HTML
-
下寒武统黑色岩系全球分布广泛,在我国主要分布于扬子板块及塔里木板块,这套岩系沉积于前寒武纪—寒武纪转折时期,发生了许多如寒武纪生命大爆发、Tommotian期全球性缺氧环境、热水活动等,对于研究演化历史、地质事件、沉积背景以及构造活动等方面具有重要意义[1]。这套黑色岩系以多金属富集闻名于世,矿产资源潜力巨大,湘西北下寒武统底部的牛蹄塘组就沉积了这样一套黑色岩系,在局部形成了多种元素富集的大型沉积矿床[2⁃3]。目前研究表明,这些金属元素的来源是多样的,包括有陆源供给、海水、热水对基底岩层的萃取等,局部甚至可能有岩浆喷发作用[4]。在此背景下,元素本身的化学性质、缺氧/硫化的沉积环境、生物活动的选择吸收以及有机质对元素的吸附、络合等多种因素综合导致了不同元素的超常富集[5]。
近年来,前人已从岩石矿物、沉积、矿床和地球化学特征等多个角度论证湘西北的下寒武统黑色岩系有热水成因[3,6]。热水活动通常发生在海底,本质上是沉积界面之下的热水循环到达界面附近喷涌出来的活动,也包括界面之下围岩的交代及蚀变充填作用[7]。热水将深部的能量和物质带到地表附近与海水混合逐渐扩散并陆续沉积[8],在扩散沉积的过程中对下寒武统造成了巨大影响,湘西北牛蹄塘组的底部发现有张家界镍钼矿、新晃重晶石矿以及广泛分布的钒矿等沉积层控矿床[2,9]。本文以湘西北地区的花页1井(HY1)、湘安1井(XA1)、湘吉1井(XJ1)下寒武统牛蹄塘组底部为研究对象,系统阐述不同井受热水活动影响程度、元素富集特征、沉积环境等差异,进而揭示湘西北早寒武世热水活动对周缘沉积的影响作用及程度。
-
湘西北地区自晚震旦世开始就形成了向东南水体逐渐加深的台地—陆棚—盆地沉积格局,随着早寒武世时最大范围海侵,该区沉积了以黑色岩系为主的寒武系牛蹄塘组[10]。根据区域构造、沉积环境、岩性及沉积相等方面的差异,可以将研究区分为Ⅰ区深水陆棚—大陆斜坡和Ⅱ区深海盆地,两区大致以新晃、芷江、麻阳、芦溪、沅陵、桃源、常德为界(图1)。构造上研究区位于扬子板块东南缘向华夏板块过渡的区域,可以进一步分为①石门—桑植复向斜、②武陵断弯断褶带、③沅麻残留盆地、④雪峰冲断带及位于东侧的⑤洞庭坳陷等四级构造单元(图1)。区内发育ENE走向的保靖—慈利主干断裂带(F1)和NNE走向的凤凰—张家界分支断裂带(F10),二者皆为大规模的基底断裂带,在深部逐渐聚敛交汇于张家界后坪地区[11⁃12]。两条断裂皆分布于斜坡过渡带上,其沉积地貌类似“膝折型”[13]。在桃源、张家界、永顺等多地下寒武统底部发现塌积角砾岩,表明台、盆相区与斜坡过渡带结合部位属于沉积建造的突变带,发育同沉积断裂[11]。区内的牛蹄塘组整合接触于下伏地层震旦系,在张家界至吉首一带以白云岩为主的浅水相灯影组沿着台地边缘朝盆地方向快速相变为以硅质岩为主的留茶坡组,且硅质岩的厚度快速增加,这种岩相和厚度的快速转变也表明斜坡过渡带上的同沉积断裂发育[14]。留茶坡组在湘黔地区具有穿时的特征,其对应于震旦纪—早寒武世早期[15]。HY1和XJ1相近但下伏地层的岩性差别大,分别以白云岩和硅质岩为主(图2),结合岩相古地理认为HY1底部为灯影组,XJ1及XA1的底部则为留茶坡组。
-
此次研究样品分别来自于页岩气勘探钻井XJ1、HY1、XA1,每口井8个共计24个,均是靠近牛蹄塘组底部以黑色页岩为主的岩心样品。各井牛蹄塘组底部与下伏地层界限的岩性变化非常明显,其界线之上的牛蹄塘组底部样品可以很好地开展纵向和平面上的对比研究。样品分别进行了有机碳含量、X衍射和主微量元素等分析,其所处位置以及其他详细信息可见于图2。
总有机碳(TOC)含量分析中首先将岩心清洗干净并且烘干后使用玛瑙钵人工研磨至200目以下。选取80 g经过研磨的样品,加入60 mL体积比为1∶7的稀盐酸,放入恒温50 ℃的水中水浴加热2 h除去碳酸盐矿物,然后将样品放入烤箱中进行烘干,取出后使用CS-330高频红外碳硫分析仪进行测试,测试准确度为±0.5%。矿物组成与含量主要进行X射线衍射(XRD)分析,取岩心样品研磨至40 μm以下,将其与乙醇混合并涂片后使用X射线衍射仪分析,然后与矿物衍射图谱进行对比即可得知矿物组成与含量。
