Advanced Search
Volume 43 Issue 2
Apr.  2025
Turn off MathJax
Article Contents

MAO XiaoPing, CHEN XiuRong, LI Zhen, LI ShuXian, LI SuiSui, ZHU QiXuan. Shale Sedimentary Patterns and Organic Matter Enrichment Patterns of the Wufeng Formation - Longmaxi Formation in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(2): 701-733. doi: 10.14027/j.issn.1000-0550.2023.060
Citation: MAO XiaoPing, CHEN XiuRong, LI Zhen, LI ShuXian, LI SuiSui, ZHU QiXuan. Shale Sedimentary Patterns and Organic Matter Enrichment Patterns of the Wufeng Formation - Longmaxi Formation in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(2): 701-733. doi: 10.14027/j.issn.1000-0550.2023.060

Shale Sedimentary Patterns and Organic Matter Enrichment Patterns of the Wufeng Formation - Longmaxi Formation in the Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2023.060
Funds:

Guizhou Science and Technology Cooperation Strategic Prospecting, [2022]ZD003

  • Received Date: 2023-02-13
  • Accepted Date: 2023-09-01
  • Rev Recd Date: 2023-08-02
  • Available Online: 2023-09-01
  • Publish Date: 2025-04-10
  • Objective The depositional environmental conditions required for the enrichment of organic matter in black shale are not only related to shale oil and gas exploration, but also to other sedimentary minerals and geosciences. For example, bauxite, phosphate rock, manganese ore, and barite ore often coexist with black shale, and the development of black shale is an important environmental or ore prospecting symbol. It is also used as an important reference for paleoclimate, and even the most important evidence of ocean anoxic events is the development of black shale; the current carbon neutralization and carbon sequestration are also required to study carbon burial. Therefore, it is imporatnt to study the development of black shale and the enrichment mechanism of the contained organic matter. It is believed that organic-rich shale develops in deep-water environments, because the deeper the water body, the stronger the reducing environment, making it conducive to the preservation of organic matter. For example, deep-water continental shelves and deep-to-semi-deep lakes can develop high-quality source rocks. However, a large number of exploration practices have proven that these views may have problems and are contrary to modern ecology. Methods For this reason, this study took the Wufeng Formation-Longmaxi Formation shale in the Sichuan Basin as an example and fully combined the spatial distribution of primary productivity and the carbon fixation rate of different water bodies. Sedimentary facies and paleogeography, fossil development, salinity and other characteristics, and the distribution characteristics of shale and its organic matter in space and time were studied. Results The study found that the development of organic-rich shale requires three characteristics: shallow, continental, and sealed. (1) "Shallow" refers to the shallow water environment. The shallower the water body is, the higher the primary productivity and carbon fixation rate; shale is symbiotic with sapropelite, humic coal, evaporite rock, and other shallow water environments; it has cross-laminated, wavy shallow-water characteristic sedimentary structures, such as laminae and grain sequence texture. Judging from the characteristics of modern peat development, organic-rich peat developed only before or at the end of the transgression; the three major ice ages (regression) from the Proterozoic to the Early Paleozoic had a good correspondence with the enrichment of organic matter, confirming that more shallow swamps and lagoons are prone to appear in the regressive environment and are rich in organic matter; during transgression or high water body sedimentation, particularly in the period of maximum flooding, it is not conducive to the enrichment of organic matter, and the dense section is not rich in organic matter. (2) "Land" has two meanings: organic-rich shale is distributed near land and far from water, and the contribution of terrigenous organic matter. Shale oil and gas have the same pattern as coal seams, the horsetail pattern: the closer to the land, the richer the organic matter, which is consistent with the modern ocean primary productivity near the land and far water; the evolution and eruption age of the organic matter types of organic-rich shale and coal is consistent with that of land. The evolution process of organisms on land is consistent. From the Proterozoic to the Early Paleozoic, the lower organisms dominated the land, and the shale and coal were sapropelic. After the outbreak of higher plants on land, the organic matter type was mainly humic. (3) "Seal" means that the water body is well sealed. Closed lagoons and bays that are less affected by tidal currents and ocean currents are conducive to the enrichment of organic matter and most minerals, and this environment is a low-energy, stagnant, and strongly reducing environment. The more closed the water body is, the higher the carbon fixation rate, and most oil and gas shales are developed in restricted low-salinity, shallow water environments. Conclusions The conclusion is that (1) the carbon, nitrogen, and phosphorus in the water body are derived from exogenous sources, such as from the land; (2) the development of terrestrial organisms controls the organic matter types of shale and coal; (3) the middle and upper Yangtze region, particularly the organic-rich shale of the Wufeng Formation- Longmaxi Formation in the Sichuan Basin, developed in a regressive environment, which is a shallow-water marine-continental transitional facies environment such as lagoons and relatively closed bays restricted by ancient continents and underwater low uplifts. It is located at the edge of the basin rather than the center of sedimentation and subsidence; the limestones of the Linxiang Baota Formation and Guanyinqiao member were developed in the open sea area with normal salinity after transgression and the bay with moderate salinity respectively; (4) Finally, the depth of the water body was established. The enrichment law of organic matter was described by a two-dimensional table of sealing; three main controlling factors of organic matter enrichment in marine shale were proposed: sealed, shallow, land, water body with good sealing, shallow water body (<40 m), It is close to the land and has a rich supply of terrestrial organic matter.
  • [1] Lüning S, Craig J, Loydell D K, et al. Lower Silurian ‘hot shales’ in North Africa and Arabia: Regional distribution and depositional model[J]. Earth-Science Reviews, 2000, 49(1/2/3/4): 121-200.
    [2] 邱振,董大忠,卢斌,等. 中国南方五峰组—龙马溪组页岩中笔石与有机质富集关系探讨[J]. 沉积学报,2016,34(6):1011-1020.

    Qiu Zhen, Dong Dazhong, Lu Bin, et al. Discussion on the relationship between graptolite abundance and organic enrichment in shales from the Wufeng and Longmaxi Formation, South China[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1011-1020.
    [3] 耿良玉. 论上扬子区五峰页岩的陆表海成因:兼评远洋成因论[C]//中国古生物学会第十三、十四届学术年会论文选集. 合肥:安徽科学技术出版社,1984:103-114.

    Geng Liangyu. On the epicontinental sea origin of Wufeng shale in the Upper Yangtze region: And also on the theory of pelagic origin[C]//Proceedings of the 13th and 14th annual academic conference of the Chinese paleontological society. Hefei: Anhui Science and Technology Publishing House, 1984: 103-114.
    [4] 穆恩之. 论五峰页岩[J]. 古生物学报,1954,2(2):153-170.

    Mu Enzhi. On the Wufeng shale[J]. Acta Palaeontologica Sinica, 1954, 2(2): 153-170.
    [5] 穆恩之. 谈谈笔石的生活环境[J]. 地质知识,1957(6):22-25.

    Mu Enzhi. Talk about the living environment of graptolite[J]. Geology in China, 1957(6): 22-25.
    [6] 陈旭,丘金玉. 宜昌奥陶纪的古环境演变[J]. 地层学杂志,1986,10(1):1-15.

    Chen Xu, Qiu Jinyu. Ordovician palaeoenvironmental reconstruction of Yichang area, W. Hubei[J]. Journal of Stratigraphy, 1986, 10(1): 1-15.
    [7] 盛莘夫. 中国奥陶系划分和对比[M]. 北京:地质出版社,1974:53-68.

    Sheng Shenfu. Division and correlation of Ordovician in China[M]. Beijing: Geological Publishing House, 1974: 53-68.
    [8] 黄志诚,黄钟瑾,陈智娜. 下扬子区五峰组火山碎屑岩与放射虫硅质岩[J]. 沉积学报,1991,9(2):1-15.

