Advanced Search
Volume 42 Issue 2
Feb.  2024
Turn off MathJax
Article Contents

LUAN XuWei, KONG XiangXin, ZHANG JinLiang, JIANG Long, PENG YanXia, Cai Yuan. Astronomical Forcing of Origins of Eocene Carbonate-bearing Fine-grained Sedimentary Rock in Dongying Sag[J]. Acta Sedimentologica Sinica, 2024, 42(2): 688-700. doi: 10.14027/j.issn.1000-0550.2022.070
Citation: LUAN XuWei, KONG XiangXin, ZHANG JinLiang, JIANG Long, PENG YanXia, Cai Yuan. Astronomical Forcing of Origins of Eocene Carbonate-bearing Fine-grained Sedimentary Rock in Dongying Sag[J]. Acta Sedimentologica Sinica, 2024, 42(2): 688-700. doi: 10.14027/j.issn.1000-0550.2022.070

Astronomical Forcing of Origins of Eocene Carbonate-bearing Fine-grained Sedimentary Rock in Dongying Sag

doi: 10.14027/j.issn.1000-0550.2022.070
Funds:

China Postdoctoral Science Foundation 2020M680624

  • Received Date: 2022-05-20
  • Accepted Date: 2022-08-12
  • Rev Recd Date: 2022-06-21
  • Available Online: 2022-08-12
  • Publish Date: 2024-02-04
  • Objective This study aims to conduct an in-depth investigation into the large set of rhythmically-characteristic lacustrine fine-grained sedimentary rocks rich in carbonate materials and organic matter developed in the Dongying Sag area of the Bohai Bay Basin in eastern China, exploring their genetic mechanisms as well as characteristics of paleoclimate and paleoenvironment changes. Methods Based on core and thin-section observations, we classified the lithofacies according to sedimentary structural features and mineral component content. Considering the differences in sedimentary environment and deposition rate, the target interval was divided into four units. The Multi-Taper Method (MTM) was applied to perform segmented spectral analysis on the natural gamma (GR) logging curve from the upper Fourth member of the Shahejie Formation (Es4u) to the lower Third member (Es3l) in well Fanye 1 (FY1). Results Through macroscopic and microscopic sedimentary observations, we identified five types of fine-grained rocks in the Dongying Sag area: laminar argillaceous limestone, laminar calcareous mudstone, weakly laminar calcareous mudstone, lenticular argillaceous limestone and massive mudstone. Spectral analysis results revealed that all four units recorded Milankovitch cycles, including periods of 125 kyr, 38.7 kyr, and 18.7 kyr. Based on volcanic ash dating data, we established a "floating" astronomical timescale with a precision of 38.7 kyr and determined that the total duration of fine-grained sedimentary deposition from the upper Es4 to the lower Es3 in the Dongying Sag was 5.3 Myr. Further analysis indicated a good correspondence between the 18.7 kyr precession cycle and changes in carbonate content, suggesting a significant influence of Earth's orbital parameters on the deposition of carbonate-bearing fine-grained sedimentary rocks. Conclusions Utilizing the theory of cyclostratigraphy, this study revealed characteristics of paleoclimate and paleoenvironment changes in lacustrine sediments from the perspective of astronomical cycles controlling sedimentation. Our analysis showed that Earth's orbital parameters, particularly the 18.7 kyr precession cycle and the 125 kyr eccentricity cycle, jointly drove climate changes, which in turn controlled the deposition of carbonate-bearing fine-grained sedimentary rocks. Specifically, at maxima of precession or minima of eccentricity, increased sunlight and warmer lake water temperatures favored the crystallization of calcite and the deposition of limestone. Conversely, at minima of precession or maxima of eccentricity, decreased sunlight and cooler lake water temperatures resulted in fine-grained material being predominantly derived from terrestrial sources, with mudstone deposition dominating. This research has important scientific and guiding implications for unconventional oil and gas exploration and development.
  • [1] Aplin A C, Macquaker J S H. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
    [2] Freytet P, Verrecchia E P. Lacustrine and palustrine carbonate petrography: An overview[J]. Journal of Paleolimnology, 2002, 27(2): 221-237.
    [3] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [4] 柳蓉,张坤,刘招君,等. 中国油页岩富集与地质事件研究[J]. 沉积学报,2021,39(1):10-28.

    Liu Rong, Zhang Kun, Liu Zhaojun, et al. Oil shale mineralization and geological events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 10-28.
    [5] 姜在兴,孔祥鑫,杨叶芃,等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发,2021,48(1):26-37.

    Jiang Zaixing, Kong Xiangxin, Yang Yepeng, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1) 26-37.
    [6] Kong X X, Jiang Z X, Han C, et al. Genesis and implications of the composition and sedimentary structure of fine-grained carbonate rocks in the Shulu Sag[J]. Journal of Earth Science, 2017, 28(6): 1047-1063.
    [7] 孔祥鑫. 湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D]. 北京:中国地质大学(北京),2020.

    Kong Xiangxin. Sedimentary characteristics, origin and hydrocarbon accumulation of lacustrine carbonate-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [8] Gierlowski-Kordesch E H. Lacustrine carbonates[J]. Developments in Sedimentology, 2010, 61: 1-101.
    [9] Hinnov L A, Hilgen F J. Cyclostratigraphy and astrochronology[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. The geologic time scale. Amsterdam: Elsevier, 2012: 63-83.
    [10] Hinnov L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. GSA Bulletin, 2013, 125(11/12): 1703-1734.
    [11] 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘,2014,21(2):48-66.

