类型、鉴别标志、形成过程及地质意义进行探讨,以提升等深流与重力流交互作用沉积研究认识,促进等深流与重力流交互作用沉积研究,推广相关研究成果,完善深水沉积理论。

  • 近20余年,等深流与重力流沉积研究实例逐渐增多,研究手段和方法也不断多样化。现代沉积研究主要基于地球物理、钻孔、地化测试等资料。研究实例涉及加迪斯海湾[1926]、巴西东部[2729]、爱尔兰西北洛克尔(Rockall)海槽[30]、西非下刚果盆地[31]、南海北部[3234]、墨西哥湾[35]、南极洲[3637]、东非[38]、加拿大东部[3940]等地(图1)。上述研究中,以加迪斯海湾地中海外流相关研究最为系统,成果最为丰富。

    Figure 1.  Distribution of case studies concerning deep⁃water interactions between contour currents and gravity flow.The base map is from http://www.ngdc.noaa.gov/

    古代地层记录中等深流与重力流交互作用沉积包括古地中海外流[41]、东非莫桑比克盆地[4245]、南海北部珠江口盆地[4649]、琼东南盆地[50]及莺歌海盆地中新统[5152]、墨西哥湾上新统—更新统[53]、威尔士志留系[54]、阿拉伯克拉通白垩系[55]、格林兰岛东部上白垩统[56]、塞浦路斯南部渐新统—中新统[5758]、阿根廷陆缘上白垩统[59]、加勒比海上白垩统[60]、摩洛哥南部中新统[61]、加津佐盆地上新统—更新统[62]、鄂尔多斯盆地西南缘奥陶系[6368]等(图1)。

    总体而言,等深流与重力流交互作用沉积研究主要有以下特点:1)现代沉积研究较多,古代地层记录中的研究实例相对较少,野外露头研究最为薄弱;2)大西洋两岸研究实例多,且多分布在北大西洋,而太平洋及印度洋研究较少;3)研究实例大多分布在深水油气勘探潜力区。

  • 等深流一般流速较低,持续稳定时间长[69],而重力流多具瞬时性,能量往往高于等深流,两者相互作用因相对能量、持续时间、海底地貌等影响而形成不同类型的沉积。基于研究资料及对象的不同,等深流及重力流交互作用沉积划分方案较多[14,20,70]。1981年,根据陆缘位置、峡谷水道及水流方向等,Lovell et al.[18]划分了陆隆、斜坡脚、峡谷水道、偏转型等7种沉积类型[18]。Mulder et al.[14]结合地球物理、岩性等资料,划分了等深流与浊流沉积互层(contourite and turbidite alternation)、等深流改造浊流沉积(redistribution of gravity deposits by contour currents)及等深流与浊流同时作用沉积(interaction of synchronous contour and turbidity currents)。吴嘉鹏等[70]则将其划分为等深流对前期重力流沉积改造、重力流对前期等深流沉积改造、重力流与等深流交互主导同一地区的沉积及等深流与重力流共同作用沉积。Stow et al.[69]将等深流与浊流沉积划分为了等深流短距离搬运浊流沉积(可以形成不对称堤岸),总体为浊流沉积特征;等深流长距离搬运、改造浊流顶部或尾部沉积,成分特征为浊流沉积,而沉积特征多呈等深流沉积(复合漂积体/等深流沉积);高能等深流改造顶部浊流沉积,可发育成熟度较高的浊流沉积,顶部侵蚀的浊流与生物扰动较发育的泥质及砂质等深流沉积。基于上述方案的划分依据、优点及不足对比(表1),结合笔者所在团队对南海北部、东非、西非、巴西东部及鄂尔多斯盆地西南缘深水沉积的研究成果,认为Mulder et al.[14]提出的划分方案以沉积类型的物质体现(包括岩性、产状等特征)为基础,野外及室内便于开展研究,且分类较全,实际研究中可能更为实用。

    代表方案划分依据划分结果优势不足
    Lovell et al.[18]砂质等深流沉积形成机理的概念模式陆隆、斜坡脚、峡谷水道、偏转型及其他最早较为系统对交互作用分类进行划分概念模式,类似地区交互作用形成机理可能明显不同,按地区划分不能满足形成机理研究
    Mulder et al. [14]沉积响应(地质体)的形态及沉积组合等深流与浊流沉积互层、等深流改造浊流沉积及等深流与浊流同时作用沉积从产出形式出发,便于开展野外露头及地球物理 (岩心)综合研究未全部体现形成机理差异
    吴嘉鹏等[70]以等深流及重力流 活动时间和能量 相对大小变化的 沉积响应等深流对前期重力流沉积改造、重力流对前期等深流沉积改造、重力流与等深流交互主导同一地区的沉积及等深流与重力流共同作用沉积体现了重力流的能量变化,等深流的持续性,及地质时期内两者主导作用的变化及沉积响应(1)重力流与等深流交互作用主导同一地区和等深流与重力流共同作用有交叉;(2)重力流侵蚀能力一般较强,对早期的等深流沉积进行侵蚀可导致地层记录中重力流改造等深流沉积类型不发育
    Stow et al.[69]等深流沉积的 形成机理等深流短距离搬运浊流沉积、等深流长距离搬运、改造浊流顶部或尾部沉积、 高能等深流改造顶部浊流沉积较系统的反应了等深流对浊流作用的沉积特征及 形成机理未能较全覆盖等深流与重力流交互作用 沉积类型,且实际研究操作难度较大
  • 本文主要采用Mulder et al.[14]划分方案,认为等深流与重力流交互作用沉积类型主要有三种,其特征分别如下。

