Advanced Search
Volume 43 Issue 2
Apr.  2025
Turn off MathJax
Article Contents

WANG Jun, JIANG WuLong, YU YaLan, HUA ShiHao, KONG FanHao, YUAN YuJie, WANG ShiYan. Depositional Environment of the Dagushi Formation, Mesoproterozoic Xiong’er Group, Southern North China Block: Evidence from geochemical analysis[J]. Acta Sedimentologica Sinica, 2025, 43(2): 423-438. doi: 10.14027/j.issn.1000-0550.2023.012
Citation: WANG Jun, JIANG WuLong, YU YaLan, HUA ShiHao, KONG FanHao, YUAN YuJie, WANG ShiYan. Depositional Environment of the Dagushi Formation, Mesoproterozoic Xiong’er Group, Southern North China Block: Evidence from geochemical analysis[J]. Acta Sedimentologica Sinica, 2025, 43(2): 423-438. doi: 10.14027/j.issn.1000-0550.2023.012

Depositional Environment of the Dagushi Formation, Mesoproterozoic Xiong’er Group, Southern North China Block: Evidence from geochemical analysis

doi: 10.14027/j.issn.1000-0550.2023.012
Funds:

National Key Research and Development Program 2020YFA0714803

Yunnan Fundamental Research Projects 202101AU070132

“Double First-class” Projects of Yunnan University C176220100135

  • Received Date: 2022-08-01
  • Accepted Date: 2023-03-28
  • Rev Recd Date: 2023-02-11
  • Available Online: 2023-03-28
  • Publish Date: 2025-04-10
  • Objective The Dagushi Formation of the Mesoproterozoic Xiong’er Group is the earliest sedimentary unit overlying the metamorphic crystalline basement at the southern margin of the North China Craton. Studies of the depositional environment and formation processes are highly significant for an understanding of the breakup of the Columbia supercontinent and the sedimentary environment and tectonic setting of the early Xiong’er Group. However, systematic research on the sediment provenance and paleoenvironment of the Dagushi Formation is still lacking. Methods The provenance, sedimentary environment and tectonic setting of the Dagushi Formation were studied by analysis of major- and trace elements in the Dagushi Formation of the Xiong’er Group, Xiaogoubei area, Jiyuan, Henan Province. Results For the major elements, the results show that the fine-grained clastic rocks of the Dagushi Formation are close to their source, with the compositional maturity gradually decreasing upwards from the bottom. From bottom to top, the sediments are mainly erosional products of a mixture of mafic and felsic rocks, gradually changing from granites to felsic volcanic rocks, then to intermediate rocks. The composition of the ancient sediments in the upper member gradually increases. The Dagushi Formation was deposited in a warm, humid climate, with evidence of several climate fluctuations during that time. Analysis of trace elements and REE show that the lower Dagushi Formation was formed in a relatively stable tectonic setting, and that the middle and upper segments were formed in an active tectonic setting. Conclusions Together with the evidence from previous studies, we conclude that the transition of sediment source, climate and tectonic environment during the deposition of the Dagushi Formation of the Xiong’er Group was associated with crust activation and associated tectono-thermal events. A mantle plume uplifted and activated the crust, gradually developing the southern margin of the North China Craton into an active tectonic setting. The deposition of the Dagushi Formation occurred in a local depression. Early volcanism of the Xiong’er Group provided the sedimentary provenance for the Dagushi Formation. This study provides new evidence for a better understanding of the evolution of Early Mesoproterozoic tectonism and deposition in the North China Craton.
  • [1] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627.
    [2] Taylor S R, McLennan S M. The continental crust: Its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford, UK: Blackwell Scientific Publications, 1985: 1-312.
    [3] 刘本立. 地球化学基础[M]. 北京:北京大学出版社,1994:186-187.

    Liu Benli. Geochemical basis[M]. Beijing: Peking University Press, 1994: 186-187.
    [4] Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182.
    [5] McLennan S M, Taylor S R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends[J]. The Journal of Geology, 1991, 99(1): 1-21.
    [6] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650.
    [7] 代辉,钟摇,熊璨,等. 重庆云阳地区中侏罗世新田沟组底部细粒碎屑岩地球化学特征及意义[J]. 矿物岩石,2021,41(1):32-43.

    Dai Hui, Zhong Yao, Xiong Can, et al. The geochemistry characteristics and significance of fine-grained clastic rocks from the Xintiangou Formation in Yunyang county, Chongqing[J]. Journal of Mineralogy and Petrology, 2021, 41(1): 32-43.
    [8] 赵太平,徐勇航,翟明国. 华北陆块南部元古宙熊耳群火山岩的成因与构造环境:事实与争议[J]. 高校地质学报,2007,13(2):191-206.

    Zhao Taiping, Xu Yonghang, Zhai Mingguo. Petrogenesis and tectonic setting of the Paleoproterozoic Xiong'er Group in the southern part of the North China Craton: A review[J]. Geological Journal of China Universities, 2007, 13(2): 191-206.
    [9] 庞岚尹,祝禧艳,胡国辉,等. 华北克拉通南缘中:新元古代年代地层格架和沉积演化过程研究的新进展[J]. 地层学杂志,2021,45(2):180-195.

    Pang Lanyin, Zhu Xiyan, Hu Guohui, et al. Advances in the study of Meso-Neoproterozoic stratigraphic chronology and sedimentary evolution in the southern margin of the North China Craton[J]. Journal of Stratigraphy, 2021, 45(2): 180-195.
    [10] 赵太平,邓小芹,胡国辉,等. 华北克拉通古/中元古代界线和相关地质问题讨论[J]. 岩石学报,2015,31(6):1495-1508.

    Zhao Taiping, Deng Xiaoqin, Hu Guohui, et al. The Paleoproterozoic-Mesoproterozoic boundary of the North China Craton and the related geological issues: A review[J]. Acta Petrologica Sinica, 2015, 31(6): 1495-1508.
    [11] 赵太平,庞岚尹,仇一凡,等. 古/中元古代界线:1.8Ga[J]. 岩石学报,2019,35(8):2281-2298.

    Zhao Taiping, Pang Lanyin, Qiu Yifan, et al. The Paleo-Mesoproterozoic boundary: 1.8Ga[J]. Acta Petrologica Sinica, 2019, 35(8): 2281-2298.
    [12] 胡受奚,林潜龙. 华北与华南古板块拼合带地质和成矿(以东秦岭)—桐柏为例)[M]. 南京:南京大学出版社,1988:215-229.

    Hu Shouxi, Lin Qianlong. The geology and metallogeny of the amalgamation zone between the North China Block and the South China Block: Taking Qinling-Tongbai as an example[M]. Nanjing: Nanjing University Press, 1988: 215-229.
    [13] 孙枢,张国伟,陈志明. 华北断块区南部前寒武纪地质演化[M]. 北京:冶金工业出版社,1985:90-149.

    Sun Shu, Zhang Guowei, Chen Zhiming. Precambrian geological evolution of the southern North China Block[M]. Beijing: Metallurgical Industry Press, 1985: 90-149.
    [14] 陈衍景,富士谷,强立志. 评熊耳群和西洋河群形成的构造背景[J]. 地质论评,1992,38(4):325-333.

    Chen Yanjing, Fu Shigu, Qiang Lizhi. The tectonic environment for the formation of the Xionger Group and the Xiyanghe Group[J]. Geological Review, 1992, 38(4): 325-333.
    [15] Lu S N, Yang C L, Li H K, et al. A group of rifting events in the terminal Paleoproterozoic in the North China Craton[J]. Gondwana Research, 2002, 5(1): 123-131.
    [16] Peng P, Zhai M G, Ernst R E, et al. A 1.78 Ga large igneous province in the North China Craton: The Xiong'er volcanic province and the North China dyke swarm[J]. Lithos, 2008, 101(3/4): 260-280.
    [17] Wang C M, He X Y, Carranza E J M, et al. Paleoproterozoic volcanic rocks in the southern margin of the North China Craton, central China: Implications for the Columbia supercontinent[J]. Geoscience Frontiers, 2019, 10(4): 1543-1560.
    [18] 赵太平,周美夫,金成伟,等. 华北陆块南缘熊耳群形成时代讨论[J]. 地质科学,2001,36(3):326-334.