    Huang Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66.
    [12] Hays J D, Imbrie J, Shackleton N J. Variations in the earth’s orbit: Pacemaker of the ice ages[J]. Science, 1976, 194(4270): 1121-1132.
    [13] 童凯,汪永进,程海,等. 57~48万年前东亚夏季风的神农架石笋记录[J]. 海洋地质与第四纪地质,2007,27(4):111-116.

    Tong Kai, Wang Yongjin, Cheng Hai, et al. East Asian summer monsoon record over 571~ 476 kaBP from a stalagmite in Shennongjia[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 111-116.
    [14] 金忠慧,姜在兴,张建国,等. 东营凹陷沙四上亚段旋回地层学研究:以樊页1井为例[J]. 科学技术与工程,2017,17(1):21-28.

    Jin Zhonghui, Jiang Zaixing, Zhang Jianguo, et al. Cyclostratigraphy research on the upper of 4th member of the Shahejie Formation in Dongying Sag: A case study of FY1[J]. Science Technology and Engineering, 2017, 17(1): 21-28.
    [15] 张浣获,郝青振. 深海和冰芯证据指示氧同位素阶段MIS11~10时期北极冰盖增长滞后[J]. 第四纪研究,2019,39(3):786-788.

    Zhang Huandi, Hao Qingzhen. Marine and ice core evidence confirms delayed buildup of arctic ice sheets during the MIS 11~10[J]. Quaternary Sciences, 2019, 39(3): 786-788.
    [16] 吴怀春,房强. 旋回地层学和天文时间带[J]. 地层学杂志,2020,44(3):227-238.

    Wu Huaichun, Fang Qiang. Cyclostratigraphy and astrochronozones[J]. Journal of Stratigraphy, 2020, 44(3): 227-238.
    [17] Berger A. Milankovitch theory and climate[J]. Reviews of Geophysics, 1988, 26(4): 624-657.
    [18] Ruddiman W F. Earth's climate: Past and future[M]. 2nd ed. New York: W. H. Freeman, 2008.
    [19] Eldrett J S, Ma C, Bergman S C, et al. Origin of limestone-marlstone cycles: Astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous western interior seaway, USA[J]. Earth and Planetary Science Letters, 2015, 423: 98-113.
    [20] Locklair R E, Sageman B B. Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, western interior, U.S.A.: A Coniacian-Santonian orbital timescale[J]. Earth and Planetary Science Letters, 2008, 269(3/4): 540-553.
    [21] Ma C, Meyers S R, Sageman B B. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence[J]. Nature, 2017, 542(7642): 468-470.
    [22] Noorbergen L J, Abels H A, Hilgen F J, et al. Conceptual models for short-eccentricity-scale climate control on peat formation in a Lower Palaeocene fluvial system, north-eastern Montana (USA)[J]. Sedimentology, 2018, 65(3): 775-808.
    [23] 姚益民,梁鸿德,蔡治国,等. 中国油气区第三系(Ⅳ)渤海湾盆地油气区分册[M]. 北京:石油工业出版社,1994.

    Yao Yimin, Liang Hongde, Cai Zhiguo, et al. Tertiary in petroliferous regions of China: IV, the Bohai Bay Basin[M]. Beijing: Petroleum Industry Press, 1994.
    [24] 姚益民,修申成,魏秀玲,等. 东营凹陷下第三系ESR测年研究[J]. 油气地质与采收率,2002,9(2):31-34.

    Yao Yimin, Xiu Shencheng, Wei Xiuling, et al. Researches on the ESR geochronometry in Palaeogene of Dongying Depression[J]. Petroleum Geology and Recovery Efficiency, 2002, 9(2): 31-34.
    [25] Jin S D, Liu S B, Li Z, et al. Astrochronology of a Middle Eocene lacustrine sequence and sedimentary noise modeling of lake-level changes in Dongying Depression, Bohai Bay Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 585: 110740.
    [26] 孙善勇,刘惠民,操应长,等. 湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义:以东营凹陷牛页1井沙四上亚段为例[J]. 中国矿业大学学报,2017,46(4):846-858.

    Sun Shanyong, Liu Huimin, Cao Yingchang, et al. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil: A case study of the upper Es4 member of well NY1 in Dongying Sag[J]. Journal of China University of Mining & Technology, 2017, 46(4): 846-858.
    [27] Allen M B, Macdonald D I M, Xun Z, et al. Early Cenozoic two-phase extension and Late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 1997, 14(7/8): 951-972.
    [28] 宗国洪,肖焕钦,李常宝,等. 济阳坳陷构造演化及其大地构造意义[J]. 高校地质学报,1999,5(3):275-282.

    Zong Guohong, Xiao Huanqin, Li Changbao, et al. Evolution of Jiyang Depression and its tectonic implications[J]. Geological Journal of China Universities, 1999, 5(3): 275-282.
    [29] 徐伟. 东营凹陷沙河街组三段、四段高频旋回识别及其地质意义[D]. 武汉:中国地质大学(武汉),2011.

    Xu Wei. High-frequency cycles of the 3rd and 4th member of Shahejie Formation in Dongying Depression and its geological significance[D]. Wuhan: China University of Geosciences (Wuhan), 2011.
    [30] Shi J Y, Jin Z J, Liu Q Y, et al. Terrestrial sedimentary responses to astronomically forced climate changes during the Early Paleogene in the Bohai Bay Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502: 1-12.
    [31] 金思丁. 酒泉盆地白垩系下沟组旋回地层识别及成因机制探讨[D]. 武汉:中国地质大学(武汉),2016.