主量元素采用X射线荧光光谱仪(XRF)分析,首先使用坩埚在1 000 ℃高温下煅烧4 h除去有机质,然后取0.5 g经过煅烧后的样品和4 g无水四硼酸锂均匀混合,再加入0.3 g硝酸铵和0.4 g氟化锂搅拌均匀,移入铂金合金坩埚中采用1 150 ℃熔融制成玻璃片进行测试,测试精度偏差小于3%。微量元素采用电感耦合等离子体质谱仪进行分析(ICP-MS)。同样使用坩埚在高温下煅烧4 h用于除去有机质,然后取40 mg灼烧后的样品放置在聚四氟乙烯密闭溶样瓶中,滴入1.5 mL高氯酸和硝酸、氢氟酸各3 mL,190 ℃加热至样品完全溶解,用2%的硝酸将样品稀释2 000倍后进行测试分析,测试精度偏差小于5%。
-
XRD全岩定量分析结果如表1所示,牛蹄塘组黑色岩系以石英、黄铁矿、黏土矿物为主,碳酸盐矿物仅在少数样品中含量相对较高。HY1石英含量介于21.40%~59.60%,整体呈自下而上减少的趋势,黏土矿物含量介于8.90%~26.00%;XJ1的石英含量介于15.50%~87.20%,黏土矿物含量介于0.10%~41.30%,有自下而上增加的趋势;XA1石英含量介于52.60%~91.70%,黏土矿物含量介于0~23.30%。HY1中TOC介于0.25%~10.82%,中上部相对较高;XJ1中TOC介于2.46%~11.32%,中下部较高;而XA1中TOC介于1.14%~14.38%,上部的TOC明显大于下部。
样品 样品深度/m TOC 矿物组分 主元素 石英 黏土矿物 黄铁矿 碳酸岩矿物 SiO2 Al2O3 TFe2O3 CaO TiO2 HY-8 2 510.23 0.79 21.40 15.40 3.30 40.60 30.00 13.09 4.71 16.30 0.59 HY-7 2 515.10 2.01 26.00 19.00 8.60 25.30 40.20 10.00 5.00 8.54 0.63 HY-6 2 548.70 10.82 51.10 21.30 10.40 5.80 38.90 9.50 5.07 2.73 0.40 HY-5 2 558.17 9.27 42.70 15.90 9.10 6.10 59.10 9.10 4.71 2.16 0.53 HY-4 2 564.24 5.72 42.20 24.80 9.90 4.60 67.29 9.07 3.67 0.99 0.48 HY-3 2 564.68 6.87 28.90 26.00 5.50 36.00 40.33 5.35 2.76 15.54 0.28 HY-2 2 595.03 1.24 42.60 8.90 2.00 43.60 59.06 2.83 1.21 12.36 0.12 HY-1 2 598.90 0.25 59.60 12.20 0 25.00 73.76 4.12 1.26 8.12 0.15 XJ-8 1 934.60 1.62 43.90 41.30 4.40 0.90 67.78 13.63 1.61 0.49 0.50 XJ-7 1 978.10 2.46 28.30 28.60 4.90 7.70 63.25 13.78 4.37 1.68 0.53 XJ-6 1 998.30 3.09 25.00 34.30 5.60 16.10 52.77 13.74 4.28 6.34 0.52 XJ-5 2 008.80 9.98 43.60 22.50 9.80 0 52.75 8.96 5.90 2.50 0.44 XJ-4 2 019.70 8.95 48.30 24.90 13.90 12.00 55.57 10.00 4.44 5.30 0.53 XJ-3 2 025.00 7.89 15.50 40.40 14.40 15.10 53.62 9.12 6.22 5.52 0.44 XJ-2 2 035.30 4.87 32.70 19.80 13.20 10.10 79.65 3.40 5.45 1.23 0.13 XJ-1 2 040.10 11.32 87.20 0 4.00 0.90 73.54 1.49 1.33 0.92 0.06 XA-8 798.00 6.02 78.00 15.20 4.80 0.70 81.86 2.72 2.40 1.27 0.10 XA-7 813.90 9.34 52.60 23.30 13.10 0 62.41 9.53 5.22 0.78 0.49 XA-6 821.60 14.38 68.30 19.00 9.20 0 64.34 5.05 3.33 1.03 0.29 