    Zhao Taiping, Zhou Meifu, Jin Chengwei, et al. Discussion on age of the Xiong’er Group in southern margin of North China Craton[J]. Chinese Journal of Geology, 2001, 36(3): 326-334.
    [19] 徐勇航,赵太平,张玉修,等. 华北克拉通南部古元古界熊耳群大古石组碎屑岩的地球化学特征及其地质意义[J]. 地质论评,2008,54(3):316-326.

    Xu Yonghang, Zhao Taiping, Zhang Yuxiu, et al. Geochemical characteristics and geological significances of the Dagushi Formation siliciclastic rocks, the Paleoproterozoic Xiong’er Group from the southern North China Craton[J]. Geological Review, 2008, 54(3): 316-326.
    [20] 魏丹峰. 豫西济源地区中元古界大古石组物源示踪及其构造意义[J]. 能源与环保,2021,43(5):112-118,251.

    Wei Danfeng. Constrains on provenance and its tectonic implication of Mesoproterozoic Dagushi Formation in Jiyuan, western Henan province[J]. China Energy and Environmental Protection, 2021, 43(5): 112-118, 251.
    [21] 徐勇航,赵太平,陈伟. 华北克拉通南部古元古界熊耳群中海绿石的发现及其地质意义[J]. 沉积学报,2010,28(4):671-675.

    Xu Yonghang, Zhao Taiping, Chen Wei. The discovery and geological significance of glauconites from the Palaeoproterozoic Xiong’er Group in the southern part of the North China Craton[J]. Acta Sedimentologica Sinica, 2010, 28(4): 671-675.
    [22] 赵太平,原振雷,关保德. 豫晋陕熊耳群沉积岩夹层特征与沉积环境[J]. 河南地质,1998,16(4):22-33.

    Zhao Taiping, Yuan Zhenlei, Guan Baode. The characteristics and sedimentary environment of sedimentary interbeds of Xiong'er Group distributed in the juncture of Henan-Shanxi-Shaanxi provinces[J]. Henan Geology, 1998, 16(4): 22-33.
    [23] 韩菲,郑德顺,王昕,等. 河南济源地区中元古界熊耳群大古石组下段沉积相分析[J]. 河南理工大学学报(自然科学版),2021,40(5):45-55.

    Han Fei, Zheng Deshun, Wang Xin, et al. Analysis of sedimentary facies of the lower segment of Dagushi Formation in Mesoproterozoic Xiong’er Group in Jiyuan area, Henan province[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(5): 45-55.
    [24] Ding Q F, Jiang S Y, Sun F Y. Zircon U-Pb geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the eastern Kunlun orogen, NW China: Petrogenesis and Tectonic implications[J]. Lithos, 2014, 205: 266-283.
    [25] Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2014, 4: 1-51.
    [26] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
    [27] Sun F B, Zheng D S, Zuo P F, et al. Stratigraphy and zircon provenance of a Late Paleoproterozoic terrestrial sequence underlying the Xiong'er volcanics in the southern North China Craton[J]. Acta Geologica Sinica, 2022, 96(5): 1502-1515.
    [28] Zhou Y Y, Zhao T P, Sun Q Y, et al. Geochronological and geochemical constraints on the petrogenesis of the 2.6 -2.5 Ga amphibolites, low- and high-Al TTGs in the Wangwushan area, southern North China Craton: Implications for the Neoarchean crustal evolution[J]. Precambrian Research, 2018, 307: 93-114.
    [29] Zhou Y Y, Zhao T P, Sun Q Y, et al. Petrogenesis of the Neoarchean diorite-granite association in the Wangwushan area, southern North China Craton: Implications for continental crust evolution[J]. Precambrian Research, 2019, 326: 84-104.
    [30] Deng H, Kusky T, Polat A, et al. A Neoarchean arc-backarc pair in the Linshan massif, southern North China Craton[J]. Precambrian Research, 2020, 341: 105649.
    [31] 孙大中,李惠民,林源贤,等. 中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究[J]. 地质学报,1991,65(3):216-231.

    Sun Dazhong, Li Huimin, Lin Yuanxian, et al. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao mountains[J]. Acta Geological Sinica, 1991, 65(3): 216-231.
    [32] 张瑞英,张成立,第五春荣,等. 中条山前寒武纪花岗岩地球化学、年代学及其地质意义[J]. 岩石学报,2012,28(11):3559-3573.

    Zhang Ruiying, Zhang Chengli, Chunrong Diwu, et al. Zircon U-Pb geochronology, geochemistry and its geological implications for the Precambrian granitoids in Zhongtiao mountain, Shanxi province[J]. Acta Petrologica Sinica, 2012, 28(11): 3559-3573.
    [33] 赵凤清,李惠民,左义成,等. 晋南中条山古元古代花岗岩的锆石U-Pb年龄[J]. 地质通报,2006(4):442-447.

    Zhao Feng-qing, Li Huimin, Zuo Yicheng, et al. Zircon U-Pb ages of Paleoproterozoic granitoids in the Zhongtiao mountains, southern Shanxi, China[J]. Geological Bulletin of China, 2006, 25(4): 442-447.
    [34] 段庆松,宋会侠,杜利林,等. 古元古代全球静寂期岩浆活动:以华北克拉通南缘中条山~2.3 Ga横岭关花岗岩为例[J]. 地球科学,2020,45(9):3372-3385.

    Duan Qingsong, Song Hui-xia, Du Lilin, et al. The magmatic activity in Paleoproterozoic global magmatic quiescence: Take the ~2.3 Ga Henglingguan Granites from Zhongtiao mountains in the southern North China Craton as an example[J]. Earth Science, 2020, 45(9): 3372-3385.
    [35] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock che-mistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
    [36] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
    [37] 王良忱,张金亮. 沉积环境和沉积相[M]. 北京:石油工业出版社,1996:1-273.

    Wang Liangchen, Zhang Jinliang. Sedimentary environment and sedimentary facies[M]. Beijing: Petroleum Industry Press, 1996: 1-273.
    [38] 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.

    Song Mingshui. Sedimentary environment geochemistry in the Shasi section of southern ramp, Dongying Depression[J]. Journal of Mineralogy and Petrology, 2005, 25(1): 67-73.
    [39] 刘刚,周东升. 微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307-310,314.

    Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment:Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314.
    [40] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [41] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.
    [42] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
    [43] Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220.
    [44] 郑杰,阳正熙,刘石磊,等. 黔东北地区南华系两界河组CIA指数特征及意义[J]. 沉积与特提斯地质,2019,39(1):50-59.

    Zheng Jie, Yang Zhengxi, Liu Shilei, et al. The chemical alteration indexes and their significance for the Nanhuan Liangjiehe Formation in northeastern Guizhou[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(1): 50-59.
    [45] 王自强,尹崇玉,高林志,等. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论[J]. 地质论评,2006,52(5):577-585.

    Wang Ziqiang, Yin Chongyu, Gao Linzhi, et al. The character of the chemical index of alteration and discussion of subdivision and correlation of the Nanhua System in Yichang area[J]. Geological Review, 2006, 52(5): 577-585.
    [46] 张振凯,周瑶琪,彭甜明,等. 山东灵山岛莱阳群粉砂岩地球化学特征及意义[J]. 地球科学,2017,42(3):357-377.