    Huang Zhicheng, Huang Zhongjin, Chen Zhina. Volcanic rock and radiolarian silicilith of Wufeng Formation in Lower Yangtze region[J]. Acta Sedimentologica Sinica, 1991, 9(2): 1-15.
    [9] 姜在兴,赵澂林,熊继辉. 皖中下志留统的等深积岩及其地质意义[J]. 科学通报,1989,34(20):1575-1576.

    Jiang Zaixing, Zhao Chenglin, Xiong Jihui. Isobaric rocks of Lower Silurian in central Anhui and their geological significance[J]. Chinese Science Bulletin, 1989, 34(20): 1575-1576.
    [10] 张选阳. 层序地层学和海平面变化[J]. 岩相古地理,1989(1):1-10.

    Zhang Xuanyang. Sequence stratigraphy and sea level change[J]. Lithofacies Palaeogeography, 1989(1): 1-10.
    [11] 徐怀大. 陆相层序地层学研究中的某些问题[J]. 石油与天然气地质,1997,18(2):83-89.

    Xu Huaida. Some problems in study of continental sequence stratigraphy [J]. Oil & Gas Geology, 1997, 18(2): 83-89.
    [12] 顾家裕,郭彬程,张兴阳. 中国陆相盆地层序地层格架及模式[J]. 石油勘探与开发,2005,32(5):11-15.

    Gu Jiayu, Guo Bincheng, Zhang Xingyang. Sequence stratigraphic framework and model of the continental basins in China[J]. Petroleum Exploration and Development, 2005, 32(5): 11-15.
    [13] 郭旭升. 上扬子地区五峰组—龙马溪组页岩层序地层及演化模式[J]. 地球科学,2017,42(7):1069-1082.

    Guo Xusheng. Sequence stratigraphy and evolution model of the Wufeng-Longmaxi shale in the Upper Yangtze area[J]. Earth Science, 2017, 42(7): 1069-1082.
    [14] 蔡雄飞. 凝缩段的地质意义和作用[J]. 地层学杂志,1995,19(1):72-76.

    Cai Xiongfei. Geological significance and use of the condensed member[J]. Journal of Stratigraphy, 1995, 19(1): 72-76.
    [15] 肖传桃,姜衍文,朱忠德,等. 湖北宜昌地区奥陶纪层序地层及扬子地区五峰组沉积环境的讨论[J]. 高校地质学报,1996,2(3):339-347.

    Xiao Chuantao, Jiang Yanwen, Zhu Zhongde, et al. A study on Ordovician sequence stratigraphy in Yichang district, Hubei province and sedimentary environment of the Wufeng Formation in Yangtze area[J]. Geological Journal of China Universities, 1996, 2(3): 339-347.
    [16] 于炳松. 密集段的地球化学标志[J]. 矿物学报,1995,15(2):205-209.

    Yu Bingsong. Geochemical markers of the condensed sections[J]. Acta Mineralogica Sinica, 1995, 15(2): 205-209.
    [17] 王治平,张庆,刘子平,等. 斜坡型强非均质页岩气藏高效开发技术:以川南威远地区龙马溪组页岩气藏为例[J]. 天然气工业,2021,41(4):72-81.

    Wang Zhiping, Zhang Qing, Liu Zi-ping, et al. Efficient development technology slope-type strongly heterogeneous shale gas reservoirs: A case study on the Longmaxi Formation shale gas reservoir in the Weiyuan area of the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(4): 72-81.
    [18] 王同,张克银,熊亮,等. 四川自贡地区五峰组—龙马溪组下段古地貌刻画及其油气意义[J]. 石油实验地质,2018,40(6):764-770.

    Wang Tong, Zhang Keyin, Xiong Liang, et al. Paleogeomorphology restoration of Wufeng Formation-Lower member of Longmaxi Formation in Zigong area of Sichuan province and its oil and gas significance[J]. Petroleum Geology & Experiment, 2018, 40(6): 764-770.
    [19] 聂海宽,金之钧,马鑫,等. 四川盆地及邻区上奥陶统五峰组—下志留统龙马溪组底部笔石带及沉积特征[J]. 石油学报,2017,38(2):160-174.

    Nie Haikuan, Jin Zhijun, Ma Xin, et al. Graptolites zone and sedimentary characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 2017, 38(2): 160-174.
    [20] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

    Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
    [21] Zou C N, Qiu Z, Poulton S W, et al. Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538.
    [22] Shen J H, Pearson A, Henkes G A, et al. Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation[J]. Nature Geoscience, 2018, 11(7): 510-514.
    [23] Hammarlund E U, Dahl T W, Harper D A T, et al. A sulfidic driver for the End-Ordovician mass extinction[J]. Earth and Planetary Science Letters, 2012, 331-332: 128-139.
    [24] 金性春. 深海沉积物的来源、分类与矿物组成[J]. 海洋通报,1981(6):51-59.

    Jin Xingchun. Source, classification and mineral composition of deep sea sediments[J]. Marine Science Bulletin, 1981(6): 51-59.
    [25] 李道琪. 从暗色沉积型硅质岩的形成环境看有机成矿[J]. 石油实验地质,1984,6(2):142-145.

    Li Daoqi. On organic origin of ore deposit in view of the sedimentary environment of dark siliceous rocks of sedimentary type[J]. Experiment Petroleum Geology, 1984, 6(2): 142-145.
    [26] Berry W B N, Boucot A J. Silurian graptolite depth zonation[C]//Proceedings of the 24th international geological congress, Montreal, section7, paleontology. 1972: 59-65.
    [27] 陈旭. 论笔石的深度分带[J]. 古生物学报,1990,29(5):507-526.

    Chen Xu. Graptolite depth zonation[J]. Acta Palaeontologica Sinica, 1990, 29(5): 507-526.
    [28] 李浩,陆建林,李瑞磊,等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学,2017,42(10):1774-1786.

    Li Hao, Lu Jianlin, Li Ruilei, et al. Generation paleoenvironment and its controlling factors of Lower Cretaceous lacustrine hydrocarbon source rocks in Changling Depression, south Songliao Basin[J]. Earth Science, 2017, 42(10): 1774-1786.
    [29] 张永生,杨玉卿,漆智先,等. 江汉盆地潜江凹陷古近系潜江组含盐岩系沉积特征与沉积环境[J]. 古地理学报,2003,5(1):29-35.

    Zhang Yongsheng, Yang Yuqing, Qi Zhixian, et al. Sedimentary characteristics and environments of the salt-bearing series of Qianjiang Formation of the Paleogene in Qianjiang Sag of Jianghan Basin[J]. Journal of Palaeogeography, 2003, 5(1): 29-35.
    [30] 王春连,刘成林,胡海兵,等. 江汉盆地江陵凹陷南缘古新统沙市组四段含盐岩系沉积特征及其沉积环境意义[J]. 古地理学报,2012,14(2):165-175.

    Wang Chunlian, Liu Chenglin, Hu Haibing, et al. Sedimentary characteristics and its environmental significance of salt-bearing strata of the member 4 of Paleocene Shashi Formation in southern margin of Jiangling Depression, Jianghan Basin[J]. Journal of Palaeogeography, 2012, 14(2): 165-175.
    [31] 刘平略,周厚清,康桂云. 松辽盆地元素分布及其与沉积环境的关系[J]. 大庆石油地质与开发,1986,5(2):11-15,18.

    Liu Pinglue, Zhou Houqing, Kang Guiyun. Distribution of elements and its relation with sedimentary environment in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 1986, 5(2): 11-15, 18.
    [32] 邓宏文,钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科学技术出版社,1993:111-115.