XA-5 827.80 8.42 73.50 10.80 10.20 0 70.93 6.37 3.66 0.79 0.36 XA-4 840.20 10.45 72.50 6.10 7.40 11.40 72.96 3.81 3.99 0.85 0.19 XA-3 853.00 1.53 91.70 0 0 8.30 94.17 0.10 1.10 1.32 0.01 XA-2 866.20 1.14 72.60 15.60 4.80 5.10 85.54 3.87 2.63 1.10 0.16 XA-1 869.30 1.14 69.60 17.40 7.20 4.20 76.48 5.43 3.77 3.11 0.28 Table 1. Distribution of major minerals, major elements, and organic carbon content (%)
XRF分析的主量元素是以氧化物的形式呈现,铁氧化物记为TFe2O3。黑色岩系的主要组成为SiO2、Al2O3、TFe2O3、CaO(表1)。它们与石英、黏土矿物、黄铁矿以及碳酸盐矿物的相关系数相对较高,分别为0.53、0.58、0.64、0.89,且纵向上的变化相似,反映了主量元素与主要矿物一一对应,主要分布于相应的矿物中。Ti元素来源相对单一,各井样品中Al2O3与TiO2相关性很好可达0.87,指示主要为陆源输入[12]。而与地壳中的平均含量克拉克值相比,样品中Al2O3含量普遍较低,说明陆源碎屑供给少,XA1位于深海盆地且距离陆地较远,Al2O3的含量也最低。不同井中均有Al2O3与TiO2向上增加的趋势,可能指示陆源碎屑的输入逐渐增加[13]。
-
热水在此特指经过深部的水岩反应及加热后萃取大量金属元素的循环热水体系[16]。因物质来源、元素化学性质、距离热水喷口远近及沉积方式等的差异,可能导致沉积形成的岩石中的某些元素含量产生显著变化,一些有指示意义的组合指标可以被应用在热水沉积的地球化学示踪[8]。一般来说热水沉积物富集Fe、Mn,而匮乏Al、Ti,Al/(Fe+Mn+Al)值在正常海相沉积时为0.60,受热水活动影响越大其值会逐渐递减至0.01[17]。研究区中除XA-3异常样品的Al/(Fe+Mn+Al)值为0.08,其余样品的分布区间为0.41~0.70,平均为0.58。同样受热水活动影响下的Fe/Ti值会大于20[18],除XA-3样品值为50外,各井样品范围为7.50~25.00,平均为13.75。通常海底火山或热水喷口附近受高温热水影响的沉积物有Eu显著正异常的特征[19]。而本次研究除了XA-3与HY-7样品显示有微弱的正异常之外,其余样品δEu介于0.40~0.88(表2),上述指标皆显示大部分样品为正常海相沉积。
样品 Al/(Al+Fe+Mn) Fe/Ti U/Th Ba/Sr Co/Zn δEu Y/Ho LaN/CeN ΣREE ΣLREE/ΣHREE HY-8 0.67 9.41 2.39 23.01 0.11 0.51 28.49 1.33 173.55 12.07 HY-7 0.67 7.50 1.50 4.32 0.10 1.56 30.99 1.41 130.78 6.27 HY-6 0.58 14.71 1.13 1.67 0.16 0.58 29.74 1.29 106.54 7.84 HY-5 0.59 10.31 8.41 38.95 0.11 0.68 38.69 1.62 144.94 6.61 HY-4 0.65 8.86 5.78 126.44 0.01 0.66 33.97 1.76 106.61 5.51 HY-3 0.58 11.35 20.98 3.33 0.06 0.86 47.76 1.94 84.15 4.23 HY-2 0.63 12.14 1.81 3.21 0.03 0.84 30.96 1.73 58.68 3.27 HY-1 0.71 9.78 0.39 5.80 0.02 0.88 29.14 1.55 65.87 5.29 XJ-8 0.65 13.30 0.67 28.05 0.07 0.62 30.66 1.17 121.29 7.50 XJ-7 0.70 9.68 0.79 20.00 0.14 0.62 31.10 1.21 159.06 8.15 XJ-6 