  • 此类沉积研究基础是重力流及等深流沉积的有效识别。其中,重力流沉积划分方案较为成熟,研究成果较为丰富,目前用得较多的方案是根据流体支撑性质划分的碎屑流、颗粒流、液化流及浊流,各流体的沉积特征及鉴别标志国内外形成了普遍认识,如浊流沉积的鲍马序列、碎屑流沉积的泥砾(漂砾)、液化流沉积的变形构造等,在此不再赘述[7172]。另外,近年来重力流沉积研究也出现了较多较新认识,包括异重流、临界流、超临界流沉积等[7378],因等深流与重力流交互作用沉积研究中涉及较少,在此不做重点阐述。

    相对而言,等深流沉积的鉴别标志尚未形成共识,相关鉴别标志也多体现在现代沉积研究成果中,古代地层记录中的等深流沉积鉴别标准尚待进一步完善。结合国内外研究成果[18,68,7985],认为等深流沉积特征一般包括:1)多形成于深水环境;2)成分丰富多样,主要取决于物源供给;3)粒度分布较广,从泥—砾级皆有,且以细粒为主;4)分选一般中等—好,局部分选极好;标准偏差δ1<0.8;在正态概率粒度曲线上,一般有2~3个沉积总体,其中跳跃总体斜率大;5)牵引流构造较多,常见流水冲刷而成的侵蚀面,各种流水层理(交错层理、波痕、压扁层理等)和组构优选(长形颗粒定性排列)等;6)指向沉积构造反映的古水流方向一般平行斜坡;7)具有独特的层序,具有明显的细—粗—细的沉积序列(单个层序厚几十厘米至1米左右,可组成不同尺度的细—粗—细旋回);8)一般发育强烈的生物扰动构造;9)多形成或保存于相对海平面上升(较高)时期;10)地震反射特征可以分为大、中及小三个尺度,大尺度的等深流沉积(一级地震反射特征)外形为席状或丘状,大致平行斜坡展布,底部发育大型的侵蚀、过路不沉积界面或不整合面;内部常见低角度纹层下超于不整合面之上。常呈连续性中等—好弱—中振幅地震反射特征;中尺度的等深流沉积(二级地震反射特征)多为上凸透镜状,向下游迁移或加积,下超终止反射;小尺度的等深流沉积(三级地震反射特征)为连续平行—亚平行反射或波状结构(图2[86]

    Figure 2.  Characteristics of contourites[8284]

    尽管等深流沉积标志性特征较多,但是由于研究手段、露头局限及沉积现象多解性等因素,特别是露头剖面上古代地层记录中等深流沉积的有效识别难度较大,多解性也较强,甚至可能出现等深流沉积错误鉴别[69]。基于上述原因,前人对等深流沉积的典型特征进行了梳理及总结,认为有效的等深流沉积鉴别需要从小、中、大三个尺度进行[18,69,8688]。小尺度(野外、钻孔及室内分析)研究包括沉积构造、结构成分、生物扰动、古水流方向、地化特征、沉积序列、沉积旋回等特征。中尺度(沉积体、区域或组)研究包括小尺度特征是否符合等深流沉积特征,是否有浊流及其他性质水动力过程,沉积体的区域展布特征如何(小尺度资料及地球物理成果相结合);区域性不整合面和凝缩层序,厚度变化及形态特征是否典型。与深水沉积伴生,具有中等尺度的沉积旋回厚度/特征(数厘米到米级)及其他与浊流和原地沉积明显不同的特征。大尺度研究包括小、中尺度特征复合宏观古环境、古海洋及古构造特征(表2)。