    Deng Hongwen, Qian Kai. Sedimentary geochemistry and environmental analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993: 111-115.
    [33] 吴陈君,刘新社,文志刚,等. 黔北地区牛蹄塘组页岩有机质富集及有机质孔隙发育机制研究[J]. 地学前缘,2023,30(3):101-109.

    Wu Chenjun, Liu Xinshe, Wen Zhigang, et al. Mechanism of organic matter enrichment and organic pore development in the lower Cambrian Niutitang shales in northern Guizhou[J]. Earth Science Frontiers, 2023, 30(3): 101-109.
    [34] Wilde P, Quinby-Hunt M S, Erdtmann B D. The whole-rock cerium anomaly: A potential indicator of eustatic sea-level changes in shales of the anoxic facies[J]. Sedimentary Geology, 1996, 101(1/2): 43-53.
    [35] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules[J]. Paleoceanography, 1990, 5(5): 823-833.
    [36] Nicholls G D. Trace elements in sediments: An assessment of their possible utility as depth indicators[J]. Marine Geology, 1967, 5(5/6): 539-555.
    [37] 拜文华,王强,孙莎莎,等. 五峰组—龙马溪组页岩地化特征及沉积环境:以四川盆地西南缘为例[J]. 中国矿业大学学报,2019,48(6):1276-1289.

    Bai Wenhua, Wang Qiang, Sun Shasha, et al. Geochemical characteristics and sedimentary environment of the Wufeng-Longmaxi shales: A case study from southwestern margin of the Sichuan Basin[J]. Journal of China University of Mining & Technology, 2019, 48(6): 1276-1289.
    [38] 张茜,王剑,余谦,等. 川西南构造复杂区龙马溪组泥页岩地球化学特征及古环境[J]. 新疆石油地质,2017,38(4):399-406.

    Zhang Qian, Wang Jian, Yu Qian, et al. Geochemical features and paleoenvironment of shales in Longmaxi Formation of complicated structure area, southwestern Sichuan Basin[J]. Xinjiang Petroleum Geology, 2017, 38(4): 399-406.
    [39] 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405-414.

    Xiong Xiaohui, Xiao Jiafei. Geochemical indicators of sedimentary environments: A summary[J]. Earth and Environment, 2011, 39(3): 405-414.
    [40] Benedict G L, Walker K R. Paleobathymetric analysis in Paleozoic sequences and its geodynamic significance[J]. American Journal of Science, 1978, 278(4): 579-607.
    [41] 俞焰,刘德富,杨正健,等. 千岛湖溶解氧与浮游植物垂向分层特征及其影响因素[J]. 环境科学,2017,38(4):1393-1402.

    Yu Yan, Liu Defu, Yang Zhengjian, et al. Vertical stratification characteristics of dissolved oxygen and phytoplankton in Thousand-island Lake and their influencing factors[J]. Environmental Science, 2017, 38(4): 1393-1402.
    [42] 吴锋,战金艳,邓祥征,等. 中国湖泊富营养化影响因素研究:基于中国22个湖泊实证分析[J]. 生态环境学报,2012,21(1):94-100.

    Wu Feng, Zhan Jinyan, Deng Xiangzheng, et al. Influencing factors of lake eutrophication in China: A case study in 22 lakes in China[J]. Ecology and Environmental Sciences, 2012, 21(1): 94-100.
    [43] Tait R V. Elements of marine ecology: An introductory course[M]. 3rd ed. London: Butterworths, 1981: 207-218.
    [44] 林志裕,童金炉,陈敏,等. 夏季黄、东海初级生产力的分布及其变化[J]. 同位素,2011,24(增刊1):95-101.

    Lin Zhiyu, Tong Jinlu, Chen Min, et al. Distribution of primary production in the Yellow Sea and the East China Sea in summer[J]. Journal of Isotopes, 2011, 24(Suppl.1): 95-101.
    [45] Sugimura Y, Suzuki Y. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample[J]. Marine Chemistry, 1988, 24(2): 105-131.
    [46] Boyd P W, Newton P P. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1999, 46(1): 63-91.
    [47] Mooy B A S V, Keil R G, Devol A H. Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification[J]. Geochimica et Cosmochimica Acta, 2002, 66(3): 457-465.
    [48] Arculus R J, Ishizuka O, Bogus K, et al. Expedition 351 summary[M]//Arculus R J, Ishizuka O, Bogus K, et al. Proceedings of the international ocean discovery program, expedition 351: Izu-Bonin-Mariana arc origins. College Station: International Ocean Discovery Program, 2015: 1-26.
    [49] Harris R N, Sakaguchi A, Petronotis K, et al. Expedition 344 summary[M]//Harris R N, Sakaguchi A, Petronotis K, et al. Proceedings of the international ocean discovery program volume 344. Station: Integrated Ocean Drilling Program, 2013: 1-26.
    [50] 刘军,于志刚,臧家业,等. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展,2015,30(5):564-578.

    Liu Jun, Yu Zhigang, Zang Jiaye, et al. Distribution and budget of organic carbon in the Bohai and Yellow Seas[J]. Advances in Earth Science, 2015, 30(5): 564-578.
    [51] 段晓男,王效科,逯非,等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报,2008,28(2):463-469.

    Duan Xiaonan, Wang Xiaoke, Lu Fei, et al. Carbon sequestration and its potential by wetland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2): 463-469.
    [52] 郑清,黎云祥,朱广伟,等. 夏季强降雨期间千岛湖有机碳的时空分布特征及影响因素[J]. 环境科学研究,2022,35(4):896-907.

    Zheng Qing, Li Yunxiang, Zhu Guangwei, et al. Spatio-temporal distribution and driving factors of organic carbon in Qiandaohu reservoir during summer storm[J]. Research of Environmental Sciences, 2022, 35(4): 896-907.
    [53] Bade D L. Ecosystem carbon cycles: Whole-lake fluxes estimated with multiple isotopes[D]. Wisconsin: University of Wisconsin, 2004.
    [54] Cole J J, Carpenter S R, Kitchell J F, et al. Pathways of organic carbon utilization in small lakes: Results from a whole-lake 13C addition and coupled model[J]. Limnology and Oceanography, 2002, 47(6): 1664-1675.
    [55] Wetzel R G. Limnology: Lake and river ecosystems[M]. 3rd ed. San Diego: Academic Press, 2001: 10-20.
    [56] 张明亮,齐占会,李斌,等. 陆源有机碳对莱州湾浮游动物能量贡献的初步研究[J]. 海洋渔业,2018,40(3):319-325.

    Zhang Mingliang, Qi Zhanhui, Li Bin, et al. A preliminary study on energy contribution of terrestrial organic carbon to zooplankton in the Laizhou Bay[J]. Marine Fisheries, 2018, 40(3): 319-325.
    [57] 马文涛,修鹏,于溢,等. 南海溶解有机碳生产的定量评估[J]. 中国科学:地球科学,2022,52(3):559-573.

    Ma Wentao, Xiu Peng, Yu Yi, et al. Production of dissolved organic carbon in the South China Sea: A modeling study[J]. Science China: Earth Sciences, 2022, 52(3): 559-573.
    [58] 李强,周道玮,陈笑莹. 地上枯落物的累积、分解及其在陆地生态系统中的作用[J]. 生态学报,2014,34(14):3807-3819.

    Li Qiang, Zhou Daowei, Chen Xiaoying. The accumulation, decomposition and ecological effects of above-ground litter in terrestrial ecosystem[J]. Acta Ecologica Sinica, 2014, 34(14): 3807-3819.
    [59] 曹雨虹,刘易,张艺帆,等. 南亚热带滨海气候因子对3种林分类型凋落物的影响[J]. 中南林业科技大学学报,2021,41(10):122-130.