0.70 9.52 0.75 26.66 0.21 0.69 28.50 1.20 153.75 9.26 XJ-5 0.53 16.24 9.77 32.44 0.02 0.53 42.26 1.71 177.55 6.29 XJ-4 0.63 10.03 6.18 30.78 0.02 0.48 35.38 1.49 149.03 5.79 XJ-3 0.52 16.50 11.39 24.88 0.08 0.56 38.22 1.70 155.40 5.65 XJ-2 0.61 13.78 11.03 37.39 0 0.48 46.71 1.74 96.97 2.93 XJ-1 0.46 22.20 17.33 49.31 0 0.50 41.23 2.38 45.51 3.56 XA-8 0.46 22.88 8.79 34.87 0 0.57 40.98 1.27 110.81 3.19 XA-7 0.58 12.12 14.05 224.65 0.15 0.50 43.24 1.53 157.58 6.03 XA-6 0.52 13.81 13.33 100.99 0.17 0.58 49.06 1.69 116.34 4.61 XA-5 0.57 11.47 15.13 179.08 0.22 0.41 34.90 1.78 120.56 6.15 XA-4 0.42 25.00 17.60 118.35 0.45 0.53 40.00 1.62 61.02 2.48 XA-3 0.08 50.00 25.88 7.19 0 1.33 36.00 1.03 2.34 1.39 XA-2 0.50 20.10 0.36 38.61 0.02 0.66 25.29 1.57 41.10 13.22 XA-1 0.51 15.61 0.29 13.43 0.01 0.63 26.70 0.97 69.23 2.84 注: δEu=EuN/(SmN+GdN)1/2,LaN/CeN中下标N指球粒陨石标准化,下同。Table 2. Distribution of indicators for the geochemical tracing of hydrothermal activity
而有些地球化学指标却显示了不同的现象,正常海相沉积Y/Ho的分布区间为44~74,在热水流体影响下值会偏低[20],样品的Y/Ho分布区间为25~50。Ba/Sr、U/Th的值大于1指示受到热水活动及沉积的影响[21],在各井中部分样品甚至远大于1(表2)。热水沉积物中的Co/Zn值很低(平均为0.15),而正常沉积的值偏高[22],HY1的Co/Zn值介于0.01~0.16,平均为0.07,XJ1介于0.000 6~0.210 0,平均为0.07,XA1介于0.001~0.450,平均为0.13(表2)。热水活动影响的LaN/CeN值通常较高,而正常沉积中逐渐降低[23⁃24]。热水沉积物质还具有稀土元素总量(∑REE)低,轻稀土元素(∑LREE)与重稀土元素(∑HREE)的比值较正常沉积物低的特征][18]。各井样品LaN/CeN值介于0.97~2.38(表2),HY1与XJ1的中下部明显拥有更高的值。∑REE也普遍较低,其值介于2.34~173.55 μg/g,平均为108.69 μg/g(表2),基本均低于北美页岩∑REE的平均值173.2 μg/g[25]。∑LREE/∑HREE值则介于1.38~13.22,平均为5.84,多数样品也低于北美页岩∑LREE/∑HREE值7.44[25](表2),因此上述这些指标显示大部分样品受到了热水活动和物质沉积的影响。
进一步分析发现在Zn-Ni-Co三角图版中HY1与XJ1的部分样品处于热水沉积的范围[18],XA1则仅有1个样品受到热水活动的影响(图3a)。在La/Yb-∑REE判别图上也显示部分样品落入沉积岩与拉斑玄武岩的交汇区[18],仅少数样品落入单纯的沉积岩或拉斑玄武岩区(图3b),也反映了样品兼具正常沉积与热水沉积的特征。高温热水流体相较海水拥有更高的Sm/Yb、Eu/Sm值,Alexander et al.[26]通过使用Sm/Yb-Eu/Sm协变图可以判断海底热水的贡献程度(图3c)。本次研究除少数样品落入水成正常铁锰沉积外,大部分样品与兼具海水、热水两种成因的下马岭黑色岩系硅质岩相似[27],反映沉积时热水的贡献很少。