    研究步骤/方法具体内容文中对应典型特征
    第一步:小尺度(野外,钻孔,实验室)(1)是否有等深流及浊流沉积层序, 能否基于沉积特征或古水流有效鉴别?(2)是否有半深海—深海原地沉积与等深流沉积层序, 能否有足够的证据说明等深流对这些细粒物质的 沉积进行了影响?(3)沉积旋回特征是否是由等深流速度变化导致而不是陆源碎屑供给变化或生物生产力变化引起?单层细—粗—细旋回;深水原地沉积发育;沉积序列和层序与同区重力流及深水原地沉积的不同
    第二步:中尺度(漂积体,形成,地区)(1)沉积体的产状、古水流方向、结构、 矿物及地化特征是否为等深流沉积?(2)是否存在等深流活动的证据?如不整合面,凝缩层序,厚度局部变化,沉积体形态等。(3)能否恢复沉积体的形态,规模?沉积体的长轴方向及进积方向平行或垂直陆缘?(4)伴生沉积相,古生物及沉积速率是否与 等深流沉积类似?古水流方向平行斜坡;分选、磨圆较好;长条形等深流沉积(如等深岩丘、长条形丘状漂积体等) 长轴平行斜坡;生物扰动发育程度;古生物及组合是否不同于同区的重力流及深水原地沉积
    第三步:大尺度(沉积体系,海洋还是大陆)(1)上述两步的结论是否与其他独立的海洋学或古海洋学特征和大陆重建结论吻合?(2)综合考虑古气候及盆地位置和形态等因素, 恢复等深流系统特征?古海洋及古水流系统分析, 环流系统是否具有等深流特征;沉积环境(深水斜坡、盆地); 相对海平面较高或上升等背景
  • 等深流改造重力流沉积在深水中较为常见,沉积现象较为丰富。Stow et al.[83]认为改造砂的主要特征包括:1)发育在等深流与重力流活跃区;2)生物扰动/潜穴发育,顶部被改造,见反粒序及不规则粗粒沉积;3)双向交错层理,粉砂岩中可见小型交错层理及生物扰动;4)在浊流沉积序列中可见侵蚀突变;5)细粒沉积被搬运/不沉积;6)与下伏浊积岩的结构差异显著(更干净、分选更好、反粒序、粒度曲线呈负偏等);7)与浊流沉积互层,双峰或复杂多变结构;8)浊积岩中部分细粒组分被淘洗、搬运;9)有机碳含量极低;10)典型的浊流沉积序列(顶部缺失或被改造),不存在等深流沉积旋回层序。

    Shanmugam[8990]及Gong et al.[47]认为改造砂通常成熟度较高,分选及磨圆较好,泥质较少,不同规模的反粒序层理、交错层理、透镜状层理、脉状层理、“S”形交错层理、双黏土层等典型牵引流沉积构造发育,向上突变(无侵蚀)接触,底部突变到渐变接触或存在内部侵蚀冲刷面,厚度通常小于5 cm的薄层至纹层状的砂以及韵律性砂泥互层或发育大量的砂层,概率累积曲线呈2~3段式。

    笔者通过鄂尔多斯西缘奥陶系平凉组等深流改造浊流沉积研究发现[6367],其沉积特征主要有:1)石英颗粒为主,分选中等—较好,钙质、硅质胶结,次棱角状—次圆状,粒径多分布在两个区域,基质含量较少;2)概率累积曲线呈1~3段式,1~2段常见;3)双向交错层理、平行层理、透镜状层理等发育;4)见介壳、少量三叶虫碎屑;5)下粗上细沉积序列,上部见侵蚀,内部见小型侵蚀面;6)微量元素含量较低;7)具有两个古水流方向,一个平行斜坡、一个顺斜坡向下,两者大致垂直或大角度斜交;8)生物扰动较发育(图3)。

    Figure 3.  Characteristics of contour current reworked turbidity current deposits from the Ordovician, at the Longxian site[6367]

    由于沉积构造的多解性[69],如平行层理、交错层理、复合层理等牵引流及浊流都可形成,双黏土层及“S”形交错层理可能有内潮汐参与。因此,笔者认为等深流改造重力流(浊流)沉积的典型特征主要有以下几个方面:1)重力流与牵引流沉积构造都可能发育,其中双向交错层理最为典型;2)足够沉积构造(交错层理、双向交错层理、槽模)重塑的古水流系统具有两个古水流方向,一个顺斜坡向下,一个大致平行斜坡,两者垂直或大角度斜交;3)无典型的等深流沉积特征(详见3.1),与重力流沉积特征也有所不同。与重力流沉积相比,成熟度相对较高,分选及磨圆较好;4)单一沉积旋回内(厚1 m以下),呈下粗上细沉积特征,顶部侵蚀特征明显,内部常见小型的波状侵蚀;5)单个沉积旋回(单元)中,概率累积曲线1~3段式,下部1段为主,向上出现2~3段式。

  • 由于等深流能量一般弱于重力流,重力流沉积速率远高于等深流沉积,且重力流容易侵蚀破坏等深流沉积,导致沉积记录中等深流与重力流同时作用沉积识别难度较大。目前,对该类型沉积的研究主要有两种方法。一是基于现代水文测试、浅钻(岩心)及地球物理资料综合分析。二是基于地球物理资料,少量岩心,根据特殊地质体进行研究。对于该类沉积,主要是以三类特殊的沉积体系为载体(单向迁移水道、水道—堤岸体系、不对称朵叶),通过内部构型剖析,分析其沉积过程。