    Jin Siding. Recognition of cyclostratigraphy and discussion of the genetic mechanism of Xiagou Formation in Early Cretaceous, Jiuquan Basin, west of China[D]. Wuhan: China University of Geosciences (Wuhan), 2016.
    [32] van Vugt N, Langereis C G, Hilgen F J. Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: Dominant expression of eccentricity versus precession[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172(3/4): 193-205.
    [33] Cleveland W S. Robust locally weighted regression and smoothing scatterplots[J]. Journal of the American Statistical Association, 1979, 74(368): 829-836.
    [34] Chen G, Gang W Z, Tang H Z, et al. Astronomical cycles and variations in sediment accumulation rate of the terrestrial Lower Cretaceous Xiagou Formation from the Jiuquan Basin, NW China[J]. Cretaceous Research, 2020, 109: 104156.
    [35] Kodama K P, Hinnov L A. Rock magnetic cyclostratigraphy[M]. Chichester: John Wiley & Sons, 2015: 1-176.
    [36] Li M S, Hinnov L, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers &Geosciences, 2019, 127: 12-22.
    [37] Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds-interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128.
    [38] Kelts K, Hsü K J. Freshwater carbonate sedimentation[M]//Lerman A. Lakes: Chemistry, geology, physics. New York: Springer, 1978: 295-323.
    [39] Kelts K, Talbot M. Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions[M]//Tilzer M M, Serruya C. Large lakes: Ecological structure and function. Berlin: Springer, 1990: 288-315.
    [40] 孔祥鑫,姜在兴,韩超,等. 束鹿凹陷沙三段下亚段细粒碳酸盐纹层特征与储集意义[J]. 油气地质与采收率,2016,23(4):19-26.

    Kong Xiangxin, Jiang Zaixing, Han Chao, et al. Laminations characteristics and reservoir significance of fine-grained carbonate in the lower 3rd member of Shahejie Formation of Shulu Sag[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 19-26.
    [41] Laskar J, Robutel, P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
    [42] 田景春,张翔. 沉积地球化学[M]. 北京:地质出版社,2013.

    Tian Jingchun, Zhang Xiang. Sedimentary geochemistry[M]. Beijing: Geological Publishing House, 2013.
    [43] 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.

    Song Mingshui. Sedimentary environment geochemistry in the Shasi section of southern ramp, Dongying Depression[J]. Journal of Mineralogy and Petrology, 2005, 25(1): 67-73.
    [44] Rachold V, Brumsack H J. Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: Palaeoenvironmental constraints and orbital cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 174(1/2/3): 121-143.
    [45] 汪品先. 全球季风的地质演变[J]. 科学通报,2009,54(5):535-556.

    Wang Pinxian. Global monsoon in a geological perspective[J]. Chinese Science Bulletin, 2009, 54(5): 535-556.
    [46] Wang P X, Wang B, Cheng H, et al. The global monsoon across timescales: Coherent variability of regional monsoons[J]. Climate of the Past, 2014, 10(6): 2007-2052.
    [47] 石巨业. 东营凹陷始新世泥页岩段米氏旋回识别及其环境响应研究[D]. 北京:中国地质大学(北京),2018.

    Shi Juye. Recognition of Milankovitch cycles in the Eocene terrestrial formation and environmental responses in Dongying Sag[D]. Beijing: China University of Geosciences (Beijing), 2018.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(1)

Article Metrics

Article views(25) PDF downloads(13) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-05-20
  • Revised:  2022-06-21
  • Accepted:  2022-08-12
  • Published:  2024-02-04

Astronomical Forcing of Origins of Eocene Carbonate-bearing Fine-grained Sedimentary Rock in Dongying Sag

doi: 10.14027/j.issn.1000-0550.2022.070
Funds:

China Postdoctoral Science Foundation 2020M680624

Abstract: Objective This study aims to conduct an in-depth investigation into the large set of rhythmically-characteristic lacustrine fine-grained sedimentary rocks rich in carbonate materials and organic matter developed in the Dongying Sag area of the Bohai Bay Basin in eastern China, exploring their genetic mechanisms as well as characteristics of paleoclimate and paleoenvironment changes. Methods Based on core and thin-section observations, we classified the lithofacies according to sedimentary structural features and mineral component content. Considering the differences in sedimentary environment and deposition rate, the target interval was divided into four units. The Multi-Taper Method (MTM) was applied to perform segmented spectral analysis on the natural gamma (GR) logging curve from the upper Fourth member of the Shahejie Formation (Es4u) to the lower Third member (Es3l) in well Fanye 1 (FY1). Results Through macroscopic and microscopic sedimentary observations, we identified five types of fine-grained rocks in the Dongying Sag area: laminar argillaceous limestone, laminar calcareous mudstone, weakly laminar calcareous mudstone, lenticular argillaceous limestone and massive mudstone. Spectral analysis results revealed that all four units recorded Milankovitch cycles, including periods of 125 kyr, 38.7 kyr, and 18.7 kyr. Based on volcanic ash dating data, we established a "floating" astronomical timescale with a precision of 38.7 kyr and determined that the total duration of fine-grained sedimentary deposition from the upper Es4 to the lower Es3 in the Dongying Sag was 5.3 Myr. Further analysis indicated a good correspondence between the 18.7 kyr precession cycle and changes in carbonate content, suggesting a significant influence of Earth's orbital parameters on the deposition of carbonate-bearing fine-grained sedimentary rocks. Conclusions Utilizing the theory of cyclostratigraphy, this study revealed characteristics of paleoclimate and paleoenvironment changes in lacustrine sediments from the perspective of astronomical cycles controlling sedimentation. Our analysis showed that Earth's orbital parameters, particularly the 18.7 kyr precession cycle and the 125 kyr eccentricity cycle, jointly drove climate changes, which in turn controlled the deposition of carbonate-bearing fine-grained sedimentary rocks. Specifically, at maxima of precession or minima of eccentricity, increased sunlight and warmer lake water temperatures favored the crystallization of calcite and the deposition of limestone. Conversely, at minima of precession or maxima of eccentricity, decreased sunlight and cooler lake water temperatures resulted in fine-grained material being predominantly derived from terrestrial sources, with mudstone deposition dominating. This research has important scientific and guiding implications for unconventional oil and gas exploration and development.