热水活动常发生在地壳拉张或异常热的背景下,受控于同沉积断裂带[8]。早寒武世时研究区所属的扬子板块东南缘处于强烈拉张的阶段,F1和F10皆为基底深大断裂,如前所述早寒武世时为同沉积断裂[11],对研究区早寒武世的热水活动及成矿具有控制作用[28]。F1和F10交汇于张家界地区,张家界与新晃—天柱地区均在寒武系底部发现了与现代海底硅质烟囱极为相似的热水喷流沉积构造,发育了热水成因的镍钼矿以及重晶石层控矿床,同时伴有热水生物群繁盛等[29⁃30]。而大致以斜坡带张家界—吉首为界,热水喷流沉积的硅质岩朝盆地方向逐渐转为层状硅质岩,反映热水活动及其影响逐渐衰减而深海沉积的影响增加[14]。各井距有丰富热水活动的张家界地区均有一定距离,目前尚不明确两基底断裂周缘可能的其他热水喷口具体位置,因此各井可能距热水喷口较远(图1)。热水喷出海底后所携带的物质与海水混合向四周陆续扩散沉积,其影响随着范围增大而逐渐减弱,在达到各井的位置沉积时影响应该不大。主量元素指标及关键指标δEu指示正常沉积,但部分微量元素的变化极大,因此才会出现上述许多指标指示模糊混乱甚至自相矛盾的现象。比较发现XA1更远且处于深海盆地,热水带来的物质需要更长的时间和运移更长的距离才能在此处沉积,前述能够反映有热水活动的地化指标纵向上基本没有趋势(图4)。XJ1距离张家界地区更近并且邻近F10断裂带,U/Th、Co/Zn、LaN/CeN与ΣREE以及∑LREE/∑HREE在XJ1中呈现了一致的变化规律,指示热水活动纵向上明显减小的趋势(图4)。在HY1中尽管Co/Zn、LaN/CeN与ΣREE以及∑LREE/∑HREE在中部(距底50~70 m)有一定波动,但大体上也显示了这种趋势,因此图4中的地化指标应是较好的热水活动示踪指标。这种趋势整体上也符合晚震旦世—早寒武世构造上由拉张向沉降转换、断裂活动强度逐渐减弱的地质背景[13],热水活动及沉积也随之减少且朝盆地方向影响减弱直至正常沉积。
-
黑色岩系以多元素富集而闻名于世,由于样品中Al2O3普遍较低,陆源输入低而无需进行校正,计算元素富集系数EFX时将不采用Al或Ti元素的标准化,而直接与平均页岩的含量相比较:EFX=X样品/X平均页岩。式中X样品为样品中某元素X的含量;X平均页岩为平均页岩中该元素X的含量[31]。对比诸多元素可以发现Ba、Mo、Ni、U、V等金属元素富集系数普遍较高,与之相比Ti、Th等陆源元素虽有向上增加的趋势,但其值普遍极低(表3)。纵向上这些元素在同一井中有着相似的变化规律,而在不同井中有一定差异(图5)。如前所述,它们的富集是物质来源、元素化学性质、生物活动、氧化还原条件、有机质作用及沉积环境等诸多因素共同作用的结果[32],在不同区域、层段可能有不同的元素富集特征。
样品 元素富集系数 氧化还原指标 EFBa EFMo EFNi EFU EFV EFTh EFTi Ni/Co V/V+Ni V/Cr δU HY-8 15.43 26.35 1.88 9.08 2.11 1.17 0.77 7.27 0.68 3.30 1.76 HY-7 12.73 7.69 0.92 3.81 1.42 0.78 0.83 3.85 0.75 2.01 1.64 HY-6 5.22 4.13 0.83 2.73 0.92 0.75 0.53 4.85 0.68 2.20 1.54 HY-5 9.08 28.31 0.90 9.22 2.15 0.61 0.70 4.32 0.82 2.63 1.92 HY-4 25.24 34.54 2.09 16.59 6.78 0.49 0.63 11.04 0.94 11.99 1.89 HY-3 36.79 41.88 2.69 23.81 21.47 0.35 0.37 14.68 0.86 10.97 1.97 HY-2 2.39 4.46 0.35 2.06 1.14 0.35 0.15 7.41 0.86 1.50 1.69 HY-1 3.35 1.81 0.25 0.56 0.39 0.44 0.20 6.58 0.75 0.50 1.08 XJ-8 4.00 9.92 1.10 2.31 1.65 1.06 0.60 5.02 0.74 2.38 1.34 XJ-7 5.79 8.19 1.13 2.45 1.48 0.95 0.68 5.05 0.71 1.92 1.41 