    单向迁移水道是深水沉积环境中较为常见的地貌,内部可发育等深流漂积体(drift),等深流改造浊流沉积(图4[15,31,33,4750,9195]。目前研究发现,存在水道迁移方向与等深流运动方向相同及相反两种现象[4244,4750]。水道—堤岸体系中水道可见单向迁移特征,水道两侧堤岸发育,部分堤岸上发育等深流沉积及沉积物波[38,44,94]。水道顺等深流运动方向一侧堤岸发育,而迎流一侧堤岸发育程度相对较低。水道末端发育的不对称朵叶,具有顺等深流方向偏转特征[14,44]。总体而言,由于深水单向迁移水道研究实例较少[94],对其沉积特征因研究实例及资料不同而有所差异,且等深流与重力流同时沉积在地层记录中还未有统一、有效的鉴别标志,其典型特征需要后期结合更多实例进行总结。

    Figure 4.  Characteristics of a deep⁃water unidirectionally migrating channel

    综上所述,深水等深流、重力流、等深流改造重力流及原地沉积在岩性、结构、沉积构造、生物化石、沉积序列、古水流及产状等方面具有一定的差异性(表3),在地层记录中对上述沉积的有效鉴别是等深流与重力流交互作用沉积形成机理研究的前提。

    沉积特征等深流沉积重力流沉积等深流改造重力流沉积深水原地沉积
    岩性陆缘碎屑、碳酸盐岩、火山碎屑岩陆缘碎屑、碳酸盐岩、火山碎屑岩陆缘碎屑、碳酸盐岩、 火山碎屑岩陆缘碎屑、碳酸盐岩、火山碎屑岩
    结构粒度一般较细(泥、粉砂、细砂), 分选中等—好粒度分布范围广(泥—砾), 分选较差—中等粒度较粗(粉砂—砂), 分选中等,杂基含量较低细粒沉积为主
    沉积构造波痕、交错层理、水平层理等牵引流 沉积构造槽模、平行层理、交错层理、 变形构造等双向交错层理、平行层理、 交错层理等水平层理、小型交错层理
    生物化石较少,磨损或破坏深水生物少,见浅水沉积物 (生屑、鲕粒等异地搬运)少,多破碎,见浅水沉积物异地搬运沉积较多,保存较完整
    沉积序列细—粗—细鲍马序列常见(浊流沉积)下粗上细,鲍马序列顶部缺失块状
    生物扰动发育,各层都有较多,顶部较多,顶部发育
    古水流平行斜坡顺斜坡向下两个方向,平行及顺斜坡, 两方向大致垂直
    概率累计曲线2~3段式1~2段式,1段式为主1~3,下部多为1段式, 向上逐渐为2~3段式
    产状透镜状,波状界面,侧向连续性较差,单层厚度10~100 cm层状(朵叶)、透镜状(水道), 单层厚度变化较大层状、透镜状,单层厚度 相对重力流沉积较薄层状
  • 前人利用地球物理、岩心、分析测试及室内物理模拟等手段,主要对现代等深流与重力流交互作用沉积形成机理进行了半定量—定量研究。而对古代地层记录中的交互作用沉积机理研究精度相对较低,多为定性描述性分析。物理模拟研究开展极少。上述3种研究成果大致如表4。由于篇幅所限,本文介绍5个较为典型实例。

    研究对象研究手段主要认识典型地区及代表文献优点不足
    现代沉积地球物理、岩心、浅钻、物理海洋(1)不同水深的环流(等深流)等可对峡谷/水道中重力流沉积物进行横向搬运,由于地形、速度差异形成不同类型的等深流沉积;峡谷/水道两侧等深流沉积类型、规模有所不同;(2)内波、内潮汐可对峡谷水道中重力流沉积进行顺斜坡向上、向下改造,对重力流沉积进行 淘洗、搬运、再沉积;(3)峡谷/水道内部可能具有不对称沉积充填, 水道两侧堤岸沉积规模不同加迪斯海湾[20,23]、巴西东部[29]、南海北部[33]、墨西哥湾[35]、南极洲[37]、 东非[38]、加拿大东部[40](1)定性—半定量研究,精度较高;(2)等深流与重力流沉积 响应过程 较为清晰(1)物理海洋、深海观测等资料较少,等深流—重力流系统运动路径及速度变化研究薄弱;(2)沉积过程及主控因素的定量 研究较少
    古代沉积野外露头、地震、测井、岩心及 分析测试(1)等深流可对重力流沉积物进行搬运, 进而形成等深流沉积;(2)根据等深流及重力流相对能量的高低而改造程度有所不同,进而形成等深流沉积、 等深流改造重力流沉积、 重力流沉积及不同形态的沉积体加迪斯海湾[41]、鄂尔多斯盆地西南缘[67]、东非[42]、珠江口盆地[4748]、塞浦路斯[57]、摩洛哥南部[61](1)能基本阐明不同沉积类型的特征;(2)宏观规律较清楚(1)定性分析,精度低,实例少;(2)主控因素及古环境恢复较少;(3)形成机理尚需进一步研究
    物理模拟室内模拟等深流—浊流沉积(1)揭示等深流—浊流共同作用下水道—堤岸形成过程;(2)水道中浊流可受等深流影响形成不对称的堤岸沉积;(3)水道表现出迁移特征文献[96](1)定量研究,精度高;(2)沉积物的搬运及沉积过程清楚(1)条件单一,不能完全 满足自然界实际条件;(2)其他情况尚未开展模拟,如不同速度的等深流,不同类型重力流、不同坡度下的水道—朵叶 体系等