LUAN XuWei, KONG XiangXin, ZHANG JinLiang, JIANG Long, PENG YanXia, Cai Yuan. Astronomical Forcing of Origins of Eocene Carbonate-bearing Fine-grained Sedimentary Rock in Dongying Sag[J]. Acta Sedimentologica Sinica, 2024, 42(2): 688-700. doi: 10.14027/j.issn.1000-0550.2022.070
Citation: LUAN XuWei, KONG XiangXin, ZHANG JinLiang, JIANG Long, PENG YanXia, Cai Yuan. Astronomical Forcing of Origins of Eocene Carbonate-bearing Fine-grained Sedimentary Rock in Dongying Sag[J]. Acta Sedimentologica Sinica, 2024, 42(2): 688-700. doi: 10.14027/j.issn.1000-0550.2022.070
  • 细粒沉积岩是指粒径小于62.5 µm的颗粒组成的岩石,其主要成分包括黏土矿物、粉砂、碳酸盐、有机质等。其中,含碳酸盐细粒沉积岩是指碳酸盐物质的含量占总成分的20%~25%以上的细粒沉积岩[13],是古气候信息的记录者[4]。随着页岩油气勘探的兴起,对细粒沉积岩的物质来源和成因研究成为了热点[5]。我国陆相盆地细粒沉积岩多以发育碳酸盐矿物为特征,近年来先后在济阳坳陷、泌阳凹陷、束鹿凹陷、沧东凹陷和潜江凹陷等区域开展陆相页岩油研究,这些盆地均以含碳酸盐细粒沉积岩作为页岩油赋存载体[67]。湖相碳酸盐的形成与水介质环境、气候和物源变化关系密切[8],因而细粒岩中碳酸盐物质的聚集特征变化较多[3],需要对其成因和演化规律开展研究。

    1941年,塞尔维亚学者米兰科维奇提出,在其他天体影响下,地球在自转和公转过程中,轨道参数会发生(准)周期性变化,从而驱动太阳辐射在不同纬度和季节的变化,称为米兰科维奇理论[911]。Hays et al.[12]研究了45万年以来南半球深海沉积物,采用沉积物中的氧同位素(δ18O)作为替代指标,对其进行频谱分析,从中获得了23 kyr岁差周期、42 kyr倾角周期和100 kyr偏心率周期这三个与气候变化紧密相关的信号,揭示了地球轨道周期性变化是导致冰期—间冰期交替出现的原因,验证了沉积地层可以响应地球轨道周期的变化。近年来,米兰科维奇理论在对地质历史时期沉积记录的研究中得到了普遍的认可和广泛的应用,人们从石笋[13]、细粒沉积岩[14]、冰芯[15]等地球物质中都提取出了米兰科维奇旋回信号,其中细粒沉积岩是较为理想的一类研究对象。研究表明地球轨道参数(偏心率、倾角和岁差)可以表达地球气候在局部和全球尺度上万年到百万年的变化。

    地球轨道周期变化对沉积记录影响是因为调控了太阳的辐射变化,从而影响了地球的气候周期性变化[16]。地球轨道参数偏心率的变化导致地球公转轨道面在近圆形和椭圆形之间变化,偏心率越小,气候变化越不明显,反之,偏心率越大则气候变化越明显。地球从近日点公转到远日点的过程中,岁差周期性的变化控制地表气候的变化[11,1718]。Eldrett et al.[19]在美国西部内陆海道白垩纪沉积的研究中发现,岁差周期内日照量最小时沉积泥岩,日照量最大时沉积灰岩。Locklair et al.[20]、Ma et al.[21]对美国西部内陆盆地白垩系Niobrara组泥灰岩地层的研究发现,整个Niobrara组表现出从上Turonian到下Campanian的沉积韵律,并记录了与偏心率、倾角和岁差相关的轨道驱动力,且电阻率被认为与天文轨道驱动作用下的碳酸盐矿物含量相关,较高的电阻率值对应富碳酸盐层段。Noorbergen et al.[22]研究发现美国蒙大拿州东北部下古新统河流系统中主要煤层的泥炭形成是由100 kyr偏心率相关的气候旋回所驱动的,当季节变化增强时,主要泥炭形成阶段结束,并在此研究基础上建立了100 kyr偏心率和20 kyr岁差旋回共同驱动泥炭层沉积的两种概念模型。