    Cao Yuhong, Liu Yi, Zhang Yifan, et al. Effects of climatic factor on litter of three forest types in south subtropical coastal area[J]. Journal of Central South University of Forestry & Technology, 2021, 41(10): 122-130.
    [60] 王雯雯,陈俊伊,姜霞,等. 呼伦湖表层沉积物有机质的释放效应分析[J]. 环境科学研究,2021,34(4):812-823.

    Wang Wenwen, Chen Junyi, Jiang Xia, et al. Release effect of surface sediment organic matters in Lake Hulun[J]. Research of Environmental Sciences, 2021, 34(4): 812-823.
    [61] Jin J, Wang J, Meng Y, et al. Main controlling factors and deve-lopment model of the oil shale deposits in the Late Permian Lucaogou Formation, Junggar Basin (NW China)[J]. ACS Earth and Space Chemistry, 2022, 6(4): 1080-1094.
    [62] 李胜荣,高振敏. 湘黔地区牛蹄塘组黑色岩系稀土特征:兼论海相热水沉积岩稀土模式[J]. 矿物学报,1995,15(2):225-229.

    Li Shengrong, Gao Zhenmin. REE characteristics of black rock series of the Lower Cambrian Niutitang Formation in Hunan-Guizhou provinces, China, with a discussion on the REE patterns in marine hydrothermal sediments[J]. Acta Mineralogica Sinica, 1995, 15(2): 225-229.
    [63] 江永宏,李胜荣. 湘、黔地区前寒武—寒武纪过渡时期硅质岩生成环境研究[J]. 地学前缘,2005,12(4):622-629.

    Jiang Yonghong, Li Shengrong. A study of the fluid environment of silicalite of transitional Precambrian-Cambrian age in Hunan and Guizhou provinces[J]. Earth Science Frontiers, 2005, 12(4): 622-629.
    [64] 赵文智,李建忠,杨涛,等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发,2016,43(4):499-510.

    Zhao Wenzhi, Li Jianzhong, Yang Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.
    [65] 江辉煌,刘素美. 渤海沉积物中磷的分布与埋藏通量[J]. 环境科学学报,2013,33(1):125-132.

    Jiang Huihuang, Liu Sumei. Distribution and burial flux of phosphorus in sediments of the Bohai Sea[J]. Acta Scientiae Circumstantiae, 2013, 33(1): 125-132.
    [66] Moore C M, Mills M M, Achterberg E P, et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability[J]. Nature Geoscience, 2009, 2(12): 867-871.
    [67] 胡序朋,李芯芯,徐成达,等. 浙江近岸海域悬浮颗粒物中磷的赋存形态及分布特征研究[J]. 海洋学报,2021,43(4):106-121.

    Hu Xupeng, Li Xinxin, Xu Chengda, et al. Characteristics of phosphorus speciation and distribution in suspended particulate matter in the Zhejiang coastal area[J]. Haiyang Xuebao, 2021, 43(4): 106-121.
    [68] Reimers C, Suess E. Spatial and temporal patterns of organic matter accumulation on the Peru continental margin[M]//Suess E, Thiede J. Coastal upwelling: Its sediment record. New York: Plenum Press, 1983: 311-337.
    [69] 陈旭,肖承协,陈洪冶. 华南五峰期笔石动物群的分异及缺氧环境[J]. 古生物学报,1987,26(3):326-338.

    Chen Xu, Xiao Chengxie, Chen Hongye. Wufengian (ashgillian) graptolite faunal differentiation and anoxic environment in South China[J]. Acta Palaeontologica Sinica, 1987, 26(3): 326-338.
    [70] 戎嘉余,陈旭. 华南晚奥陶世的动物群分异及生物相、岩相分布模式[J]. 古生物学报,1987,26(5):507-535.

    Rong Jiayu, Chen Xu. Faunal differentiation, biofacies and lithofacies pattern of Late Ordovician (ashgillian) in South China[J]. Acta Palaeontologica Sinica, 1987, 26(5): 507-535.
    [71] 成汉钧,王玉忠. 五峰期上扬子淡化海成因之探讨[J]. 地层学杂志,1991,15(2):109-114.

    Cheng Hanjun, Wang Yuzhong. A discussion on the genesis of the Wufengian desalinated sea in the Upper Yangtze Sea[J]. Journal of Stratigraphy, 1991, 15(2): 109-114.
    [72] 傅丛,丁华,陈文敏. 我国油页岩与煤共生资源分布及综合利用[J]. 煤质技术,2021,36(3):1-13.

    Fu Cong, Ding Hua, Chen Wenmin. Resources distribution and comprehensive utilization of oil shale and coal symbiosis in China[J]. Coal Quality Technology, 2021, 36(3): 1-13.
    [73] 柳青青,迟清华,王学求,等. 中国东部大陆尺度地球化学走廊带碳酸盐岩稀土元素分布特征与影响因素[J]. 地学前缘,2018,25(4):99-115.

    Liu Qingqing, Chi Qinghua, Wang Xue-qiu, et al. Distribution and influencing factors of rare earth elements in carbonate rocks along three continental-scale transects in eastern China[J]. Earth Science Frontiers, 2018, 25(4): 99-115.
    [74] 崔海峰,田雷,张年春,等. 塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征[J]. 天然气地球科学,2016,27(4):577-583.

    Cui Haifeng, Tian Lei, Zhang Nianchun, et al. Distribution characteristics of the source rocks from Cambrian Yuertusi Formation in the Southwest Depression of Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(4): 577-583.
    [75] 侯宇光,何生,杨香华,等. 澳大利亚Bonaparte盆地大陆边缘裂陷期局限海相页岩发育特征与模式[J]. 现代地质,2015,29(1):109-118.

    Hou Yuguang, He Sheng, Yang Xianghua, et al. Characteristics and development model of restricted sea shale at continental margin rifting stage in Bonaparte Basin, Australia[J]. Geoscience, 2015, 29(1): 109-118.
    [76] 彭俊文. 氧化还原敏感元素在海相沉积物中富集的其他控制因素:海平面波动[J]. 中国科学:地球科学,2022,52(11):2254-2274.

    Peng Junwen. What besides redox conditions? Impact of sea-level fluctuations on redox-sensitive trace-element enrichment patterns in marine sediments[J]. Science China: Earth Sciences, 2022, 52(11): 2254-2274.
    [77] Blackbourn G A, Tevzadze N, Janiashvili A, et al. South caucasus palaeogeography and prospectivity: Elements of petroleum systems from the black sea to the Caspian[J]. Journal of Petroleum Geological Publishing House, 2021, 44(3): 237-257.
    [78] Woolnough W G. Sedimentation in barred basins, and source rocks of oil[J]. AAPG Bulletin, 1937, 21(9): 1101-1157.
    [79] Pan C H. Non-marine origin of petroleum in North Shensi, and the Cretaceous of Szechuan, China[J]. AAPG Bulletin, 1941, 25(11): 2058-2068.
    [80] 维谢洛夫斯基. 油页岩[M]. 北京:地质出版社,1955:90-92.

    Веселовский B C. Oil shale[M]. Beijing: Geology Press, 1955: 90-92.
    [81] 翁文波. 地球形态的发展[M]. 北京:地质出版社,1958:168-172.

    Weng Wenbo. The development of earth form[M]. Beijing: Geology Press, 1958: 168-172.
    [82] 孙大鵬. 试论油页岩与石油间的成因联系[J]. 成都理工大学学报(自然科学版),1963(2):83-94.

    Sun Dapeng. On the genetic relationship between oil shale and oil[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 1963(2): 83-94.
    [83] 张爱云,武大茂,郭丽娜,等. 海相黑色页岩建造地球化学与成矿意义[M]. 北京:科学出版社,1987:22-25.