    Miramontes et al.[96]开展了等深流与浊流交互作用沉积的室内物理模拟研究。模拟条件为浊流速度30 m3/hr,等深流速度10 cm/s、14 cm/s、19 cm/s,水道规模宽80 cm,深度3 cm,含砂率 17%,粒度133 µm,坡度11°。研究表明,浊流运动过程中,水道迎等深流一侧形成了锋面,进而阻止浊流的漫溢。随着等深流速度的不断增加,水道顺等深流一侧堤岸较为发育,而迎流侧相对不发育,水道迁移方向与等深流运动方向相反(图5a,b)。

    Figure 5.  Interaction processes between the contour current and gravity flow

    Mencaroni et al.[23]综合地球物理、岩心、粒度、海洋学资料对加迪斯海湾现代浊流—等深流沉积体系形成进行了较为深入的研究。研究区峡谷、等深流沉积、块状搬运复合体、沉积物波发育及分布各有不同。峡谷顺地中海外流一侧等深流漂积体、浊流沉积更为发育,迎流侧相反。等深流与内波、浊流等形成的雾浊层控制沉积物的搬运和沉积。通过研究认为,高能的地中海外流深层水(等深流)在流动过程中,可以与浊流、内波共同作用。其中,等深流可对浊流等形成的雾浊层及浊流沉积物进行搬运,导致峡谷、水道迎流侧遭受一定的侵蚀、搬运作用,沉积速率较低,而顺流一侧,等深流漂积体、沉积物波及浊流沉积等更为发育。内波可对峡谷、水道内部浊流沉积进行改造、搬运及再沉积。

    Campbell et al.[91]认为等深流运动经过重力流水道时,水道内部顺流一侧等深流速度较高,沉积速率较低,而迎流一侧等深流速度降低,沉积速率增大,同时水道内部浊流受科氏力作用顺等深流运动方向偏转,两者共同作用可在水道内部形成不对称的水道充填(图5d)。Gong et al.[31]在研究西非下刚果盆地单向迁移水道形成机理时,引入了“开尔文—亥姆霍兹旋涡”现象,认为当水道中浊流(超临界流)速度为1.72~2.59 m/s,Fr=1.11~1.38,与等深流(速度0.1~0.3 m/s)共同作用可形成7.07 m的密度跳跃层。当开尔文—亥姆霍兹旋涡以0.87~1.48 m/s,4.0°~19.2°经过水道时,可在水道顺流一侧发生侵蚀,迎流一侧以沉积为主,最终在水道内部形成不对称充填结构,并呈现单向迁移的特征(图5e)。

    de Castro et al.[41]基于地震、岩心资料,通过地震相、岩相、沉积物结构、构造、粒度、沉积序列、遗迹化石组合、微量元素含量及比值等特征完成了加迪斯海湾古代地层记录中等深流沉积及等深流改造重力流沉积研究。结果表明,研究区重力流峡谷/水道与等深流水道、漂积体发育。等深流改造重力流沉积多贫杂基、向上逐渐过渡为波纹层理细砂,生物扰动较常见。高能的等深流可改造低密度浊流沉积,内部可见侵蚀、改造、凝缩段、沉积间断等。从短周期来看,等深流改造重力流沉积具有多期性,而从长周期来看,等深流与重力流交互作用沉积过程与沉积物供给和等深流速度相关。

    上述研究实例和其他研究实例都有一个相似点,即综合利用地球物理、野外露头、室内分析及沉积模拟等手段对等深流与重力流相互作用形成过程进行了较多研究,沉积模式主要为等深流与重力流沉积互层、等深流改造重力流沉积及等深流与重力流同时作用沉积三种(图6[42]

    Figure 6.  Depositional model of the deep⁃water interaction between the contour current and gravity flow[42]