    东营凹陷发育大套连续的湖相细粒沉积岩,受地质构造作用影响小,对气候变化更为敏感,适合开展天文旋回信号的提取和识别工作。前人在该区的天文旋回信号的识别研究工作中取得了有益进展。姚益民等[2324]的研究表明,渤海湾盆地油气区沙河街组三段和四段的火山岩同位素绝对年龄是42.4 Ma。金忠慧等[14]以东营凹陷FY1井自然伽马(GR)测井曲线作为天文旋回地层学分析的替代指标,揭示了沙四上纯上亚段岩性及岩性组合的变化与38 kyr的天文旋回有较好的对应。Jin et al.[25]采用Average Spectral Misfit(ASM)和相关系数(COCO)等统计方法,通过将观测到的沉积旋回拟合到天文周期,以确定最佳沉积速率,并以100 kyr的轨道调谐为基础的沉积噪音模型DYNOT和ρ1曲线重建了东营凹陷沙四上纯上亚段到沙三下亚段沉积时期相对湖平面变化曲线。孙善勇等[26]识别出东营凹陷牛页1井沙四上亚段地层中记录的米兰科维奇旋回,发现岩相旋回变化主要受控于偏心率和岁差参数,405 kyr长偏心率旋回分为干冷和暖湿两个半旋回。同时,岁差对地球气候产生的影响受到偏心率的调控。然而,前人对该区域富集含碳酸盐细粒沉积岩的原因及其分布规律尚不明确,对细粒碳酸盐的形成与天文旋回之间的关系研究不足,还需进一步探讨。

    本文以东营凹陷FY1井沙四上亚段到沙三下亚段的地层为研究对象,利用旋回分析的方法,识别出稳定可靠的米兰科维奇旋回信号,明确米兰柯维奇旋回信号与细粒沉积岩中碳酸盐物质的响应特征,探究该研究区碳酸盐质细粒沉积岩的形成原因。

  • 渤海湾盆地包括北京、天津两市和河北、山东、河南、辽宁四省的一部分及渤海海域。济阳坳陷为渤海湾盆地的一级构造单元,位于盆地东南部(图1a),是一个充满湖相序列的次盆地,坳陷面积29 000 km2,东临垦东—青坨子凸起,东南临鲁西隆起,西北临城宁隆起。东营凹陷位于济阳坳陷南部,凹陷东西向宽90 km,南北向宽65 km,面积约5 700 km2[2729]。梁家楼现河构造带、石村断裂带、陈官庄王家沟断裂带、胜北、永北断裂带将东营凹陷划分为利津洼陷、民丰洼陷、牛庄洼陷、博兴洼陷四个亚凹陷(图1b)。

    Figure 1.  Geological setting of Dongying Sag

    渤海湾盆地是我国东部最大的新生代断陷湖盆,古近系地层剖面完整,分布连续,厚度可观。沙河街组是一套深湖至半深湖相深灰色泥岩夹层砂岩。沙河街组厚度在2 000 m以上,可划分为四段,其中沙四段和沙三段是目前主要的油气源岩。FY1井位于东营凹陷博兴洼陷(图1b),该井具有相对完整的沙四上亚段和沙三下亚段地层。前人通过火山灰定年[2324],地磁测年[30]等方法校正了济阳坳陷地区地层年代(图1c)。

  • 自然伽马测井曲线(GR)与黏土和有机质的含量有很好的对应,而黏土和有机质的含量又与气候变化引起的海或湖水位的波动和陆源碎屑的输入有关[31]。GR高值指示高含量的黏土和有机质,对应温暖的气候[32]。因此,自然伽马测井曲线可以作为古气候指示物,建立天文时间尺度。自然伽马测井数据由胜利油田测井公司采集,所有岩石样品的分析测试由胜利油田勘探开发研究院完成。

  • 陆相地层具有非均质性强,沉积速率不稳定等特点,排除地质构造活动或不稳定事件造成的干扰信号,对于识别出真正的米兰科维奇旋回信号尤为重要。常通过去极值,去趋势等数据预处理方式,将地质记录中的噪音信号去除。通过分段频谱分析的方式,进行沉积速率匹配,提高米兰科维奇旋回信号识别的准确性。具体处理方式如下。

    (1) 去极值,剔除一组数据的奇异点。

    (2) 插值。剔除奇异点后,对GR测井序列进行线性插值,均匀采样率为0.125 m。

    (3) 去除趋势。为了减少趋势的干扰,对GR测井数据进行了35%加权平均操作[33]

    采用MTM方法对GR测井系列进行频谱分析[34]。此外,对GR测井序列进行快速傅里叶变换(FFT)谱图[35],跟踪不同沉积堆积速率下的旋回频率变化,采用旋回长度比法确定了沉积旋回与地球轨道参数的关系。利用高斯带通滤波器提取38.7 kyr倾角周期,然后作为节拍器建立天文时间标尺。以上数据处理和计算方法基于AcycleV2.4软件完成[36]

  • 细粒沉积岩的沉积作用的实质是反映细颗粒物的来源与沉积形式,包括物理作用、生物作用和生物化学作用等[7]。物理作用是细粒岩沉积构造的重要形成原因,纹层状构造、弱纹层状构造、块状构造、透镜状构造,对应物理作用由弱变强,水动力由小增大,沉积时期水体由稳定到不稳定[6,37]。生物作用指生物体本身以骨骼堆积的方式形成细粒沉积岩。而生物化学作用是指生物通过新陈代谢的方式影响水体中的化学物质的变化,在盆地内形成自生矿物并堆积[38]。在温暖湿润的气候背景下,光合作用增强,浮游藻类和光合细菌生长繁茂,在短期内可勃发,这些浮游藻类和细菌不断从水中萃取CO2来进行新陈代谢,化学平衡从HCO3-向CO32-的方向移动,形成利于方解石结晶的微环境[6,39]

  • 近年来,许多学者将无机物质含量、TOC含量、沉积构造特征等用作细粒岩岩相划分的依据[3,40]。综合含碳酸盐细粒沉积岩发育的沉积构造和矿物组分,将东营凹陷含碳酸盐细粒沉积岩分为纹层状泥质灰岩、透镜状泥质灰岩、纹层状灰质泥岩、弱纹层状灰质泥岩和块状泥岩。