XJ-6 51.26 3.88 0.90 2.16 1.25 0.88 0.68 3.21 0.73 1.62 1.39 XJ-5 26.40 133.46 5.18 28.78 9.54 0.91 0.56 21.08 0.78 7.75 1.93 XJ-4 63.14 340.77 3.56 15.11 12.54 0.75 0.68 37.54 0.76 16.63 1.90 XJ-3 44.62 352.69 4.69 26.41 10.54 0.72 0.57 25.12 0.81 15.57 1.94 XJ-2 17.60 30.77 7.40 9.81 28.23 0.27 0.18 75.63 0.97 7.86 1.94 XJ-1 15.43 18.04 3.49 6.32 53.23 0.11 0.09 84.64 0.94 33.36 1.96 XA-8 2.15 25.58 1.64 8.24 9.00 0.29 0.16 23.72 0.91 16.71 1.93 XA-7 32.88 61.92 4.38 33.11 21.38 0.73 0.66 21.13 0.85 20.84 1.95 XA-6 15.78 41.92 0.70 18.38 2.24 0.43 0.38 5.56 0.86 6.47 1.95 XA-5 27.94 76.35 3.84 24.86 13.31 0.51 0.49 20.55 0.91 27.80 1.96 XA-4 29.18 34.23 2.60 17.46 9.54 0.31 0.25 16.19 0.88 25.31 1.96 XA-3 1.83 3.07 0.28 1.12 1.57 0.01 0.01 48.25 0.91 3.29 1.97 XA-2 3.36 0.51 0.12 0.32 0.29 0.28 0.21 3.95 0.82 0.86 1.04 XA-1 2.50 0.57 0.36 0.73 0.48 0.77 0.37 2.78 0.72 1.29 0.93 Table 3. Enrichment factors of certain elements and related redox index
-
沉积过程中Ba、Mo、Ni、U、V元素与氧化还原条件密切相关[33],通常Ni/Co≥5、V/(V+Ni)≥0.54、V/Cr≥2、δU≥1被认为指示缺氧还原的沉积环境[18]。各井的Ni/Co值介于2.77~84.64,V/(V+Ni)介于0.68~0.96,V/Cr介于0.51~33.36,δU介于0.93~1.97(表3),这些数据反映多数样品处于强还原环境,仅有少数样品处于弱还原—弱氧化环境,相对而言Ni/Co的数据变化幅度过大且指示性略差。Mo、U对水体环境的变化十分敏感,可用于进一步区分水体环境,氧化环境下Mo和U的沉积量都很小,次氧化环境下U大于Mo的沉积量,导致沉积物中EFU>EFMo,还原性硫化环境下Mo的沉积量很大而U则会流失一部分,导致EFMo普遍大于EFU[33]。各井中EFMo普遍大于EFU,且元素更为富集的XJ1下部、HY1中部和XA1下部甚至处于硫化环境(图6a)。各井这些元素富集层段中的黄铁矿含量也较高(表1),根据元素富集系数与黄铁矿含量的交会图(图6b~f),除了V元素外其余元素也与黄铁矿有着较好的正相关性,V虽在生物、有机质以及还原性环境下易富集,但V极少像Mo、Ni、U等元素形成硫化物或进入其他硫化物中沉淀,在氧化—还原性环境里,V均有被黏土等细碎颗粒吸附的特性[32]。这些都表明强还原—硫化的沉积环境可能是这些元素富集的主要因素。
Figure 6. Intersection of the enrichment coefficient of different elements, pyrite, and total organic carbon (TOC)