    等深流与重力流沉积互层在地层记录中较为常见,代表等深流与重力流交替主导。重力流活跃时期,沉积物可通过峡谷、水道向下搬运,发育水道—堤岸及朵叶。重力流末期及间歇期,等深流持续作用,可对深水原地沉积物、早期浊流沉积等进行搬运,最终形成等深流沉积。随后,新一期重力流爆发时,一方面因重力流能量较高,可在一定程度上破坏早期的等深流沉积;另一方面,早期的等深流沉积,特别是丘状漂积体等凸起地貌,可影响重力流的运移路径及堆积场所。

    持续高能的等深流可改造早期的重力流沉积,也可影响重力流顶部的低密度浊流,使得重力流沉积物顺等深流运动方向搬运,形成顺等深流方向偏转的不对称海底扇/朵叶。在顺流一侧,根据改造程度不同可形成沙丘、沉积物波、席状砂等,沉积物成熟度相对较高。

    等深流与重力流同时作用沉积主要发生在重力流能量较低,等深流能量较高时。这类沉积在现代沉积实例中报道较多[15,31,33,4250,9094]。当等深流经过重力流水道时,可以对低密度浊流进行顺等深流运动方向搬运,同时对水道迎流一侧堤岸沉积进行改造,导致水道顺流一侧堤岸更为发育。水道内部形成不对称的充填,长时间作用,形成不对称的水道—堤岸体系,水道整体表现迁移特征,迁移方向与等深流运动方向相同或相反[14,43]

  • 目前,在西非、巴西、墨西哥湾、南海北部及圭亚那盆地等地区的重力流沉积中获得了大量油气勘探突破[97],表明重力流沉积(海底扇)具有重要的油气勘探潜力。此外,粗粒的等深流沉积也可成为良好的油气储层[98],阿拉伯地块等深流沉积相关油气勘探已有数十年的历史[55],加迪斯海湾粗粒等深流沉积孔隙度达50%[99],墨西哥湾等深流改造重力流沉积含砂率接近80%,孔隙度为25%~40%,渗透率为(100~1 800)×10-3 μm[53]。同时,细粒的等深流沉积可成为“粗粒”储层(重力流、等深流及等深流改造重力流沉积)的有效封盖层[100]。Fonnesu et al.[42]在研究东非莫桑比克北部Coral及Mamba气田等深流与浊流同时沉积形成过程时,认为不对称水道从轴部到堤岸地震振幅从强到弱逐渐发生变化。水道顺等深流方向一侧发育偏转型朵叶、沉积物波及水道相关漂积体。砂岩成熟度高,杂基含量少。远离海底扇轴部发育薄层细砂,发育波痕、平行层理砂岩,泥质披覆、泥砾,见双向纹层。晚期的次级水道砂地比高,为优质储层;孤立水道(isolated channel)砂地比中等,为有利储层;水道顺等深流方向发育偏转型朵叶及等深流漂积体,砂地比较低,为潜在储层(图7)。

    Figure 7.  Reservoir distribution of channel interactions between the contour current and gravity flow in the East Africa[42]

  • 等深流与重力流交互作用沉积蕴含丰富的古环境信息。地层记录中等深流沉积的类型、规模及演化反应小周期速度、温度、盐度及地形等变化,以及长周期的冰期—间冰期、古构造、古海洋及古气候的变化[101104]。然而,目前对等深流与重力流交互作用沉积与古环境的内在联系研究极少,相关研究聚焦沉积特征及过程分析,且对古环境研究多基于区域构造运动,全球相对海平面升降及古气候等成果,对等深流与重力流沉积层段的古环境恢复研究较为薄弱,研究精度较低。同时,在等深流与重力流活动与古环境变化关系研究中,分别对等深流、重力流沉积与古环境关系研究较多,等深流与重力流混合沉积和古环境整体研究较少。本文选取地球物理及野外露头,研究成果较为系统的两个实例进行阐述。其中,鄂尔多斯盆地野外露头研究对古环境进行了较为系统的恢复,精度较高,但是典型剖面少。阿根廷东部等深流—浊流沉积展布规律研究比较系统,但是古环境恢复研究精度低。

    利用岩相、微量元素及同位素等对鄂尔多斯南缘奥陶系平凉组深水沉积研究中发现:1)该区等深流、浊流、碎屑流及等深流改造浊流沉积较为发育;2)等深流、重力流、等深流改造重力流、原地沉积的岩相及地化特征明显不同;3)从下至上,相对海平面、古盐度及古气候可大致分为3个变化旋回;4)等深流在相对海平面上升,古盐度突变,气候湿润时较为活跃,有利于等深流沉积的发育。相反,重力流主要发育在相对海平面下降、气候干燥及构造活动较为活跃时期(图8[66,104]

    Figure 8.  Relationships between the paleoenvironment and interaction between contourites and gravity flow deposits of the Ordovician Pingliang Formation in the southwestern margin of the Ordos Basin[66,104]