    纹层状泥质灰岩岩心以灰色为主色调,其纹层特征明显,具有明显亮暗相间的特征(图2a)。镜下可以观察到方解石纹层(图2e),包括微亮晶方解石和泥晶方解石(31%~88%,平均为53.5%)。透镜状泥质灰岩在岩心上同样呈现纹层状,需要在显微镜下才能加以区分。镜下,灰白色碳酸盐透镜体与黑色泥质层垂向叠置,水平延伸。这些孤立的碳酸盐透镜体的主要组成物质是泥晶和微亮晶方解石(29%~52%,平均为40.5%),泥质层中的主要物质组分是黏土、石英、白云石(图2f,g)。纹层状灰质泥岩岩心以深灰色为主色调,其纹层特征明显,具有明显亮暗相间的特征(图2b)。镜下可以观察到方解石纹层,主要为微晶方解石和泥晶方解石。浅色的方解石纹层和深色的富有机质黏土纹层相间,在垂向上高频互层,纹层较为平直(图2h)。弱纹层状灰质泥岩岩心呈深灰色,纹层特征不明显(图2c)。镜下,主要发育均质纹层和水平纹层,其主要成分为黏土(21.0%~62.0%,平均为37.6%)、方解石(5%~44%,平均为31.5%)和长石(1%~13%,平均为3.7%),由于纹层间的物质组分较为接近,因此,其纹层特征不明显(图2i)。块状泥岩在岩心上呈灰色,无纹层(图2d)。镜下碳酸盐矿物、黏土矿物、陆源碎屑矿物均匀混合,其中黏土含量较高,杂乱堆积无定向,层理不发育(图2j)。

    Figure 2.  Core and thin section data for well FY1, Dongying Sag

    研究区沙四上纯上亚段以富碳酸盐矿物灰岩相和富陆源碎屑矿物泥岩相交替发育,经历了块状—透镜状—弱纹层状—纹层状的沉积构造纵向演化过程,有机质丰度由低变高又降低,反映了水体由浅变深又变浅的过程。沙三下亚段同样以富碳酸盐矿物灰岩相和富陆源碎屑矿物泥岩相交替发育,经历块状—弱纹层状—纹层状的沉积构造纵向演化过程,有机质丰度由低变高又降低,反映了水体由浅变深又变浅的过程。但相较于沙四上纯上亚段,富碳酸盐矿物的泥质灰岩含量减少,富黏土矿物的灰质泥岩含量有所增加。反映整体水深增大,物源供给速度加快。

  • 根据Laskar的解决方案,计算出45~40 Ma北纬37°,东经119°(东营凹陷沙河街组形成时期经纬度)夏季平均日照量曲线,采样间隔1 kyr,并对所得曲线进行频谱分析,得到频谱图(图3a):东营凹陷45~40 Ma期间的主要天文周期为405 kyr、125 kyr、96.9 kyr、51.7 kyr、40.1 kyr、38.7 kyr、23.2 kyr、22.0 kyr、18.7 kyr。其中405 kyr(E1)、125 kyr(E2)和96.9 kyr(E3)属于偏心率周期,51.7 kyr(O1)、40.1 kyr(O2)和38.7 kyr(O3)属于倾角周期,23.2 kyr(P1)、22.0 kyr(P2)和18.7 kyr(P3)属于岁差周期。分别对研究区整段地层的GR测井数据进行频谱分析和快速傅里叶转换,得到频谱图(图3b)和FFT谱图(图3c)。

    Figure 3.  Spectrum analysis

    由于研究区不同层位的沉积环境不同,为减少不同沉积环境中因沉积速率不同所带来的影响而引起分析结果的不准确,故结合GR测井曲线的变化和岩性变化将FY1井沙三下亚段到沙四上亚段地层分为四段(3 050~3 160 m、3 160~3 300 m、3 300~3 440 m、3 440~3 595 m)。对以上四个地层进行频谱分析(图3d)。在第一段地层中(3 050~3 160 m),11.5 m、8.8 m、4.7 m、3.6 m、2.1~2.0 m、1.7 m的波长约为:125∶94.5∶51.6∶39.6∶23.1~22.0∶18.7,分别为E2、E3、O1、O3、P1-P2和P3的天文周期。在第二段地层中(3 160~3 300 m),10.3 m、7.9 m、4.2 m、3.2 m、1.9~1.8 m、1.5 m的波长约为126.4∶96.9∶51.5∶39.3∶23.3~22.1∶18.4,分别为E2、E3、O1、O3、P1-P2和P3的天文周期。在第三段地层中(3 300~3 440 m),12.5 m、9.5 m、5.1 m、3.8 m、2.3 m、1.8 m的波长约为127.2∶96.6∶51.9∶38.7∶23.4∶18.3,分别为E2、E3、O1、O3、P1和P3的天文周期。在第四段地层中(3 440~3 595 m),20 m、15 m、8.1 m、6.3~6.1 m、3.7~3.5 m、2.9 m的波长约为126.9∶95.2∶51.4∶40~38.7∶23.5~22.2∶18.4,分别为E2、E3、O1、O2-O3、P1-P2和P3的天文周期。据此计算出第一段地层的沉积速率为9.1 cm/kyr(11.5 m/125 kyr),第二到第四段地层的沉积速率分别为8.15 cm/kyr,9.83 cm/kyr,15.76 cm/kyr。不同地层沉积速率的变化与FFT谱图(图3c)的结果一致。对比四段地层的频谱分析图所识别出的米兰科维奇旋回信号(图3d),分别提取出每段地层中周期为38.7 kyr的天文旋回曲线(图4)。