    Zhang Zhenkai, Zhou Yaoqi, Peng Tianming, et al. Geochemical characteristics and signatures of siltstones from Laiyang Group at Lingshan Island, Qingdao, Shandong[J]. Earth Science, 2017, 42(3): 357-377.
    [47] 陈力为. 华北克拉通在Columbia超大陆中的古地理位置及古元古代岩墙群的构造环境研究[D]. 北京:中国科学院大学,2014.

    Chen Liwei. The paleogeographic position of North China Craton during the Columbia supercontinent period and tectonic setting of Paleoproterozoic dyke swarms[D]. Beijing: The University of Chinese Academy of Sciences, 2014.
    [48] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
    [49] Zhang S H, Liu S W, Zhao Y, et al. The 1.7 5-1.6 8 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen[J]. Precambrian Research, 2007, 155(3/4): 287-312.
    [50] Xiao L L, Liu F L, Chen Y. Metamorphic P-T-t paths of the Zanhuang metamorphic complex: Implications for the Paleoproterozoic evolution of the Trans-North China Orogen[J]. Precambrian Research, 2014, 255: 216-235.
    [51] Lu J S, Wang G D, Wang H, et al. Zircon SIMS U-Pb geochronology of the Lushan terrane: Dating metamorphism of the southwestern terminal of the Palaeoproterozoic Trans-North China Orogen[J]. Geological Magazine, 2015, 152(2): 367-377.
    [52] Hou G T, Santosh M, Qian X L, et al. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms[J]. Gondwana Research, 2008, 14(3): 395-409.
    [53] 庄育勋,王新社,徐洪林,等. 泰山地区早前寒武纪主要地质事件与陆壳演化[J]. 岩石学报,1997,13(3):313-330.

    Zhuang Yuxun, Wang Xinshe, Xu Honglin, et al. Main geological events and crustal evolution in Early Precambrian of Taishan region[J]. Acta Petrologica Sinica, 1997, 13(3): 313-330.
    [54] 李铁胜. 冀东太平寨—遵化新太古代古岛弧地体及其大陆生长[D]. 北京:中国科学院地质与地球物理研究所,1999.

    Li Tiesheng. Taipingzai-Zunhua Neo-Archaean island arc terrain and continental growth in eastern Hebei, North China[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS), 1999.
    [55] 周鼎武,张成立,刘良,等. 秦岭造山带及相邻地块元古代基性岩墙群研究综述及相关问题探讨[J]. 岩石学报,2000,16(1):22-28.

    Zhou Dingwu, Zhang Chengli, Liu Liang, et al. Synthetic study on Proterozoic basic dyke swarms in the Qinling orogenic belt and its adjacent block as well as a discussion about some questions related to them[J]. Acta Petrologica Sinica, 2000, 16(1): 22-28.
    [56] 彭澎,翟明国,张华锋,等. 华北克拉通1.8Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙交界地区为例[J]. 岩石学报,2004,20(3):439-456.

    Peng Peng, Zhai Mingguo, Zhang Huafeng, et al. Geochemistry and geological significance of the 1.8 Ga mafic dyke swarms in the North China Craton: An example from the juncture of Shanxi, Hebei and Inner Mongolia[J]. Acta Petrologica Sinica, 2004, 20(3): 439-456.
    [57] Zhao T P, Zhou M F, Zhai M G, et al. Paleoproterozoic rift-related volcanism of the Xiong’er Group, North China Craton: Implications for the breakup of Columbia[J]. International Geo-logy Review, 2002, 44(4): 336-351.
    [58] Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J]. Chemical Geology, 1981, 32(1/2/3/4): 139-154.
    [59] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
    [60] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
    [61] Cullers R L, Barrett T, Carlson R, et al. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A.[J]. Chemical Geology, 1987, 63(3/4): 275-297.
    [62] Condie K C. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2527-2531.
    [63] 杨守业,李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展,1999,14(2):164-167.

    Yang Shouye, Li Congxian. Research progress in REE tracer for sediment source[J]. Advances in Earth Science, 1999, 14(2): 164-167.
    [64] 许中杰,程日辉,王嘹亮,等. 闽西南地区晚三叠—中侏罗世沉积岩矿物和元素地球化学特征:对盆地构造背景转变的约束[J]. 岩石学报,2013,29(8):2913-2924.

    Xu Zhongjie, Cheng Rihui, Wang Liaoliang, et al. Mineralogical and element geochemical characteristics of the Late Triassic-Middle Jurassic sedimentary rocks in southwestern Fujian province: Constraints on changes of basin tectonic settings[J]. Acta Petrologica Sinica, 2013, 29(8): 2913-2924.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(6)

Article Metrics

Article views(15) PDF downloads(4) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-08-01
  • Revised:  2023-02-11
  • Accepted:  2023-03-28
  • Published:  2025-04-10

Depositional Environment of the Dagushi Formation, Mesoproterozoic Xiong’er Group, Southern North China Block: Evidence from geochemical analysis

doi: 10.14027/j.issn.1000-0550.2023.012
Funds:

National Key Research and Development Program 2020YFA0714803

Yunnan Fundamental Research Projects 202101AU070132

“Double First-class” Projects of Yunnan University C176220100135

Abstract: Objective The Dagushi Formation of the Mesoproterozoic Xiong’er Group is the earliest sedimentary unit overlying the metamorphic crystalline basement at the southern margin of the North China Craton. Studies of the depositional environment and formation processes are highly significant for an understanding of the breakup of the Columbia supercontinent and the sedimentary environment and tectonic setting of the early Xiong’er Group. However, systematic research on the sediment provenance and paleoenvironment of the Dagushi Formation is still lacking. Methods The provenance, sedimentary environment and tectonic setting of the Dagushi Formation were studied by analysis of major- and trace elements in the Dagushi Formation of the Xiong’er Group, Xiaogoubei area, Jiyuan, Henan Province. Results For the major elements, the results show that the fine-grained clastic rocks of the Dagushi Formation are close to their source, with the compositional maturity gradually decreasing upwards from the bottom. From bottom to top, the sediments are mainly erosional products of a mixture of mafic and felsic rocks, gradually changing from granites to felsic volcanic rocks, then to intermediate rocks. The composition of the ancient sediments in the upper member gradually increases. The Dagushi Formation was deposited in a warm, humid climate, with evidence of several climate fluctuations during that time. Analysis of trace elements and REE show that the lower Dagushi Formation was formed in a relatively stable tectonic setting, and that the middle and upper segments were formed in an active tectonic setting. Conclusions Together with the evidence from previous studies, we conclude that the transition of sediment source, climate and tectonic environment during the deposition of the Dagushi Formation of the Xiong’er Group was associated with crust activation and associated tectono-thermal events. A mantle plume uplifted and activated the crust, gradually developing the southern margin of the North China Craton into an active tectonic setting. The deposition of the Dagushi Formation occurred in a local depression. Early volcanism of the Xiong’er Group provided the sedimentary provenance for the Dagushi Formation. This study provides new evidence for a better understanding of the evolution of Early Mesoproterozoic tectonism and deposition in the North China Craton.