生物体对Ba、Ni等元素的选择吸收可以使其富集[5],而有机质则作为生物活动及其生产力在地层中的直接表现,其吸附特性以及络合、胶合等化学作用也能富集Mo、U、V等元素[34]。上述各井元素富集层段皆有高有机质丰度的特征,与前述强还原—硫化的沉积环境一致,实际上这种沉积环境也有利于有机质的保存[18]。根据元素富集系数与TOC的交会图发现(图6g~k),当TOC小于10%时,TOC与各元素富集系数之间均有较好的正相关关系,反映了生物活动、有机质作用促进了元素的富集。但当TOC大于10%时这种关系表现不明显,说明当有机质丰度高到一定程度时可能对元素富集的帮助有限。也有研究表明油页岩中的有机质虽对许多金属元素有富集作用但所占比重很小(<15%),当生物繁盛、有机质作用提高时并不总是能够使这些金属元素的总量明显提升[35]。根据TOC与元素富集程度的变化曲线(图6l)[36],当处于还原性环境且TOC处于一定范围时,才与这些元素存在较好的正相关性。本次研究的样品大多数处于强还原—硫化的沉积环境,基本符合这一规律。
-
热水循环体系可以萃取、携带并提供非正常沉积来源的物质,其对元素的富集作用可以归结为:(1)提供并运移元素,热水中富含Ba、Mo、Sb、U、V、Cu、Ni、Zn等元素,同时热水循环系统也作为一个动力源,有多种扩散方式[16];(2)提供元素富集并沉淀的环境[37],热水中富含H2、H2S、CO2、CH4等还原性气体,使得热水扩散区域的水体呈现较强的还原性,大量的H2S也能促进硫化作用的进行[38];(3)促进生物、有机质作用,热水中丰富的营养物质以及生命元素吸引生物聚集并繁盛,较高的温度也能促进有机质对元素的富集作用[39]。因此,热水活动是湘西北下寒武统黑色岩系的多金属元素富集和成矿的重要原因[5]。热水流体喷出时会形成以金属硫化物、硫酸盐和碳酸盐为主的热液烟囱体及丘状体等近喷口沉积体,垮塌后也可搬迁至远端沉积。也可能在热水流体与海水的混合作用下部分物质发生化学聚沉或赋存于某些碎屑中,在羽流或低温弥散流、重力、洋流包括上升流等作用力的驱动下扩散和沉积,还可能被生物吸收迁移一段距离后再沉积[16]。热水活动及沉积作为一个多种地质要素(包括物源、水源、热源、动力源、时间、空间)组成的系统,扩散过程中会在不同区域(空间)、不同地层(时间)保留差异性的沉积记录[40]。
各井并未发现近喷口沉积体特征,其黑色岩系主要由各种细粒碎屑物质在深水环境下混合沉积形成。海相沉积的硅质来源和成因复杂,通常有热水、生物以及化学成因等[39],而黏土矿物是各类岩石风化的最终产物,在海相沉积中主要来源于远端沉积物或陆源物质的供给[41]。三口井的地球化学示踪已发现它们对热水活动的沉积响应有一定差异,虽然石英或SiO2的来源多样,且高度富集的Ba、Mo、Ni、U、V等元素受成岩及后期地质作用等多种因素的影响[5],但是通过分析它们分别与石英或SiO2、热水活动示踪指标、远端来源黏土矿物及Al2O3之间的关系,特别是对比在三口井中的区别仍然可以发现一定规律(表4)。在XJ1中Ba、Mo、Ni、U、V元素的富集特征非常相似(图5),它们与石英及SiO2含量的纵向上变化也基本一致(表1)。虽然相关系数不高,但是石英、SiO2与各热水活动示踪指标表现出一致的相关性,而与黏土矿物及Al2O3有一定负相关,且元素Ni、U、V的富集与热水活动示踪指标也有一定的相关性,部分的相关系数较高(表4)。相比之下处于深海盆地的XA1则完全不同,元素Ba、Mo、Ni、U、V仅与热水活动示踪指标LaN/CeN有一定的相关性,而与黏土矿物尤其是Al2O3有较好的相关性。石英、SiO2也与各热水活动示踪指标的相关性较差,而与黏土矿物及Al2O3高度负相关性(表4),显示了不一样的物质来源,说明更依赖远源碎屑的供给。HY1则介于这两井之间,元素与热水活动示踪指标、黏土矿物和Al2O3均有一定的相关性(表4)。
井 石英/SiO2/富集元素 与热水活动示踪指标的相关性 与黏土矿物的相关性 与Al2O3的相关性 Co/Zn LaN/CeN ΣREE ΣLREE/ΣHREE XJ1 石英/SiO2Ba/Mo/NiU/V -0.33\-0.21—\—\-0.45-0.17\-0.43 0.45\0.14—\—\0.180.11\0.38 -0.53\-0.67—\—\——\-0.40 -0.22\-0.40—\—\-0.26—\-0.80 -0.66\-0.24—\—\——\-0.34 -0.34\-0.35—\—\-0.16—\-0.74 HY1 —\-0.53—\—\——\-0.23 —\0.180.35\0.31\0.110.34\0.25 -0.33\-0.31—\—\——\— -0.15\-0.35—\—\——\— —\-0.34—\0.40\0.580.31\0.38 -0.26\-0.340.25\—\0.20—\— XA1 — —\—0.50\0.52\0.280.46\0.30 -0.59\-0.73—\—\——\— 0.10\——\—\——\— -0.72\-0.44—\—\—0.14\— -0.89\-0.730.47\0.44\0.470.57\0.25 注: —特指没有相关性(相关系数低于0.1),热水活动示踪指标Co/Zn、ΣREE、ΣLREE/ΣHREE与LaN/CeN的表现特征相反,前三者是值越小表明热水活动影响越强烈,而LaN/CeN则是值越大表明热水活动影响越强烈,下同。