    基于地球物理资料及前人成果调研,阿根廷东部陆坡白垩系等深流—浊流沉积类型、规模及演化与区域构造事件、全球相对海平面升降、缺氧事件和古环流关系研究发现,交互作用沉积规模超过280 000 km2,其主要受控于冈瓦纳分裂(125 Ma)及南大西洋打开。等深流—浊流沉积发育可分为:1)初始阶段(约125~89.8 Ma)(阿普特—康尼亚克阶),陆缘热沉降,浊流沉积开始发育;2)开始阶段(约89.9~81 Ma)(康尼亚克—坎潘阶),南东向运动的浊流及南西向运动的“低能”等深流开始活动;3)成长阶段(约81~66 Ma)(坎潘—马特里赫特阶),浊流与等深流最为活跃;4)埋藏阶段(约66 Ma)以来至今(古新统),等深流持续活跃至今,等深流沉积一直发育。四个阶段与研究区的古海洋变化,特别是南大西洋深水环流的运动密切相关。另外,等深流—浊流沉积体系还受地形地貌、构造事件、环流系统及周期性浊流影响[59]

  • 海底滑坡、碎屑流、浊流等重力流及相关沉积在深水环境中较为常见,可形成峡谷、水道、阶坎、沙波、麻坑、陡坡等复杂地貌,可造成海底设施,如海底管线、电缆、光缆、钻井平台等损坏,也可给海岸地区人民的生命及财产安全带来巨大损失[105111]。因此,重力流相关的地质灾害研究与预防极为重要。

    南海北部珠江口盆地荔湾3-1气田管道区的海底扇峡谷、滑坡及滑塌、古珊瑚礁、海底沙波和大型波痕、陡坎、陡坡及断崖、碎屑流和浊流沉积极为常见,其威胁海底管道的铺设和运行安全[105108]。通过高分辨率地震及多波束等资料研究发现,南海北部珠江口盆地、琼东南盆地及邻区的海底滑坡(MTD)极为发育,总体可划分为8个区域。其中,珠江口盆地中部白云地区(区域I)古滑坡规模巨大,相对稳定;而海底峡谷区(区域II)滑坡规模较小,但频率较高;白云滑坡东西两侧(区域III)发育蠕动变形,再次发生滑坡机率较高,直接危害较大;珠江口盆地与琼东南盆地结合部(区域V)因陆坡陡,滑坡风险高;琼东南盆地中东部(区域VI)古滑坡多,规模大,发生频率高,未来海底滑坡概率极高,可能带来较严重的地质灾害;琼东南盆地西部(区域VII)古滑坡数量相比区域VI数量较少,但是规模更大,未来滑坡风险仍较高,潜在地质灾害高;西沙群岛(区域VIII)海底滑坡较为频繁,以中小型为主,未来直接风险概率高(图9[105]

    Figure 9.  Distribution of submarine landslides in the northern slopes of the South China Sea[105]

    相对而言,等深流沉积相关地质灾害研究较少。实际上,等深流沉积发育位置和规模可控制海底地貌形态及堆积样式,进而可能带来滑坡等地质灾害。Miramontes et al.[109]研究了地中海北部等深流漂积体、半深海沉积、浊流沉积对斜坡稳定性的影响(图10)。研究发现,1)研究区东部发育块状搬运复合体、丘状漂积体、涂抹型漂积体;西部发育峡谷、半深海沉积及涂抹型漂积体;2)半深海沉积坡度一般小于5°,安全系数较高;涂抹型漂积体坡度达11°,安全系数较低;3)等深流漂积体的地貌形态(陡坡、丘状)控制斜坡的稳定性。涂抹型漂积体下部坡度较高,容易发生滑塌;4)陡坡及高能的等深流侵蚀可诱发海底滑坡。

    Figure 10.  Deep⁃water interaction between contourites and gravity flow deposits, and submarine landslides in the Mediterranean Sea[109]

  • 等深流及重力流交互作用沉积研究时间较长,成果较为丰富,但在鉴别标志、形成机理及地质意义研究等方面仍较为薄弱。

    (1) 重视综合研究,增加实例分析

    与三角洲、河流、海底扇等相比,等深流与重力流交互作用沉积研究仍然薄弱。其中,现代等深流及重力流交互作用沉积研究较多,主要采用地球物理资料,结合少量岩心、水文测试,宏观分析。该方面研究较为系统,但精度相对较低。未来10年,结合丰富的物理海洋资料,开展地球物理(地震、多波束)、水文测试、岩心(浅钻)及分析测试等综合研究,在精度提高的同时,定量—半定量揭示等深流与重力流混合沉积物的搬运及沉积过程是重要的发展方向之一。

    古代地层记录中等深流与重力流沉积研究存在实例较少,精度低等不足。因此,注重现代与古代研究相结合可大力推动等深流与重力流交互作用沉积研究步伐,推广相关研究成果。其中,提高等深流—重力流活动与古环境变化的内在联系(等深流—重力流混合沉积的主控因素)及沉积过程分析的精度极为重要。