WANG Jun, JIANG WuLong, YU YaLan, HUA ShiHao, KONG FanHao, YUAN YuJie, WANG ShiYan. Depositional Environment of the Dagushi Formation, Mesoproterozoic Xiong’er Group, Southern North China Block: Evidence from geochemical analysis[J]. Acta Sedimentologica Sinica, 2025, 43(2): 423-438. doi: 10.14027/j.issn.1000-0550.2023.012
Citation: WANG Jun, JIANG WuLong, YU YaLan, HUA ShiHao, KONG FanHao, YUAN YuJie, WANG ShiYan. Depositional Environment of the Dagushi Formation, Mesoproterozoic Xiong’er Group, Southern North China Block: Evidence from geochemical analysis[J]. Acta Sedimentologica Sinica, 2025, 43(2): 423-438. doi: 10.14027/j.issn.1000-0550.2023.012
  • 碎屑岩是地球表层物质循环的重要组成部分,其成分、结构和沉积特征记录了与地壳演化相关的重要信息。沉积物中部分微量元素和稀土元素在搬运和沉积的过程中改变较小,可以有效地用来分析地壳成分和可能的物源区[12]。细粒碎屑沉积岩中,陆源沉积物约占70%,比大多数砂岩和碳酸盐岩含有更多的稀土元素,这些稀土元素主要来自细粒碎屑如黏土矿物等[2]。微量元素和稀土元素在沉积岩中的分布和分配关系与沉积环境密切相关,其赋存状态也在一定程度上受到后期成岩作用的影响[3]。因此,碎屑岩尤其是细粒碎屑岩的地球化学特征可以用来反演沉积物质来源、沉积过程中的古环境条件和大地构造背景[1,47]

    熊耳群(约1.80~1.75 Ga)是华北克拉通南缘在裂谷背景下发育的一套火山岩—沉积岩系,其以巨厚火山岩系为主,局部夹有陆源碎屑岩,露头较为连续且厚度大[89]。熊耳群火山岩记录了华北克拉通基底结晶之后最大规模的火山活动,其底部沉积岩是华北克拉通最早的沉积盖层,形成于前寒武变质基底到未变质盖层之间的重要转折期[1011]。目前,国内外学者对古/中元古代时间界线问题仍存争议:国际地层年代表将其置于1.60 Ga,而我国地层年代表将其置于1.80 Ga,因此熊耳期被归入中元古代[11]。前人对熊耳群的研究主要集中在火山岩系。不同学者对熊耳群岩系形成的大地构造背景有多种的看法,如安第斯型活动大陆边缘环境[12]、被动大陆边缘裂谷环境[13]和活动大陆边缘弧与裂谷环境并存[14]。越来越多的证据表明,熊耳群火山岩系形成于被动大陆边缘裂谷背景[8,15],与地幔柱作用引发的大火成岩省以及后续的非造山岩浆活动相关[1617],并标志着全球构造体制的重大转折[11]

    熊耳群中沉积岩夹层有河湖相砾岩、砂岩和泥岩,仅在局部地区发育[18]。针对熊耳群沉积岩的研究并不多,主要集中在熊耳群底部的大古石组下段[1920]和顶部的马家河组[21]。本文对豫西北济源小沟背地区熊耳群大古石组上部粉砂岩—泥岩进行了系统采样,基于其主量、微量元素和稀土元素分析结果,探讨了大古石组形成时期的沉积环境特征和可能的沉积物来源,并依据地球化学分析探讨了该时期的沉积环境及古气候条件,以及华北克拉通在中元古代早期的古构造背景。

  • 熊耳群形成熊耳—中条拗拉裂谷中,自下而上分为四个组:大古石组、许山组、鸡蛋坪组和马家河组[18]。华北克拉通南缘熊耳群中的火山岩系不整合覆盖于华北克拉通结晶基底上,厚度为3~7 km,主要由源于岩石圈富集地幔源区的火山熔岩组成,沉积岩以底部的大古石组和上部的马家河组为主[22]。华北克拉通南缘在熊耳群形成期间曾发生多次区域性构造升降运动,例如垣曲县—济源市和洛宁市—栾川县—汝州市一带的区域性沉降[23],此时相对隆升的华北克拉通结晶基底遭受剥蚀,裂谷内低洼处的凹陷盆地逐渐沉积成岩,形成了上覆于华北克拉通的第一套陆源碎屑岩——大古石组[20],这也是华北克拉通结晶基底上最早期、未变质的稳定沉积[23]

    大古石组以砂砾岩、砂质岩和泥质岩等碎屑岩为主,自下而上可分为三段[19]。下段与古元古界双房群呈角度不整合接触,底部砾石成分受下伏地层古元古界双房群岩性控制,主要为石英岩、混合岩、变质玄武岩等,由数个砂砾岩—砂岩—页岩的沉积韵律层构成;砂岩以正粒序层理为特征,碎屑颗粒主要为石英、长石,杂基为泥质或铁质等,主要为河流相沉积,其顶部夹有河漫滩沉积的紫红色页岩。中段以紫红色页岩—黄绿色泥岩为主,局部夹有灰色砂岩、粉砂岩,并发育不规则水平层理和小型交错层理,主要为湖泊相沉积。上段以河流相沉积为主,岩性主要为灰色中厚层砂岩,局部夹紫红色页岩及少量安山岩[8],碎屑颗粒除长石、石英外,偶见岩屑,胶结类型以钙质为主[19],局部发育下细上粗的反旋回沉积层序[20]

    前人对大古石组的研究主要集中在其中、下段[1920,23],而对整套地层仍缺乏系统性研究。因此,在前人的研究基础上,本研究选取济源小沟背、银河峡一带的大古石组上段作为研究对象(图1)。该区域大古石组上段主要岩性为紫红色中薄层中—细粒石英砂岩、粉砂岩、泥质粉砂岩和粉砂质泥岩,以发育水平层理为主,局部发育小型羽状交错层理(图2a~c),指示整体为氧化的滨—浅湖相沉积环境,水动力条件中等,水深时有变化且沉积中心时有摆动。研究采集了大古石组上段粉砂岩—泥岩样品共23件。薄片镜下整体显示了成分成熟度较低、分选较差(图2d~h),且常见铁质胶结(图2h,i),反映了陆表氧化沉积环境。本研究分析了其主量、微量和稀土元素组成,并结合前人数据绘制了相关元素的标准化图、物源判别图解、化学蚀变指数(CIA)趋势图等,藉此探讨了该时期盆地沉积环境特征和可能的沉积物源。

    Figure 1.  Geological sketch map of study area (modified from reference [23])

    Figure 2.  Outcrops of the sampling sites in the Dagushi Formation and thin sections of samples

  • 本研究中样品的主量、微量元素分析均在澳实分析检测(广州)有限公司完成。主量元素采用XRF(X射线荧光光谱法)测定,称取样品粉末(即<200目),将其与助熔剂Li2B4O7(四硼酸锂)混合后充分研磨。之后,将其转移到铂金坩埚中,利用XRF进行分析,分析精度及准确度优于5%。微量元素采用ICP-AES和ICP-MS进行测定,称取40 mg的样品粉末(<200目)放入密封的Teflon罐,使用氢氟酸—硝酸—高氟酸对样品粉末进行消解,利用稀盐酸过滤残余物质并进行稀释,利用ICP-AES和ICP-MS进行分析,分析精度及准确度为5%~10%。稀土元素采用ICP-MS测定,将称取的样品粉末(<200目)与硼酸锂熔融并均匀混合,置于1 025 ℃的马弗炉中一段时间(获得熔融物),取出后自然冷却,利用4%的硝酸进行溶解,最后利用ICP-MS进行分析,分析精度及准确度为5%~10%。具体实验分析流程见Ding et al.[24]

  • 大古石组细屑岩23个样品的主量元素氧化物测试数据如表1所示。SiO2含量介于49.61%~65.82%,平均值为56.46%,低于上地壳的平均值(Upper Continental Crust,UCC,SiO2=66.62%)。TiO2、Al2O3、Fe2O3、MnO、MgO、CaO、K2O、Na2O和P2O5的平均含量分别为0.73%、18.08%、7.89%、0.11%、3.41%、2.39%、4.07%、1.43%、0.16%。其中,样品的CaO、Na2O含量与上地壳相比较低,而TiO2、Al2O3、Fe2O3、MnO、MgO、K2O、P2O5含量高于上地壳。