    Zhang Aiyun, Wu Damao, Guo Lina, et al. Geochemistry characteristics and its metallogenetic implications of the marine dark shale structure[M]. Beijing: Science Press, 1987: 22-25.
    [84] 姜在兴. 沉积学[M]. 北京:石油工业出版社,2003:255-256.

    Jiang Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 255-256.
    [85] 邹才能,陶士振,侯连华,等. 非常规油气地质学[M]. 北京:地质出版社,2014:277-278.

    Zou Caineng, Tao Shizhen, Hou Lianhua, et al. Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2014: 277-278.
    [86] Picard M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195.
    [87] 裴浩翔,李延河,付勇,等. 贵州铜仁高地"大塘坡式"锰矿的成矿机制:硫、碳同位素制约[J]. 地球学报,2020,41(5):651-662.

    Pei Haoxiang, Li Yanhe, Fu Yong, et al. Metallogenic mechanism of “Datangpo type” manganese deposits in Gaodi, Guizhou province: Constrains from sulfur and carbon isotopes[J]. Acta Geoscientica Sinica, 2020, 41(5): 651-662.
    [88] 刘建中,王泽鹏,杜远生,等. 贵州开阳地区富磷矿成矿作用过程与找矿潜力[J]. 贵州地质,2019,36(1):10-17.

    Liu Jianzhong, Wang Zepeng, Du Yuansheng, et al. Mineralization process and prospecting potential of rich phosphorus deposits in Kaiyang, Guizhou[J]. Guizhou Geology, 2019, 36(1): 10-17.
    [89] 李艳芳,邵德勇,吕海刚,等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报,2015,36(12):1470-1483.

    Li Yanfang, Shao Deyong, Haigang Lü, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483.
    [90] 冯洪真,俞剑华,方一亭,等. 五峰期上扬子海古盐度分析[J]. 地层学杂志,1993,17(3):179-185.

    Feng Hongzhen, Yu Jianhua, Fang Yiting, et al. Analysis of paleosalinity during the Wufeng age in Upper Yangtze Sea[J]. Journal of Stratigraphy, 1993, 17(3): 179-185.
    [91] 许靖华. 陆上和海底的远洋沉积物[M]//沉积作用与大地构造. 北京:地质出版社,1985:75-82. [

    Xu Jinghua. Pelagic sediments on land and sea floor[M]//Sedimentation and tectonics. Beijing: Geological Publishing House, 1985: 75-82.]
    [92] 梁超,姜在兴,杨镱婷,等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发,2012,39(6):691-698.

    Liang Chao, Jiang Zaixing, Yang Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698.
    [93] Takahashi K. Siliceous microplankton fluxes in the eastern subarctic pacific, 1982-1986[J]. Journal of Oceanography, 1997, 53(5): 455-466.
    [94] 杜永灯,沈俊,冯庆来. 放射虫在生产力和烃源岩研究中的应用[J]. 地球科学:中国地质大学学报,2012,37(增刊2):147-155.

    Du Yongdeng, Shen Jun, Feng Qinglai. Applications of radiolarian for productivity and hydrocarbon-source rocks[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(Suppl.2): 147-155.
    [95] 胡维芬,张兰兰,陈木宏,等. 南海断面春季活体放射虫生态分布及其对环境的响应[J]. 中国科学:地球科学,2015,45(1):83-98.

    Hu Weifen, Zhang Lanlan, Chen Muhong, et al. Distribution of living radiolarians in spring in the South China Sea and its responses to environmental factors[J]. Science China: Earth Sciences, 2015, 45(1): 83-98.
    [96] 陈洪德,李洁,张成弓,等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报,2011,27(8):2213-2229.

    Chen Hongde, Li Jie, Zhang Chenggong, et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2213-2229.
    [97] 董大忠,邱振,张磊夫,等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报,2021,39(1):29-45.

    Dong Dazhong, Qiu Zhen, Zhang Leifu, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45.
    [98] 李文厚,张倩,陈强,等. 鄂尔多斯盆地及周缘地区早古生代沉积演化[J]. 西北大学学报(自然科学版),2020,50(3):456-479.

    Li Wenhou, Zhang Qian, Chen Qiang, et al. Sedimentary evolution of Early Paleozoic in Ordos Basin and its adjacent areas[J]. Journal of Northwest University (Natural Science Edition), 2020, 50(3): 456-479.
    [99] 张茜,王剑,余谦,等. 扬子地台西缘盐源盆地下志留统龙马溪组黑色页岩硅质成因及沉积环境[J]. 地质论评,2018,64(3):610-622.

    Zhang Qian, Wang Jian, Yu Qian, et al. The silicon source and sedimentary environment of the Lower Silurian Longmaxi Formation in Yanyuan Basin, western edge of the Yangtze Platform[J]. Geological Review, 2018, 64(3): 610-622.
    [100] 王登,周豹,冷双梁,等. 鄂西咸丰地区五峰组—龙马溪组硅质岩地球化学特征及地质意义[J]. 岩性油气藏,2022,34(1):52-62.

    Wang Deng, Zhou Bao, Leng Shuangliang, et al. Geochemical characteristics and geological significance of siliceous rocks of Wufeng-Longmaxi Formation in Xianfeng area, western Hubei[J]. Lithologic Reservoirs, 2022, 34(1): 52-62.
    [101] 卢龙飞,秦建中,申宝剑,等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘,2018,25(4):226-236.

    Lu Longfei, Qin Jianzhong, Shen Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236.
    [102] 苏德辰,吕洪波,章雨旭,等. 碳酸盐岩中燧石条带成因争鸣:以北京西山中元古界雾迷山组为例[J]. 地质论评,2022,68(5):1605-1620.

    Su Dechen, Hongbo Lü, Zhang Yuxu, et al. An arguement on origin of chert bands in carbonate rocks: A case study of the Mesoproterozoic Wumishan Formation in the Western Hills of Beijing[J]. Geological Review, 2022, 68(5): 1605-1620.
    [103] 杨勤生. 滇东北新发现龙马溪组页岩气储层研究[J]. 云南地质,2012,31(3):285-291.

    Yang Qinsheng. A study on the shale gas reservior discovered recently in Longmaxi Formation of NE Yunnan[J]. Yunnan Geology, 2012, 31(3): 285-291.
    [104] 邓宝. 东秦岭地区笔石地层及有关矿产[J]. 西安矿业学院学报,1984(2):20-26.

    Deng Bao. Graptolite strata and related minerals in the East Qinling region[J]. Journal of Xi'an University of Science and Technology, 1984(2): 20-26.
    [105] 王峰,陈娅鑫,贾志刚. 安康市南部石煤成矿地质条件分析[J]. 煤炭加工与综合利用,2019(1):65-68.

    Wang Feng, Chen Yaxin, Jia Zhigang. Analysis of geological conditions of stone-like coal mineralization in the southern part of Ankang city[J]. Coal Processing & Comprehensive Utilization, 2019(1): 65-68.
    [106] 杨兆彪,易同生,李庚,等. 海相煤系气成藏特征及其有利开发层段:以黔北威宁龙参1井下石炭统祥摆组为例[J]. 煤炭学报,2021,46(8):2454-2465.

    Yang Zhaobiao, Yi Tong-sheng, Li Geng, et al. Reservoir-forming characteristic of marine coal-measure gas and its favorable development segments: Taking the Carboniferous Xiangbai Formation in well Longcan 1 in Weining, north Guizhou as an example[J]. Journal of China Coal Society, 2021, 46(8): 2454-2465.
    [107] 吴诗情,郭建华,李智宇,等. 中国南方海相地层牛蹄塘组页岩气"甜点段"识别和优选[J]. 石油与天然气地质,2020,41(5):1048-1059.