    Figure 4.  38.7 kyr time/depth conversion diagram

  • 时深转换是旋回地层学中建立天文年代标尺的关键。通过时深转换建立高精度的和连续的天文地质年代,是地质定年的新途径。地球的轨道受金星和木星的轨道的近日点影响,产生了占主导地位的高振幅405 kyr偏心率长周期。由于木星质量非常大,保证了405 kyr偏心率长周期在过去几亿年的稳定性[41]。以沙三下和沙四上亚段火山测定年龄42.4 Ma为基准[2324],通过计数的方式确定38.7 kyr的GR滤波曲线的顶底年龄是40.1 Ma和45.4 Ma,最终将38.7 kyr的GR滤波曲线调谐到405 kyr理论曲线上,实现滤波曲线由深度域向时间域的转化,并建立东营凹陷沙四上亚段到沙三下亚段的“浮动”天文年代标尺(图4)。通过上述识别出的天文旋回,发现东营凹陷沙四上亚段到沙三下亚段共存在137个38.7 kyr的倾角天文旋回,共持续5.3 Myr,其中沙三下亚段存在59.25个38.7 kyr的倾角天文旋回,持续2.29 Myr;沙四上亚段存在77.75个38.7 kyr的倾角天文旋回,持续3.01 Myr(图4)。与Shi et al.[30]利用磁化率曲线作为天文旋回分析的替代指标所测出的沙三下亚段沉积持续时间为1.97±0.2 Myr,与金忠慧等[14]利用GR测井曲线作为天文旋回分析的替代指标所测得的沙四上亚段沉积持续时间为3 Myr是相吻合的。

  • 地球化学元素分析是深时古气候,古环境恢复的重要判别标准。其中,Sr/Ba值可以反映古盐度,值越大,水体盐度越大,水越浅[42]。碳酸盐中的Sr/Ba之所以能反应气候变化,是因为湖泊中Sr的碳酸盐溶解度比Ba2+的碳酸盐溶解度大,在湖水蒸发浓缩的过程中,Ba2+往往先沉淀,Sr后析出,故Sr/Ba上升指示湖泊盐度增加,气候干旱;下降指示湖泊盐度降低,气候湿润[43]

    以FY1井3 229~3 278.5 m为例,该段地层TOC含量介于2%~4%,富有机质,碳酸盐含量增多(图5)。天文旋回通过影响气候变化控制了湖相泥页岩的沉积,探究东营凹陷古近系始新统沙河街组泥页岩中所记录的天文旋回与沉积之间的关系。结合18.7 kyr岁差、125 kyr短偏心率天文周期曲线与细粒岩中碳酸盐矿物进行对比,可以发现18.7 kyr岁差旋回与细粒岩中碳酸盐矿物变化摆动趋势一致,推测地球轨道参数岁差旋回驱动气候的变化控制了泥页岩的沉积作用。

    Figure 5.  Response of earth orbit parameters in well FY1

    地球轨道参数通过影响气候进而改变沉积环境[16,44],偏心率的变化指示了地球绕太阳公转轨道面的变化,进而影响日照量的变化。偏心率变大,地球绕太阳公转轨道由近圆形向椭圆形变换,偏心率变小,地球绕太阳公转轨道由椭圆形向近圆形变换,但偏心率周期对日照量的直接影响较小,通常小于1%[11,17]。偏心率的变化也会影响季风周期的调节,偏心率通过调控气候岁差的变幅造成季风的周期性变化[4546]。石巨业[47]在对东营凹陷地区古气候的研究中,通过古气候指数C、Fe/Mn和矿物含量等指标与偏心率轨道参数进行比对,发现偏心率到达极大值点处时,气候整体较为暖湿;偏心率到达极小值点处时,气候整体较为干冷。研究的结果中可以发现GR极大值与短偏心率的极大值相对应,同时对应低Sr/Ba(图5),GR高值对应高含量的黏土和有机质,Sr/Ba低值对应低盐度,指示了水体深的沉积环境。再次验证了该研究区目标层段短偏心率极大值点处于气候温暖湿润时期。相反,短偏心率极小值点处,GR低值对应低含量的有机质,同时对应高Sr/Ba,指示水体浅的沉积环境(图5)。岁差周期引起的日照量变化在南北半球刚好相反[10,19,22],根据岁差与碳酸盐矿物含量的变化(图5),得到东营凹陷中始新统时期岁差与日照量的对应关系,即在北半球,当气候岁差的极小值对应冬至点处于远日点时期,此时日照量较小;当气候岁差的极大值对应夏至点处于远日点时期,此时日照量较大。

  • 综上认为125 kyr短偏心率周期对日照量有影响但不显著,但对季风有明显的调控作用,进而影响降水。降水减少时,湖盆水体下降,物理沉积作用加强,对应块状、透镜状、弱纹层状沉积构造;降水增多时,湖盆水体上升,物理沉积作用减弱,对应纹层状沉积构造。18.7 kyr岁差周期对日照量影响显著,进而影响浮游藻类和光合细菌的生命活动。日照量增多时,浮游藻类和光合细菌的数量增多;日照量减少时,浮游藻类和光合细菌的数量减少。结合研究区含碳酸盐细粒沉积岩岩石学特征,根据上述125 kyr偏心率、18.7 kyr岁差周期地质响应特征,建立如下天文周期约束下含碳酸盐细粒沉积岩沉积演化模式(图6)。

    Figure 6.  Sedimentary model of carbonate⁃bearing fine⁃grained sedimentary rocks under astronomical constraints