    样品号SiO2Al2O3TFe2O3K2OMgONa2OP2O5TiO2MnOCaOLOI
    DGS-160.4016.667.453.413.051.960.150.680.102.194.32
    DGS-258.9717.705.123.512.503.020.160.560.103.544.77
    DGS-365.8215.575.932.712.432.780.290.750.071.202.78
    DGS-457.2117.777.984.493.001.060.160.700.092.215.08
    DGS-557.8517.627.704.193.171.400.160.680.112.174.76
    DGS-658.5717.207.383.903.071.560.170.670.102.454.68
    DGS-753.6017.197.013.933.221.360.210.690.175.627.08
    DGS-855.0317.488.003.973.301.190.160.690.144.005.99
    DGS-954.9618.578.074.283.471.140.170.710.123.265.50
    DGS-1054.7618.708.734.253.451.040.150.720.112.505.28
    DGS-1154.9419.008.974.223.611.140.150.740.102.034.96
    DGS-1256.8418.328.954.044.451.030.100.760.110.874.59
    DGS-1356.7518.878.803.943.801.400.140.760.101.244.43
    DGS-1456.4719.119.184.563.820.910.110.720.101.044.29
    DGS-1553.9319.8610.134.933.420.810.120.730.081.144.49
    DGS-1653.6920.1910.025.043.321.040.130.730.101.224.73
    DGS-1751.9621.1810.865.543.300.760.140.790.081.114.51
    DGS-1854.5620.179.214.753.561.400.170.810.091.404.20
    DGS-1955.3218.878.293.983.331.860.190.760.122.754.76
    DGS-2059.6515.324.652.722.142.870.210.520.125.555.87
    DGS-2158.8216.958.174.062.292.180.140.740.062.353.71
    DGS-2249.6116.7410.802.896.760.670.160.940.253.997.33
    DGS-2358.9816.759.044.393.870.240.150.890.111.104.28

    Table 1.  Major element composition (wt.%) of upper Dagushi Formation

  • 大古石组23个样品的微量元素地球化学测试结果如表2所示。将其用平均上地壳(UCC)元素进行标准化处理(图3a),发现Sr存在明显亏损,Pb存在轻微亏损,Rb元素存在明显富集,高场强元素Th和U有一定程度富集。

    样品号CsRbBaThUNbLaCePbPrSrNdZrHfSmEuYHoYbSc
    DGS-15.83173.50734.0013.903.2212.0050.2094.4015.3010.85113.5039.70193.005.007.111.3728.301.002.6816.70
    DGS-22.54159.00795.0013.752.2811.9039.5075.907.708.85146.0033.20462.0011.706.161.2827.300.972.7810.70
    DGS-32.69124.50492.0017.002.7621.3061.00124.0010.0014.25157.0051.70486.0012.508.991.7525.400.912.5513.10
    DGS-46.01215.00893.0017.603.1512.9075.70143.5014.6016.1577.1056.70206.005.309.611.8629.701.042.7518.40
    DGS-55.45194.50812.0015.702.8612.1053.20107.5013.9011.60104.5042.30194.005.007.611.5926.800.962.4917.20
    DGS-65.05188.00777.0015.402.9312.2052.70102.0013.5011.65116.0042.30209.005.707.471.5627.900.992.5817.10
    DGS-73.93192.50694.0021.504.3413.3058.10114.5012.3012.70112.5046.00454.0011.808.131.4932.501.143.2416.60
    DGS-85.06197.00709.0019.053.8613.5057.90112.0016.0012.65117.0045.80214.005.608.071.5430.901.092.8918.10
    DGS-95.34209.00714.0019.904.2214.0057.50111.0015.3012.55114.5045.60249.006.608.101.4831.701.123.0519.30
    DGS-106.68219.00750.0019.604.0014.3063.30120.5017.7013.50112.5048.80184.004.908.431.6031.201.092.9120.40
    DGS-117.75219.00752.0018.304.1513.9057.60113.0017.3012.45131.5045.00157.004.207.911.4830.101.072.8219.70
    DGS-1210.10224.00677.0013.502.1114.0036.7071.1012.707.8095.4027.8090.002.405.030.9220.300.721.9718.60
    DGS-139.06218.00712.0017.653.3615.3053.80107.0015.6011.85131.0043.10125.003.407.521.4027.000.992.6418.90
    DGS-1410.10247.00853.0015.703.2113.1047.8090.4017.3010.10111.0036.0097.002.706.391.1924.800.882.3419.30
    DGS-159.96264.00978.0019.604.1513.9064.50126.5020.2013.70123.0048.50102.002.908.191.5029.301.062.7621.10
    DGS-167.91253.00962.0017.653.9613.4062.60127.0017.3013.7088.1047.10116.003.207.541.2625.200.982.6619.60
    DGS-1710.95298.001 135.0024.404.0116.3064.00126.5021.4013.75110.0049.90110.003.008.911.6232.201.173.1322.70
    DGS-189.58257.00955.0019.903.6716.1060.70121.0017.7013.50146.5048.50314.008.108.581.5532.301.153.1620.50
    DGS-196.14193.00799.0018.103.1814.1050.90102.5017.0011.60154.5042.50319.008.107.811.5331.801.093.0418.80
    DGS-202.31111.50618.0011.302.3510.0037.6075.308.009.00160.5034.20356.008.906.551.3829.901.052.8111.70
    DGS-215.26206.00878.0011.502.2910.3037.5074.3019.008.18118.0030.50253.006.706.061.3628.300.962.5420.70
    DGS-221.18138.50442.007.312.318.9030.8065.403.807.9542.5031.40224.005.906.531.3330.801.153.1429.50
    DGS-235.00210.00944.008.682.0311.7036.6073.508.408.7326.3033.20189.005.006.481.3431.201.123.0527.80

    Table 2.  Trace element compositions (×10-6) of upper Dagushi Formation

    Figure 3.  (a) UCC⁃normalized trace element spidergrams (after reference [25]); (b) chondrite⁃normalized REE distributions (after reference [26])

  • 大古石组23个样品的稀土元素测试数据如表3所示。∑REE含量介于162.91×10-6~324.16 ×10-6,平均值为238.44×10-6,高于大陆上地壳(UCC)平均值(148.14×10-6)和澳大利亚后太古代页岩(PAAS)的平均值184.77×10-6,反映了样品相对富集稀土元素的特征。LREE/HREE值介于6.5~14.71,平均值为11.17。(La/Yb)N值介于7.04~19.75,平均值为13.66,表示轻重稀土元素分馏明显。(Gd/Yb)N值为1.79,显示重稀土元素分异不明显。REE球粒陨石标准化图(图3b)显示,大古石上段样品表现为轻稀土富集,重稀土相对平坦的配对模式,且有明显的δEu负异常。

    样品号LaCePrNdSmEuGdTbDyHoErTmYbLu
    DGS-150.2094.4010.8539.707.111.375.650.865.021.002.890.432.680.39
    DGS-239.5075.908.8533.206.161.284.970.794.790.972.890.442.780.42
    DGS-361.00124.0014.2551.708.991.756.270.854.640.912.620.372.550.41
    DGS-475.70143.5016.1556.709.611.866.870.955.321.042.860.422.750.43
    DGS-553.20107.5011.6042.307.611.595.990.854.850.962.700.382.490.38
    DGS-652.70102.0011.6542.307.471.566.140.864.920.992.750.392.580.40
    DGS-758.10114.5012.7046.008.131.496.490.935.631.143.260.473.240.52
    DGS-857.90112.0012.6545.808.071.546.320.905.441.093.030.442.890.45
    DGS-957.50111.0012.5545.608.101.486.370.935.581.123.270.453.050.47
    DGS-1063.30120.5013.5048.808.431.606.640.935.501.093.060.442.910.46
    DGS-1157.60113.0012.4545.007.911.486.120.895.251.072.990.432.820.45
    DGS-1236.7071.107.8027.805.030.924.040.603.600.722.050.291.970.29
    DGS-1353.80107.0011.8543.107.521.405.720.824.970.992.770.402.640.42
    DGS-1447.8090.4010.1036.006.391.194.920.734.330.882.460.352.340.37
    DGS-1564.50126.5013.7048.508.191.506.260.905.291.062.950.422.760.44
    DGS-1662.60127.0013.7047.107.541.265.270.774.770.982.820.402.660.43
    DGS-1764.00126.5013.7549.908.911.626.910.995.891.173.270.483.130.50
    DGS-1860.70121.0013.5048.508.581.556.600.955.591.153.300.473.160.49
    DGS-1950.90102.5011.6042.507.811.536.370.915.451.093.160.453.040.48
    DGS-2037.6075.309.0034.206.551.385.670.855.101.052.960.422.810.44
    DGS-2137.5074.308.1830.506.061.365.420.835.040.962.940.402.540.41
    DGS-2230.8065.407.9531.406.531.336.630.965.741.153.460.503.140.48
    DGS-2336.6073.508.7333.206.481.346.420.955.551.123.400.483.050.46