    Wu Shiqing, Guo Jianhua, Li Zhiyu, et al. Identification and optimization of shale gas “sweet spots” in marine Niutitang Formation, South China[J]. Oil & Gas Geology, 2020, 41(5): 1048-1059.
    [108] 兰俊. 海陆过渡相煤系页岩气成藏条件及储层特征:以通许地区石炭—二叠系为例[J]. 石油地质与工程,2021,35(5):28-32.

    Lan Jun. Reservoir forming conditions and reservoir characteristics of coal measure shale gas in marine continental transitional facies: By taking Carboniferous-Permian in Tongxu area as an example[J]. Petroleum Geology and Engineering, 2021, 35(5): 28-32.
    [109] 于深洋,李越,张园园. 云南大关志留系龙马溪组灰岩层显示的台缘相特征[J]. 地层学杂志,2016,40(2):162-167.

    Yu Shenyang, Li Yue, Zhang Yuanyuan. Limestone beds of the Silurian Lungmachi Formation in Daguan, Yunnan and their platform margin implications[J]. Journal of Stratigraphy, 2016, 40(2): 162-167.
    [110] 贾立龙,舒建生,姜在炳,等. 黔西海陆过渡相煤系页岩气成藏条件及储层特征研究[J]. 煤炭科学技术,2021,49(10):201-207.

    Jia Lilong, Shu Jiansheng, Jiang Zaibing, et al. Study on formation conditions and reservoir characteristics of marine-terrigenous facies coal measures shale gas in western Guizhou[J]. Coal Science and Technology, 2021, 49(10): 201-207.
    [111] 王怀洪,尹露生,朱裕振,等. 黄河北地区晚古生代岩相古地理与煤系烃源岩发育[J]. 中国煤炭地质,2021,33(1):13-21.

    Wang Huaihong, Yin Lusheng, Zhu Yuzhen, et al. Paleozoic lithofacies, paleogeography and coal measures source rock development in Huanghebei region[J]. Coal Geology of China, 2021, 33(1): 13-21.
    [112] 史彪,吴丰,李树新,等. 海陆过渡相优质页岩测井识别:以鄂尔多斯盆地大宁—吉县地区山2段为例[J]. 地质科技通报,2023,42(2):115-126.

    Shi Biao, Wu Feng, Li Shuxin, et al. Logging identification of high-quality shale of the marine-continent transitional facies: An example of the Shan 2 member of the Daning-Jixian area in the Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 115-126.
    [113] 曹军,刘成林,马寅生,等. 柴达木盆地东部石炭系海陆过渡相煤系页岩气地球化学特征及成因[J]. 地学前缘,2016,23(5):158-166.

    Cao Jun, Liu Chenglin, Ma Yinsheng, et al. Geochemical characteristics and genesis of shale gas for Carboniferous marine-continental transitional facies coal measure strata in eastern Qaidam Basin[J]. Earth Science Frontiers, 2016, 23(5): 158-166.
    [114] 阮蕴博,周刚,霍飞,等. 川中地区中三叠统雷口坡组三段源储特征及配置关系[J]. 岩性油气藏,2022,34(5):139-151.

    Ruan Yunbo, Zhou Gang, Huo Fei, et al. Source-reservoir characteristics and configuration of the Third member of Middle Triassic Leikoupo Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(5): 139-151.
    [115] 王剑,付修根,李忠雄,等. 北羌塘盆地油页岩形成环境及其油气地质意义[J]. 沉积与特提斯地质,2010,30(3):11-17.

    Wang Jian, Fu Xiugen, Li Zhongxiong, et al. Formation and significance of the oil shales from the north Qiantang Basin[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(3): 11-17.
    [116] 刘本培. 地史学教程[M]. 北京:地质出版社,1986:181-182.

    Liu Benpei. Geohistory course[M]. Beijing: Geological Publishing House, 1986: 181-182.
    [117] McCollum L B. A shallow epeiric sea interpretation for an offshore Middle Devonian black shale facies in eastern North America[C]//Proceedings of the 2nd international symposium on the Devonian system. AAPG, 1988: 347-355.
    [118] Wilson R D, Schieber J. Sedimentary facies and depositional environment of the Middle Devonian Geneseo Formation of New York, U.S.A.[J]. Journal of Sedimentary Research, 2015, 85(11): 1393-1415.
    [119] Birgenheier L P, Horton B, McCauley A D, et al. A depositional model for offshore deposits of the Lower Blue Gate member, Mancos Shale, Uinta Basin, Utah, USA[J]. Sedimentology, 2017, 64(5): 1402-1438.
    [120] Smith L B, Schieber J, Wilson R D. Shallow-water onlap model for the deposition of Devonian black shales in New York, USA[J]. Geology, 2019, 47(3): 279-283.
    [121] 金值民,谭秀成,唐浩,等. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征:以塔里木盆地西北部寒武系玉尔吐斯组为例[J]. 石油勘探与开发,2020,47(3):476-489.

    Jin Zhimin, Tan Xiucheng, Tang Hao, et al. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: A case study of Cambrian Yuertus Formation in northwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 476-489.
    [122] 郭彪,邵龙义,马施民,等. 海拉尔盆地群下白垩统层序格架内聚煤特征与成煤模式[J]. 煤田地质与勘探,2017,45(1):14-19.

    Guo Biao, Shao Longyi, Ma Shimin, et al. Coal-accumulating and coal-forming patterns within sequence stratigraphy framework of Early Cretaceous in Hailar basins[J]. Coal Geology & Exploration, 2017, 45(1): 14-19.
    [123] 黄铁栋,王平,李慧,等. 沙尔湖煤田巨厚煤层异地成煤分析[J]. 新疆地质,2011,29(3):324-326.

    Huang Tiedong, Wang Ping, Li Hui, et al. The analysis of heterotopic formation about extremely-thick coal seam in shaerhu coalfield[J]. Xinjiang Geology, 2011, 29(3): 324-326.
    [124] 吴冲龙,汪新庆,刘刚,等. 抚顺盆地构造演化动力学研究[J]. 中国科学:地球科学,2001,31(6):477-485.

    Wu Chonglong, Wang Xinqing, Liu Gang, et al. Study on dynamics of tectonic evolution in the Fushun Basin, northeast China[J]. Science China: Earth Sciences, 2001, 31(6): 477-485.
    [125] 王东东,邵龙义,刘海燕,等. 超厚煤层成因机制研究进展[J]. 煤炭学报,2016,41(6):1487-1497.

    Wang Dongdong, Shao Longyi, Liu Haiyan, et al. Research progress in formation mechanisms of super-thick coal seam[J]. Journal of China Coal Society, 2016, 41(6): 1487-1497.
    [126] 邱震杰,任文忠,陈家良. 煤田地质学[M]. 北京:煤炭工业出版社,1993:139.

    Qiu Zhenjie, Ren Wenzhong, Chen Jialiang. Coal field geology[M]. Beijing: China Coal Industry Publishing House, 1993: 139.
    [127] 拜文华,吴彦斌,高智梁,等. 浅湖—半深湖相湖湾环境油页岩成矿富集机理研究[J]. 地质调查与研究,2010,33(3):207-214.

    Bai Wenhua, Wu Yanbin, Gao Zhiliang, et al. Study on the mechanism of oil shale minerogenetic enrichmen in the arm of shallow to half-deep lake depositional environment[J]. Geological Survey and Research, 2010, 33(3): 207-214.
    [128] 蒋恕,唐相路, Osborne S,等. 页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例[J]. 地球科学,2017,42(7):1083-1091.

    Jiang Shu, Tang Xianglu, Osborne S, et al. Enrichment factors and current misunderstanding of shale oil and gas: Case study of shales in U.S., Argentina and China[J]. Earth Science, 2017, 42(7): 1083-1091.
    [129] Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
    [130] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:238-239.

    Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 238-239.
    [131] 肖贤明,陈中凯,金奎励. 中国腐泥煤的岩石学特征[J]. 煤田地质与勘探,1990(1):7-13.

    Xiao Xianming, Chen Zhongkai, Jin Kuili. The petrological characteristics of sapropelic coals in China[J]. Coal Geology & Exploration, 1990(1): 7-13.
    [132] 郗兆栋,唐书恒,张松航,等. 腐泥煤的孔隙结构及分形特征[J]. 煤炭科学技术,2016,44(11):103-109.

    Xi Zhaodong, Tang Shuheng, Zhang Songhang, et al. Pore structure and fractal features of sapropelite[J]. Coal Science and Technology, 2016, 44(11): 103-109.
    [133] 陈志明. 扬子地台寒武纪沉积建造[J]. 沉积学报,1989,7(3):11-19.

    Chen Zhiming. Cambrian sedimentary formation of the Yangzi Platform[J]. Acta Sedimentologica Sinica, 1989, 7(3): 11-19.
    [134] 李太任,张军营. 山西浑源藻煤,烛煤,腐植煤共生煤层成因分析[J]. 煤炭学报,1993,18(3):85-93.

    Li Tairen, Zhang Junying. Genesis of No.7 coal seam, Hunyuan in Shanxi province[J]. Journal of China Coal Society, 1993, 18(3): 85-93.
    [135] 邵厥年,陶维屏. 矿产资源工业要求手册[M]. 北京:地质出版社,2010:231-237.

    Shao Juenian, Tao Weiping. Manual of industrial requirements for mineral resources[M]. Beijing: Geological Publishing House, 2010: 231-237.
    [136] 周浩达. 下扬子区早寒武世"石煤"沉积特征与成因机理探讨:兼论与含油气性关系[J]. 石油实验地质,1990,12(1):36-43.

    Zhou Haoda. On the mechanism and the characteristics of early Cambrian “stone coal” in Lower Yangtze region and their relation to petroliferous potentials[J]. Experimental Petroleum Geology, 1990, 12(1): 36-43.
    [137] 陈西民,马合川,魏东,等. 安康石煤资源特征及勘查开发建议[J]. 陕西地质,2010,28(1):1-5,81.

    Chen Ximin, Ma Hechuan, Wei Dong, et al. Ankang bone coal resources exploration and development[J]. Geology of Shaanxi, 2010, 28(1): 1-5, 81.
    [138] 王淑芳,董大忠,王玉满,等. 四川盆地志留系龙马溪组富气页岩地球化学特征及沉积环境[J]. 矿物岩石地球化学通报,2015,34(6):1203-1212.

    Wang Shufang, Dong Dazhong, Wang Yuman, et al. Geochemical characteristics the sedimentation environment of the gas-enriched shale in the Silurian Longmaxi Formation in the Sichuan Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(6): 1203-1212.
    [139] 李娟,于炳松,郭峰. 黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析[J]. 沉积学报,2013,31(1):20-31.

    Li Juan, Yu Bingsong, Guo Feng. Depositional setting and tectonic background analysis on lower Cambrian black shales in the north of Guizhou province[J]. Acta Sedimentologica Sinica, 2013, 31(1): 20-31.
    [140] 盘应娟,杨忠琴,安亚运,等. 黔北道真地区上奥陶统五峰组—下志留统龙马溪组沉积微相研究[J]. 中国岩溶,2021,40(5):739-749.

    Pan Yingjuan, Yang Zhongqin, An Yayun, et al. A sedimentary microfacies study on Wufeng Formation-Lower Silurian Longmaxi Formation of Upper Ordovician in Daozhen area, northern Guizhou province[J]. Carsologica Sinica, 2021, 40(5): 739-749.
    [141] 刘大锰,杨起,周春光,等. 华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J]. 地球化学,1999,28(4):340-350.

    Liu Dameng, Yang Qi, Zhou Chunguang, et al. Occurrence and geological genesis of pyritesin Late Paleozoic coals in North China[J]. Geochimica, 1999, 28(4): 340-350.
    [142] 赵师庆,王飞宇,董名山. 论“沉煤环境─成煤类型─煤质特征”概略成因模型:Ⅰ. 环境与煤相[J]. 沉积学报,1994,12(1):32-39.

    Zhao Shiqing, Wang Feiyu, Dong Mingshan. Discussion on the "sedimentary environment-type of coal-forming-characteristic of coal quality" rough genetic model I. environment and coal facies[J]. Acta Sedimentologica Sinica, 1994, 12(1): 32-39.
    [143] 李增学,魏久传,刘莹,等. 煤地质学[M]. 北京:地质出版社,2005:241.

    Li Zengxue, Wei Jiuchuan, Liu Ying, et al. Coal geology[M]. Beijing: Geological Publishing House, 2005: 241.
    [144] 孙枢,范德廉,陈海泓,等. 中国地台区张裂盆地沉积[J]. 沉积学报,1987,5(3):6-18.

    Sun Shu, Fan Delian, Chen Haihong, et al. Sedimentation of extensional basins in platform regions of China[J]. Acta Sedimentologica Sinica, 1987, 5(3): 6-18.
    [145] 唐书恒,范二平,张松航,等. 湘西北下古生界海相页岩储层特征与含气性分析[J]. 地学前缘,2016,23(2):135-146.

    Tang Shuheng, Fan Erping, Zhang Songhang, et al. Reservoir characteristics and gas-bearing capacity of the Lower Palaeozoic marine shales in northwestern Hunan[J]. Earth Science Frontiers, 2016, 23(2): 135-146.
    [146] 程顶胜,韩德馨,王延斌,等. 中国泥盆纪煤煤岩研究[J]. 煤田地质与勘探,1995,23(1):25-28.

    Cheng Dingsheng, Han Dexin, Wang Yanbin, et al. Coal petrological study of China Devonian coal[J]. Coal Geology & Exploration, 1995, 23(1): 25-28.
    [147] 陈虹. 石炭纪的大型造煤植物[J]. 生物学通报,1988(6):17-18.

    Chen Hong. Large coal plants of the Carboniferous Period[J]. Bulletin of Biology, 1988(6): 17-18.
    [148] 曹涛涛,曹清古,刘虎,等. 川东地区海陆过渡相泥页岩地球化学特征及吸附性能[J]. 煤炭学报,2020,45(4):1445-1456.

    Cao Taotao, Cao Qinggu, Liu Hu, et al. Geochemical characteristics and adsorption capacity of marine-continental transitional mudrock in eastern Sichuan Basin[J]. Journal of China Coal Society, 2020, 45(4): 1445-1456.
    [149] 赵培荣,高波,郭战峰,等. 四川盆地上二叠统海陆过渡相和深水陆棚相页岩气的勘探潜力[J]. 石油实验地质,2020,42(3):335-344.

    Zhao Peirong, Gao Bo, Guo Zhanfeng, et al. Exploration potential of marine-continental transitional and deep-water shelf shale gas in Upper Permian, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 335-344.
    [150] 闫德宇,黄文辉,陆小霞,等. 下扬子区海陆过渡相不同沉积环境页岩气成藏条件对比[J]. 煤炭学报,2016,41(7):1778-1787.

    Yan Deyu, Huang Wenhui, Lu Xiaoxia, et al. Contrast of reservoir-forming conditions of marine-continental transitional shale gas in different sedimentary environments in the Lower Yangtze area of China[J]. Journal of China Coal Society, 2016, 41(7): 1778-1787.
    [151] 韩宇富,陈尚斌,左兆喜,等. 海陆过渡相页岩气储层特殊性:以大城地区山西组为例[J]. 科学技术与工程,2016,16(30):39-46.