    第一阶段,短偏心率和岁差都处在极小值点处时,地球绕太阳公转轨道面为近似圆形(图6a),地球到达远日点处时距离太阳最近,此时太阳直射地球南半球,地球北半球接收到的日照量少于南半球,受季风气候的影响小,降水减少,地球北半球气候表现为寒冷干燥。降水量远远小于蒸发量,湖盆水体下降,沿岸的陆源碎屑物质沿着坡面滑落到水体中,为沉积提供物质保障。此阶段中湖盆内水体较浅,水体环境动荡。因此,该阶段主要沉积块状泥岩相(表1)。

    阶段地球轨道参数特点沉积作用类型碳酸盐含量岩相类型
    125 kyr短偏心率18.7 kyr岁差
    1极小值点处极小值点处物理作用块状泥岩
    2极小值点处极大值点处物理作用生物化学作用透镜状泥质灰岩
    3极大值与极小值之间极小值点处物理作用弱纹层状灰质泥岩(靠近短偏心率极小值) 与纹层状灰质泥岩组合(靠近短偏心率极大值)
    4极大值与极小值之间极大值点处物理作用生物化学作用透镜状泥质灰岩(靠近短偏心率极小值) 与纹层状泥质灰岩组合(靠近短偏心率极大值)
    5极大值点处极大值点处物理作用生物化学作用纹层状泥质灰岩
    6极大值点处极小值点处物理作用纹层状灰质泥岩

    Table 1.  Corresponding relationship between earth orbit parameters and rock

    第二阶段,短偏心率略微增加,但仍处在极小值点处附近,地球绕太阳公转轨道面为近圆形,相较第一阶段更扁(图6b),由于岁差增大,太阳此时直射地球北半球,北半球接收到的日照量增大,因此,第二阶段与第一阶段相比,地球北半球温度升高,第二阶段的降水仍然较少,气候表现为炎热干燥。湖盆水体温度升高,浮游藻类和光合细菌逐渐复苏,形成利于方解石结晶的微环境[6,39],在这一阶段,湖盆内水体较浅,水体环境依旧较为动荡,沉积构造以透镜状为主,该阶段主要沉积透镜状泥质灰岩相(表1)。

    第三阶段,短偏心率继续增大,地球绕太阳公转轨道面进一步向椭圆形变换(图6c),地球到达远日点处时离太阳的距离进一步增大。岁差减小,太阳直射点由北半球移动到南半球。在这一阶段中,地球北半球接收到的日照量相较于第二阶段减少,湖盆水体温度降低,浮游藻类和光合细菌的生长受到抑制,生物化学作用减弱,季风气候的影响进一步增加,降水也随之增多,湖盆水体开始上升,该阶段以弱纹层状灰质泥岩(靠近短偏心率极小值)与纹层状灰质泥岩(靠近短偏心率极大值)组合为主(表1)。

    第四阶段,短偏心率继续增大,地球绕太阳公转轨道面变为近椭圆形(图6d),地球到达远日点处时距离太阳越来越远。岁差增大,太阳直射点由南半球移动到北半球,因此,地球北半球的日照量增加,湖盆水体温度也升高,季风气候作用进一步增强,受季风气候所带来的降水增多,气候表现为温暖湿润。此阶段处于浅湖向深湖环境的过渡中,水动力环境减弱导致沉积构造以纹层状为主。由于水体温度的升高,生物化学作用增强,浮游藻类和细菌逐渐复苏,其新陈代谢作用再次形成有利于方解石结晶的微环境。该阶段的主要沉积岩相为透镜状泥质灰岩(靠近短偏心率极小值)与纹层状泥质灰岩两种岩相(靠近短偏心率极大值)(表1)。

    第五阶段,短偏心率增大到极大值点处附近,地球绕太阳公转轨道面由近圆形逐渐变为椭圆形(图6e),地球到达远日点处时距离太阳更远。岁差位于极大值点处,太阳直射地球北半球,地球北半球温度升高,受季风气候影响大,降水增多,气候表现为温暖湿润。降水量远大于蒸发量,湖盆水体快速上升。湖水温度升高,浮游藻类和光合细菌快速生长繁殖,光合作用增强,生物化学作用增强,该阶段处于深水环境,水动力弱,岩相类型表现为纹层状泥质灰岩(表1)。

    第六阶段,短偏心率增大到极大值点处,地球绕太阳公转轨道面为椭圆形(图6f),但由于岁差减小,太阳直射点由北半球移动到南半球,导致北半球日照量减少。此阶段气候特点为冷湿,湖盆水体温度降低,浮游藻类和光合细菌的生长受到抑制,生物化学作用减弱,该阶段仍处于深水环境,水动力弱,主要沉积岩相为纹层状灰质泥岩(表1)。

  • (1) 基于矿物组成、沉积构造等特征将东营凹陷湖相细粒沉积岩划分为五种岩相,分别为纹层状泥质灰岩、透镜状泥质灰岩、纹层状灰质泥岩、弱纹层状灰质泥岩以及块状泥岩。

    (2) 东营凹陷沙四上亚段到沙三下亚段共存在137个38.7 kyr的倾角天文旋回,共持续5.3 Myr,其中沙三下亚段存在59.25个38.7 kyr的倾角天文旋回,持续2.29 Myr;沙四上亚段存在77.75个38.7 kyr的倾角天文旋回,持续3.01 Myr。

    (3) 从天文因素的角度出发,发现18.7 kyr岁差旋回与细粒岩中碳酸盐矿物变化摆动趋势一致,岁差控制日照量的变化,同时又受偏心率的调控。地球轨道参数岁差旋回和偏心率旋回共同驱动气候的变化控制了含碳酸盐细粒沉积岩的沉积作用,在岁差极大值点处或偏心率极小值处,以灰岩沉积为主;反之,则以泥岩沉积为主。

Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return