    Table 3.  REE composition (×10-6) of upper Dagushi Formation

  • 研究区结晶基底为林山群(太古宇)以及铁山河群、双房群(古元古界)。林山群为一套变质的泥质碎屑岩—基性火山岩;铁山河群是一套变质碎屑岩,包括变质的长石石英砂岩、变质石英砂岩、石英岩等;双房群为一套变质的泥砂质—基性火山岩[22]。结合大古石组下段碎屑岩地球化学特征,徐勇航等[19]认为沉积物源来自林山群、铁山河群和双房群,主要为花岗岩,其次是基性岩。此外,大古石组碎屑锆石定年显示:大古石组中、下段中峰值为2.50 Ga和2.70 Ga的碎屑锆石[27],可能源于林山群的变质闪长岩和TTG片麻岩[2830]。大古石组上段中峰值为2.50 Ga和2.70 Ga的碎屑锆石数量急剧减少,而峰值为2.10 Ga和2.30 Ga的碎屑锆石增多,可能来自中条山区域的安山质凝灰岩[31]、钾长花岗岩[32]和花岗闪长片麻岩[31,3334]等。以上地球化学和碎屑锆石年龄特征表明,大古石组下段沉积物源来自较老的地体,而中段沉积物源来自较新的地体,上段目前研究较少。因此,结合本研究大古石组上段地球化学特征及前人数据,讨论了大古石组沉积过程中的沉积物特征、沉积环境和大地构造背景,如下所述。

  • SiO2与Al2O3的比值是判别沉积物成熟度的一个重要指标。碎屑物质随着风化和搬运,石英含量增加,长石和基性物质逐渐减少,成熟度随之提高,SiO2与Al2O3比值变大[6]。邵源北部铜罗一带的大古石组下段泥质岩SiO2/Al2O3值介于2.94~6.22,平均值为3.86,表明其具有成熟度较高,离物源区较近的特点[19]。经表1计算,本次研究区中23个大古石组样品的SiO2/Al2O3值介于2.45~4.23,平均值为3.18,SiO2/Al2O3值较下段低。因此,大古石组形成过程中沉积物成分成熟度有整体降低的趋势。本研究中,部分砂岩样品的云母含量较高,骨架颗粒分选和磨圆都很差(图2),也可以说明这点。另外,成分变异指数(Index of Compositional Variability,ICV)可用于指示碎屑岩的成熟度(如公式1,氧化物单位为摩尔数),其值越高指示碎屑岩成熟度越低,同时也反映其处于活跃的构造环境,反之则表示碎屑岩成熟度较高,处于构造活动相对稳定的环境[35]。研究区所有的碎屑岩样品ICV值均大于1(表4),说明其成分成熟度较低,且形成于构造相对活跃的环境。结合前人观点,熊耳群是由地幔柱作用引发的大火成岩省[16],并标志着全球构造体制的重大转折[11],因此推断大古石组的沉积记录了华北克拉通南缘从地壳缓慢抬升到大规模火山活动在裂谷环境中逐渐发育的过程。即,大古石组沉积早期华北克拉通南缘还未明显抬升,局部地区发育河流相、三角洲相,其沉积物搬运距离较远,因此成分成熟度相对较高;中期,地壳由于应力松弛而拉张[8],但各处抬升速率不一,使得部分水体变深甚至发生海侵[19];晚期,由于地幔柱的作用,地壳加速抬升并逐渐活化,此时熊耳群早期的火山活动已经在局部地区开始发育,并给大古石组提供部分物源,因此物源较近,沉积物成分成熟度较低。大古石组上段上部中小型交错层理发育(图2a~c),说明水动力变强,沉积中心变动较大,构造背景较为活跃。大古石组沉积区位于地壳整体抬升的局部凹陷区,因此记录了这些大规模火山活动发生的前序过程。

    样品编号SiO2/Al2O3ICVMg/CaAl2O3/MgOCIAcorr
    DGS-13.631.451.125.4662.89
    DGS-23.331.440.557.0856.01
    DGS-34.231.321.636.4166.44
    DGS-43.221.361.065.9267.51
    DGS-53.281.391.145.5665.43
    DGS-63.411.420.985.664.40
    DGS-73.121.760.445.3465.90
    DGS-83.151.590.655.3067.55
    DGS-92.961.460.845.3568.37
    DGS-102.931.391.085.4269.41
    DGS-112.891.361.425.2669.01
    DGS-123.101.394.084.1271.92
    DGS-133.011.322.474.9770.20
    DGS-142.951.292.895,0071.05
    DGS-152.721.242.365.8170.87
    DGS-162.661.242.136.0869.85
    DGS-172.451.202.336.4271.05
    DGS-182.711.282.045.6769.11
    DGS-192.931.430.965.6764.02
    DGS-203.891.750.307.1654.88
    DGS-213.471.420.777.4060.25
    DGS-222.962.191.402.4875.16
    DGS-233.521.422.794.3374.04
    注:ICV计算方式见公式1;CIAcorr计算方式见公式2~6;Mg、Ca分别由表1中MgO、CaO值计算得出。

    Table 4.  Major element ratios for paleoenvironment analysis of upper Dagushi Formation

    ICV=Fe2O3+K2O+Na2O+CaO+MgO+MnO+TiO2Al2O3 (1)
  • 根据前人研究结果,La/Sc和Co/Th比值可较好地反映源区的平均组分[2]。如图4a所示,部分样品的Co/Th值较低,指示长英质火山岩为主要物源,一些样品投点结果介于长英质火山岩与安山岩之间,其物源可能是长英质火山岩与中性岩的混合物。另外,大古石组下段碎屑岩的源岩成分可能为花岗岩和长英质火山岩,中段和上段源岩成分主要为长英质火山岩与安山岩的混合物(图4a)。整体来看,大古石组从下到上,沉积物源逐渐由花岗岩向长英质岩石,再到中性岩过渡。综合推断,大古石组早期沉积物源来自地壳抬升过程中克拉通的花岗质基底,而中、晚期沉积物源则有近源的火山岩风化产物加入。

    Figure 4.  Provenance analysis: (a) La/Sc vs. Co/Th (after reference [2]); (b) La/Th vs. Hf (after reference [36])

    La、Th及Hf等不活泼元素不会因搬运和成岩作用而改变,所以利用La/Th-Hf图解可以判定不同构造环境下的物源成分[36]。如图4b所示,大古石组下、中、上段样品的数据点主要集中于长英质物源和长英质、基性岩混合物源,表示大古石组碎屑岩的物源主要来自长英质和长英质、基性岩混合物,这一趋势与La/Sc-Co/Th判别图大致相同,即沉积物源逐渐向中性岩过渡,说明熊耳群火山岩系(整体为中、基性岩,玄武安山岩和安山岩)[8]提供了部分物源。此外,大古石组上段数据投点分布较分散(图4b),表明可能存在其他物源成分加入,这可能是混合了古老沉积物成分所致。这些特征与上文的推断一致,均表明大古石组早期沉积物源较为单一,可能主要来自地壳缓慢抬升过程中克拉通的花岗质结晶基底;而晚期沉积物源较为复杂,在地壳抬升和重新活化的过程中,更古老的地层被抬升剥蚀,因此由多种沉积物源混合而成。