    室内物理模拟研究精度高,但模拟条件较为简化,主控因素较为单一。目前,国内外开展等深流与重力流交互作用的物理模拟研究极少,需要进一步开展不同速度的等深流影响下,不同类型(碎屑流、浊流、不同组分的重力流等)、不同时间(早期、中期、晚期及间歇期)、不同地区(上、中、下陆坡,不同坡度、不同地貌)、不同沉积单元(不同类型的水道、水道—堤岸、水道—朵叶等)的重力流在变化过程中沉积物的搬运方式、距离、沉积分布研究。

    (2) 完善鉴别标志

    现代沉积研究主要是对不同地区实例进行分析,缺乏不同沉积背景下等深流与重力流交互作用典型特征系统化总结。古代地层记录中实例相对较少,且岩心少,难以发现有效沉积记录,且多解性较强;地球物理资料重在形态、内部结构特征鉴别,较难甄别地震反射特征类似的沉积体;野外露头的等深流、内潮汐、改造砂、复合流沉积鉴别标志不系统,有效鉴别难度大(规模、特殊现象、多解性)。在后续研究中,一是结合已有现代研究成果,总结和提炼一套适合不同背景下等深流与重力流交互作用沉积的鉴别标准,二是加大古代地层记录中交互作用研究力度,完善鉴别标志,三是结合现代、古代及物理模拟研究成果,综合物理海洋及深海观察等最新认识,不断完善适合不同研究方法的等深流与重力流交互作用沉积鉴别标准,这对促进相关研究极为重要。

    (3) 阐明形成机理

    等深流与重力流交互作用形成机理主要核心问题是两种性质的水动力作用下,沉积物的搬运及沉积规律,这涉及沉积过程及主控因素两个关键问题。

    等深流与重力流相对能量的大小。等深流与重力流流体性质截然不同,两者的相对能量高低与主导地位密切相关,直接控制沉积物的搬运和堆积。等深流速度一般较低(小于0.3 m/s),持续时间长且稳定,但其水团规模一般较大,沉积物搬用通量较高,能量总体较强,特别是在海峡或运动路径突变处速度可达3 m/s,也可形成规模较大、较粗的等深流沉积(加迪斯海湾见粗砂、砾质沉积,鄂尔多斯西南缘发育砂屑、中砂—细砂沉积)。而重力流能量一般较高,速度较大,但具有瞬时性,通常为幕式侵蚀/沉积。然而,重力流因规模(大、小)、部位(底部一般粗,顶部细;头部、颈部、体部及尾部粒度差异较大)、时间(早期、中期、末期及间歇期)、位置(上、中、下陆坡及盆地)及沉积单元(峡谷、水道、水道—堤岸、朵叶)的不同而导致速度、能量差异迥异,这导致等深流与重力流共同作用过程复杂多变,在此过程中沉积物何时搬运?如何搬运?搬运至哪?三个问题是今后研究的重要内容。

    等深流与重力流交互作用沉积的主控因素。等深流与重力流相对能量的高低使得其水动力性质(牵引流vs.重力流)、流动强度(Fr)、流态(Re)等有所不同,进而导致沉积物的搬运时间、方式及沉积各有差异。且除了速度及能量等直接控制因素之外,等深流与重力流交互作用还受物源供给、相对海平面升降、冰期—间冰期、古气候、古构造的影响,因此在开展地质历史时期内的研究还需综合、系统分析其间接控制因素。总之,有必要开展多方法、多尺度、多维度、多条件下等深流与重力流交互作用沉积过程及主控因素研究,提升其形成机理研究认识。

    (4) 挖掘古环境信息,探索油气勘探潜力,评估地质灾害

    等深流与重力流交互作用的沉积类型、规模、分布及演化是古海洋、古气候、古构造等变化的综合体现。同时,等深流与重力流交互作用沉积中,粗粒的等深流沉积,重力流沉积,等深流改造重力流沉积具有良好的油气储集性能,细粒沉积可形成理想的烃源岩及盖层,其可形成自生自储自盖的油气藏。此外,等深流与重力流共同作用会产生不同规模的侵蚀和沉积,进而形成丘状、陡坡、陡崖、阶坎等地貌,可诱发海底滑坡等地质灾害。目前,对于等深流与重力流交互作用沉积相关古环境研究较为薄弱,油气勘探潜力也未受到足够的重视,地质灾害评估及预测研究更为薄弱。值得庆幸的是,随着深水沉积研究特别是古代地层记录中相关研究的不断深入,等深流与重力流交互作用沉积逐渐成为古环境恢复的重要载体;油气勘探家及石油地质学家也因深水油气勘探的不断突破而逐渐重视等深流与重力流交互作用沉积的油气勘探潜力及地质灾害预防。综上,加大古环境恢复及油气勘探潜力挖掘,重视地质灾害评估是后续研究工作的发展方向之一。

Reference (111)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return