Table 4. Correlation among main minerals, enrichment elements, and geochemical indices tracing hydrothermal activity in different wells
三口井的整体表现与前述热水活动示踪的特征非常一致,受热水活动不同程度影响的井均能高度富集Ba、Mo、Ni、U、V等元素,但在受热水影响最大的XJ1中除U外其他元素富集系数普遍高于另外两井,同时这些元素分别富集于牛蹄塘组底部XJ1的下段,HY1的中段和XJ1的上段。这充分说明热水活动确实带来了大量富含Ba、Mo、Ni、U、V等元素的物质,促进了它们的富集,受影响依次减弱的XJ1、HY1与XA1在不同程度上接受这些物质的迁移沉积,并因此在富集特征上有一定差异,同时也说明XA1主要接受深海中内源碎屑的远距离迁移再沉积。
热水活动对各井沉积环境的影响也十分相似,XJ1的热水活动示踪指标与氧化还原指标之间高度相关(表5),其部分氧化还原指标值也较另外两井更高(表3),表明热水活动进一步强化了XJ1的还原性。HY1也有着类似的特征,但与热水活动示踪指标的相关系数较XJ1差(表5)。而XA1的氧化还原指标与热水活动示踪指标基本不相关(表5),其水体还原性可能明显更受深海盆地沉积环境的影响。因此热水可能在不同程度上改变了水体环境,在此背景下受热水活动影响最大的XJ1的氧化还原指标与TOC之间较好的相关性表明其有机质也得到了进一步的富集(表5)。
井 氧化还原条件 与TOC的相关性 与热水活动示踪指标的相关性 Co/Zn LaN/CeN ΣREE ΣLREE/ΣHREE XJ1 Ni/CoV/(V+Ni)V/CrδU 0.34\0.210.69\0.75 -0.55\-0.47-0.34\-0.61 0.75\0.670.80\0.66 -0.64\-0.60-0.43\— -0.88\-0.88-0.46\-0.70 HY1 —\——\0.19 -0.26\-0.50-0.12\— 0.61\0.800.44\0.19 -0.11\-0.16—\— -0.11\-0.49—\— XA1 —\0.13—\— —\——\— —\0.140.33\0.13 —\——\— -0.23\——\-0.21 Table 5. Correlation between redox and TOC and hydrothermal activity tracing indices
5.1. 元素富集特征
5.2. 富集的主要因素
5.3. 热水活动的影响
-
(1) 远离热水活动的各井显示有一定热水沉积地球化学特征,但整体仍说明沉积时热水活动的贡献很少,下寒武统黑色岩系主要由正常海相沉积碎屑构成,Co/Zn、LaN/CeN与ΣREE以及∑LREE/∑HREE是较好的热水活动示踪指标,斜坡带上的XJ1和HY1的示踪指标仍能表现出热水活动有自下而上逐渐减弱的趋势,而在深海盆地中的XA1则没有规律。
(2) 湘西北牛蹄塘组中Ba、Mo、Ni、U、V等元素高度富集,这些元素的富集是热水活动、强还原—硫化环境以及生物活动、有机质等许多因素共同作用的结果。强还原—硫化的沉积环境是元素富集的主要原因,生物活动和有机质作用在还原环境下也有利于元素富集,且有机质丰度在一定范围内与不同元素的富集均存在较好的正相关关系。
(3) 热水活动可以提供富含上述元素的物质基础,受影响依次减弱的XJ1、HY1与XA1不同程度接受物质的迁移沉积,并因此表现出不同的沉积响应特征。热水活动加强了周缘沉积环境的还原性,并有利于部分元素及有机质进一步富集,但随着距离增加这种影响逐渐削弱,XA1表现为更依赖于深海内源远端碎屑的供给以及深海环境。