  • 沉积岩的主量、微量元素含量会受到源岩矿物成分、风化搬运过程、沉积环境的影响而变化。研究表明,细粒沉积物能够较好地反映沉积环境[1]。大古石组下段样品的主量、微量元素地球化学特征表明下段碎屑岩形成于温暖湿润的环境[19]。根据大古石组下、上段样品地球化学特征及参数与已知环境的地球化学特征及参数进行对比,认为大古石组所处的气候环境总体表现为温暖湿润,并经历了多次气候波动。

  • 不同元素对气候环境的敏感度不同,Al2O3/MgO和Mg/Ca可为判别古气候提供较好的指示。Mg与Ca的比值可用于气候变化的判别,在干旱气候下,水分蒸发使得水体碱性增强,导致Ca、Mg等元素析出而沉积于水底[37]。当Mg/Ca值高时,指示了干旱气候,反之则为潮湿气候,然而在气候极度干旱的情况下,Mg/Ca的指示意义正好相反[38]。黏土矿物中Al2O3/MgO的比值变化可反映沉积过程中的气候环境,其比值大则表明水体淡化,指示气候温湿,反之则指示干旱气候[39]。大古石组样品元素比值结果(表4图5)显示,Mg/Ca与Al2O3/MgO总体变化趋势大致相同,指示了相同的气候演化过程,发生了至少三次气温的波动:第一次气候变换发生在采样剖面下段(DGS-21、DGS-20和DGS-19),气温逐渐降低,而后又逐渐升温;第二次气候波动发生在采样剖面中段(DGS-13、DGS-12、DGS-11和DGS-10),气温短暂升高;第三次气候波动发生在采样剖面上段(DGS-4、DGS-3和DGS-2),气温降低,并在相对较短的时间后逐渐升温。总体来看,这两种气候判别方法都得到了类似结果,即大古石组上段在沉积过程中气候变化较频繁。图5左侧岩性柱状图显示,大古石组从下到上的碎屑物颗粒逐渐变小,砾岩减少,砂、泥岩增多,指示了早期水动力较强、晚期水动力较弱并趋于稳定的沉积环境。这可能是由于此时期华北克拉通南缘因地幔柱活动的影响,整体抬升并活化,古构造格局和古地貌的改变导致了古气候的多次波动。

    Figure 5.  Lithological column of the Dagushi Formation (left), and major element ratios and CIA values for paleoenvironment analysis of upper layers

  • 母岩的矿物组成受风化作用影响。风化作用导致沉积物源中不稳定组分丢失,稳定组分相对增加,其风化程度与源区气候和构造活动等因素活动有关[1,45]。因此,沉积物中的主量元素可为源区风化条件提供重要信息。Nesbitt et al.[40]在研究古元古代Huronian超群泥质岩时提出CIA的概念,主要用于判断物源区风化程度。CIA值越高,表示源区的化学风化作用越强烈(表5)。

    岩石和矿物CIA值气候和风化程度
    平均上地壳50
    更新世冰碛岩(基质)50~55反映寒冷、干燥气候条件下低等化学风化程度
    更新世冰川黏土(冰水沉积)60~65
    黄土65~70反映温暖、湿润气候条件下中等化学风化程度
    平均页岩70~75
    亚马逊泥岩80~90反映炎热、潮湿的热带、亚热带气候条件下强化学风化程度
    残留黏土85~100
    钠长石50
    钙长石50
    钾长石50
    白云母75
    伊利石75~85
    蒙脱石75~85
    绿泥石100
    高岭石100

    Table 5.  CIA values for rocks and minerals from upper crust (after references [40⁃41])

    CIA=Al2O3(Al2O3+CaO*+Na2O+K2O)×100 (2)

    式中:CaO*指硅酸盐矿物中的CaO,故在计算时,要排除非硅酸盐矿物中的CaO。关于CaO*的计算,McLennan[42]提出了一个间接计算的方法,其中CaO剩余<Na2O,则CaO*=CaO剩余;若CaO剩余>Na2O,则令CaO*=Na2O。

    CaO剩余=CaO-P2O5×103 (3)

    Panahi et al.[43]提出的CIA校正公式计算钾交代作用的泥质岩的CIA值(CIAcorr),氧化物以摩尔数为单位。

    CIAcorr=Al2O3Al2O3+CaO*+Na2O+K2Ocorr×100 (4)
    K2Ocorr=m×Al2O3+m×CaO*+Na2O1-m (5)
    m=K2OAl2O3+CaO*+Na2O+K2O (6)

    大古石组下段样品CIA值介于55~85,平均值为66.5[19],反映大古石组下段物源源区气候温暖湿润,且有气候波动。大古石组上段样品的CIA值介于55~75(表4),平均值为67.18,指示其物源源区气候总体温暖湿润,化学风化程度中等。从图5来看,大古石组上段样品从下到上CIA值总体上是减小的。样品DGS-20和DGS-2的CIA值分别为54.88和56.01,这与更新世冰碛岩CIA值基本一致(表5),表明该层位可能为冰期沉积。DGS-21、DGS-19、DGS-6和DGS-1这4个样品的CIA值介于60~65,数值与更新世冰川黏土CIA值一致(表5),表示样品对应的时期可能存在短暂的冰期沉积记录。同时,以上6个CIA值相对较低的样品基本相邻,表现为寒冷干燥气候条件下的低等化学风化程度的沉积,这些样品与CIA值在65~75的样品之间存在一个渐变过渡的关系,可能存在气候冷暖变化。从图5中显示CIA变化趋势来看,其存在的气候冷暖变化的地层范围与古气候判别指标大体相同。因此,综合气候判别指标与CIA的结果推断,大古石组上段沉积时处于相对温暖湿润的气候环境。

    A-CN-K图解是CIA的另一种表示方法,该图解不仅可以表示CIA值的分布情况,也可用于判断样品源岩成分和反映钾交代作用的特征[44]。通常来说,气候因素控制岩石的风化程度,构造因素控制源岩的剥蚀和供应程度。若岩石样品元素成分变化不大,A-CN-K图解中则表现为样品点分布紧凑集中,指示源岩风化和剥蚀的状态相对稳定,与此相反的则是源岩元素成分变化大,A-CN-K图解中样品点分布分散,表明气候和构造处于不稳定的状态[45]。A-CN-K图解(图6)中的样品点分布区域较为分散,反映出研究区大古石组上段沉积时源岩化学风化和剥蚀处于不稳定状态,即形成于不稳定的构造环境。

    Figure 6.  A⁃CN⁃K triangular chart for samples from the upper Dagushi Formation

  • 碎屑岩源岩与其所处的构造环境密切联系,因此碎屑岩的地球化学特征能记录一些源区构造背景特征[1,46]。赵太平等[22]对熊耳群沉积岩夹层进行综合分析得出,其形成于被动大陆边缘环境。1.80 Ga之前,华北克拉通是哥伦比亚超大陆的重要组成部分,其构造演化记录了超大陆的聚合与裂解事件[47]。多数学者认为,华北克拉通在1.85 Ga左右最终碰撞拼合成统一的结晶基底[4851]。主要经历了2.50 Ga以前的克拉通化、2.50~2.30 Ga的构造稳定期、2.30~1.80 Ga的裂谷期和1.80~1.78 Ga的抬升期,以及1.78 Ga之后的伸展—裂解期,并发育系列的火山和岩浆活动[17,52]。熊耳群岩性以熔岩为主,火山碎屑极少,其地球化学特征与低Ti型大陆溢流拉斑质火山岩相似,且未发现同时期的俯冲杂岩、弧前盆地等,不同地区的岩性及地球化学特征未表现出明显的演变趋势,因此有学者认为其为被动大陆边缘裂谷型的火山岩构造[8,13]

    除熊耳群火山岩系外,华北克拉通~1.78 Ga镁铁质岩墙是我国规模最大的岩墙之一,广泛发育于泰山(1 760 Ma)[53]、冀东(1 729~1 759 Ma)[54]、中条山[55]等地。岩墙群在产状上以熊耳裂谷为中心,具向北放射状或同心圆分布的特征[56]。Zhao et al.[57]提出熊耳群以周边的超基性岩构成了熊耳大型火成岩省,与地幔柱活动密切相关。晋冀蒙交界地区1.78 Ga镁铁质岩墙群产生于同一构造体制下,彭澎等[56]根据产状和岩石化学特征将该岩墙群分为三组,且三组岩墙存在部分混合,可能是与地幔柱事件相关的大陆裂解的产物。另外,熊耳群火山岩具有岛弧型地球化学特征,表明其是由保留有俯冲组分的岩石圈地幔部分熔融形成[57]

    综合前人关于大古石组下、中、上段的主量、微量和稀土元素的地球化学特征及相关参数的分析,认为大古石组下段的碎屑岩来自构造活动相对稳定的环境中,而中、上段的碎屑岩来自活跃的构造环境中。结合上文讨论,由于地幔柱的影响,原本长期稳定的华北克拉通南缘重新抬升并活化,熊耳群火山岩系逐渐开始喷发,形成于局部凹陷区的大古石组记录了这些火山活动的喷发。这也是熊耳群早期沉积岩分布较为局限的原因。

  • 相较于主量元素,微量和稀土元素具有不易受风化作用、成岩作用等影响而迁移的特点,如La、Th、Sc等[5859]。Bhatia[60]提出的REE特征参数可有效地指示不同构造背景下杂砂岩的地化特征。受沉积分选作用影响,黏土矿物较多的沉积岩多数情况下REE含量会较高[6163]。同时,在构造背景相同的情况下,泥岩中的REE含量将比同时期沉积的杂砂岩多20%左右[60]。因此,需要对泥岩的REE总含量和单个元素含量除以120%来进行校正[64],用于对比不同构造背景下的REE特征值。特征参数的对比结果如表6所示,徐勇航等[19]获得的大古石组下段样品LREE/HREE、La/Yb、(La/Yb)NδEu值接近于被动大陆边缘特征值,La、Ce及∑REE近于值接近于大陆岛弧特征值;魏丹峰[20]获得的大古石组下段样品LREE/HREE和δEu值接近于大陆岛弧,(La/Yb)N接近于被动大陆边缘,其余特征值存在整体偏高的现象。大古石组中段及上段的样品La、Ce和∑REE等特征值也存在整体偏高现象,LREE/HREE和δEu值接近于大陆岛弧。总体来说,大古石组初期可能处于被动大陆边缘的构造环境,随后华北克拉通南缘整体抬升,地壳活化,构造—热事件逐渐增强。

    构造背景源区类型LaCe∑REELREE/HREELa/Yb(La/Yb)NEu/Eu*代表颜色
    大洋岛弧未切割岩浆弧8.00±1.7019.00±3.7058.00±10.003.80±0.904.20±1.302.80±0.901.04±0.11
    大陆岛弧切割岩浆弧27.00±4.5459.00±8.20146.00±20.007.70±1.7011.00±3.607.50±2.500.79±0.13
    活动大陆边缘隆升基底隆起37.0079.00186.009.1012.508.500.60
    被动大陆边缘克拉通内高地39.0085.00210.008.5015.9010.800.56
    大古石组上段(本研究)52.62103.43238.4311.1719.0413.660.66
    大古石组中段(据魏丹峰[20]65.60129.25293.5311.8020.7414.880.66
    大古石组下段(据魏丹峰[20]55.92112.25256.9210.7018.0712.960.66
    大古石组下段(据徐勇航等[19]33.7562.58152.797.8216.6311.930.47
    注:特征参数源于Bhatia[60];稀土元素单位:×10-6

    Table 6.  Comparison of geochemical characteristics for Dagushi Formation and for sandstones from different tectonic settings

  • 根据Bhatia et al.[59]所建立的微量元素La-Th-Sc、Th-Co-Zr/10和Th-Sc-Zr/10判别图解对大古石组的样品数据进行投图(图7)。结果显示,大古石组下、中、上段的样品多数落入大陆岛弧区域,少数样品落入被动大陆边缘区域或处于被动大陆边缘区域的边界。这一结果与REE特征参数判别结果基本相似。

    Figure 7.  Tectonic setting discriminant diagrams for trace elements in Dagushi Formation (after reference [59])

    从微量和稀土元素的分析结果来看,大古石组沉积过程中先经历了一段相对构造稳定期,中、晚期随着地幔柱活动的加剧,地壳抬升,构造趋于活跃,岩浆活动开始发育。如上文所述,1.78 Ga镁铁质岩墙的形成时间与华北克拉通1.80~1.78 Ga的抬升期基本一致。因此,大古石组中、上段碎屑岩形成于活跃的构造环境,与岩浆活动密切相关,且表现出岛弧地球化学亲缘性。这与之后形成的熊耳群火山岩的地球化学特征一致,表明同时期大规模岩浆活动为局部凹陷区提供了沉积物源。本研究从沉积地球化学分析角度得到的认识与前人认为熊耳群火山岩系处于因哥伦比亚超大陆裂解而产生的拉张背景(如Wang et al.[17])是吻合的,反映了裂谷区初期喷发的地质环境。

  • (1) 大古石组沉积物具有较低的SiO2/Al2O3值,大多数样品的ICV值大于1,表明其离物源区较近,且从下段到上段沉积物成分成熟度逐渐降低。根据La/Sc-Co/Th和La/Th-Hf物源判别图,大古石组物源主要来自长英质岩石和基性岩的混合物。整体看,大古石组沉积物源从下到上有逐渐由花岗岩向长英质火山岩,再到中、基性岩过渡的趋势,且大古石组上段古老沉积物成分逐渐增加。

    (2) 根据Al2O3/MgO和Mg/Ca气候判别指标及化学蚀变指标(CIA)的分析结果,大古石组上段所处的气候环境表现为温暖湿润,且总体呈降温的趋势,但仍处于温暖的范围内,在这一过程中经历了多次气候波动,可能是研究区受地幔柱的影响,整体抬升并活化,使得古构造格局和古地貌改变,从而导致了古气候的多次波动。

    (3) 将大古石组下、中、上三段的微量元素分布模式和稀土元素地球化学参数(∑REE、LREE/HREE、La/Yb、(La/Yb)NδEu等)与不同构造环境相对应的特征参数对比发现,大古石组下段碎屑岩来自构造活动相对稳定的环境,而中、上段的碎屑岩来自活跃的构造环境,活跃的构造事件可能与大规模的岩浆活动有关。

    (4) 大古石组早期沉积形成于华北克拉通南缘还未整体抬升的局部凹陷区,沉积物源相对复杂,搬运距离较远,成分成熟度较高。沉积中、晚期,地幔柱作用导致地壳上升并逐渐活化,华北克拉通南缘逐渐转入构造活跃环境,沉积区位于地壳整体抬升的局部凹陷区,沉积物搬运距离较近,成分成熟度较低。此时熊耳群早期的火山活动已经在局部地区开始发育,并给大古石组提供部分中、基性岩物源。

Reference (64)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return