    Han Yufu, Chen Shangbin, Zuo Zhaoxi, et al. Shale gas reservoir particularity of Shanxi Formation in Dacheng Shanxi marine-continental facies[J]. Science Technology and Engineering, 2016, 16(30): 39-46.
    [152] 宋孝忠,张炳忠,雷莹,等. 窑街矿区海石湾井田油A层腐泥煤有机质成熟度辨析[J]. 煤田地质与勘探,2021,49(6):74-80.

    Song Xiaozhong, Zhang Bingzhong, Lei Ying, et al. Analysis of organic matter maturity of sapropel coal in oil layer A of Haishiwan mine field of Yaojie mining area[J]. Coal Geology & Exploration, 2021, 49(6): 74-80.
    [153] 王克,王媛媛,王凤琴. 鄂尔多斯盆地东南部山西组页岩气形成条件及富集主控因素[J]. 天然气地球科学,2022,33(10):1661-1674.

    Wang Ke, Wang Yuanyuan, Wang Fengqin. Formation conditions and the main controlling factors for the enrichment of shale gas of Shanxi Formation in the southeast of Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(10): 1661-1674.
    [154] 曹涛涛,邓模,肖娟宜,等. 海陆过渡相页岩储层特征及含气赋存机理:基于与海相页岩储层对比的认识[J]. 天然气地球科学,2023,34(1):122-139.

    Cao Taotao, Deng Mo, Xiao Juanyi, et al. Reservoir characteristics of marine-continental transitional shale and gas-bearing mechanism: Understanding based on comparison with marine shale reservoir[J]. Natural Gas Geoscience, 2023, 34(1): 122-139.
    [155] 李鹤,黄宝琦,王娜. 南海北部MD12-3429站位海水古生产力和溶解氧含量特征[J]. 古生物学报,2017,56(2):238-248.

    Li He, Huang Baoqi, Wang Na. Changes of the palaeo-sea surface productivity and bottom water dissolved oxygen content at MD12-3429, northern South China Sea[J]. Acta Palaeontologica Sinica, 2017, 56(2): 238-248.
    [156] 栾锡武,彭学超,邱燕. 南海北部陆坡高速堆积体的构造成因[J]. 现代地质,2009,23(2):183-199.

    Luan Xiwu, Peng Xuechao, Qiu Yan. Tectonic control on the formation of high-deposition-rate sediment drift in the northern slope of the South China Sea[J]. Geoscience, 2009, 23(2): 183-199.
    [157] 王文介. 南海北部的潮波传播与海底沙脊和沙波发育[J]. 热带海洋,2000,19(1):1-7.

    Wang Wenjie. Propagation of tidal waves and development of sea-bottom sand ridges and sand ripples in northern South China Sea[J]. Tropic Oceanology, 2000, 19(1): 1-7.
    [158] 庄振业,林振宏,周江,等. 陆架沙丘(波)形成发育的环境条件[J]. 海洋地质动态,2004,20(4):5-10.

    Zhang Zhenye, Lin Zhenhong, Zhou Jiang, et al. Environmental conditions for the formation and development of sand dunes (waves) in the continental shelf[J]. Marine Geology Letters, 2004, 20(4): 5-10.
    [159] 高振中,何幼斌. 中国油气勘探的一个新领域:深水牵引流沉积[J]. 海相油气地质,2002,7(4):1-7.

    Gao Zhenzhong, He Youbin. A new field of petroleum exploration in China: Deep-water traction current deposits[J]. Marine Origin Petroleum Geology, 2002, 7(4): 1-7.
    [160] Turnewitsch R, Dale A, Lahajnar N, et al. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?[J]. Progress in Oceanography, 2017, 154: 1-24.
    [161] 耿明会,宋海斌,关永贤,等. 南海北部东沙海域巨型水下沙丘的分布及特征[J]. 地球物理学报,2017,60(2):628-638.

    Geng Minghui, Song Haibin, Guan Yongxian, et al. The distribution and characteristics of very large subaqueous sand dunes in the Dongsha region of the northern South China Sea[J]. Chinese Journal of Geophysics, 2017, 60(2): 628-638.
    [162] 张东声,王春生,杨俊毅. 东太平洋中国合同区沉积物微型生物生物量的分布特征及其影响因子[J]. 海洋学研究,2010,28(1):32-38.

    Zhang Dongsheng, Wang Chunsheng, Yang Junyi. Distribution of sediment microbial biomass and their impact factors of COMRA's contract area in eastern Pacific Ocean[J]. Journal of Marine Sciences, 2010, 28(1): 32-38.
    [163] 王成厚,金建才,程先豪. 深海沉积物钙质和硅质成分的相对含量与水深的关系[J]. 东海海洋,1986,4(4):82-88.

    Wang Chenghou, Jin Jiancai, Cheng Xianhao. Relationship of relative content of calcareous and siliceous composition is deep-sea sediment with depth[J]. Donghai Marine Science, 1986, 4(4): 82-88.
    [164] 王中波,李日辉,张志珣,等. 渤海及邻近海区表层沉积物粒度组成及沉积分区[J]. 海洋地质与第四纪地质,2016,36(6):101-109.

    Wang Zhongbo, Li Rihui, Zhang Zhixun, et al. Grain size composition and distribution pattrn of seafloor sediments in Bohai Bay and adjacent areas[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 101-109.
    [165] Duman M, Duman Ş, Lyons T W, et al. Geochemistry and sedimentology of shelf and upper slope sediments of the south-central Black Sea[J]. Marine Geology, 2006, 227(1/2): 51-65.
    [166] 陈彬,胡利民,邓声贵,等. 渤海湾表层沉积物中有机碳的分布与物源贡献估算[J]. 海洋地质与第四纪地质,2011,31(5):37-42.

    Chen Bin, Hu Limin, Deng Shengui, et al. Organic carbon in surface sediments of the Bohai Bay, China and its contribution to sedimentation[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 37-42.
    [167] 杨士雄,叶思源,何磊,等. 渤海湾西岸全新世以来沉积物地球化学与黏土矿物特征及其对环境和气候的响应[J]. 海洋地质与第四纪地质,2021,41(2):75-87.

    Yang Shixiong, Ye Siyuan, He Lei, et al. Geochemical and clay mineral characteristics of the Holocene sediments on the west coast of Bohai Bay and their implications for environmental and climatic changes[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 75-87.
    [168] 陈永胜,王福,田立柱,等. 渤海湾西岸全新世沉积速率对河流供给的响应[J]. 地质通报,2014,33(10):1582-1590.

    Chen Yongsheng, Wang Fu, Tian Lizhu, et al. Holocene sedimentation rates and their response to fluvial supply on the west coast of Bohai Bay[J]. Geological Bulletin of China, 2014, 33(10): 1582-1590.
    [169] 李皎,何登发,梅庆华. 四川盆地及邻区奥陶纪构造—沉积环境与原型盆地演化[J]. 石油学报,2015,36(4):427-445.

    Li Jiao, He Dengfa, Mei Qinghua. Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2015, 36(4): 427-445.
    [170] 陆扬博,马义权,王雨轩,等. 上扬子地区五峰组—龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学,2017,42(7):1169-1184.

    Lu Yangbo, Ma Yiquan, Wang Yuxuan, et al. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation- Longmaxi Formation in the Upper Yangtze area[J]. Earth Science, 2017, 42(7): 1169-1184.
    [171] 周晓峰,郭伟,李熙喆,等. 四川盆地五峰组—龙马溪组有机质类型与有机孔配置的放射虫硅质页岩岩石学证据[J]. 中国石油大学学报(自然科学版),2022,46(5):12-22.

    Zhou Xiaofeng, Guo Wei, Li Xizhe, et al. Mutual relation between organic matter types and pores with petrological evidence of radiolarian siliceous shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(5): 12-22.
    [172] 王红岩,施振生,孙莎莎. 四川盆地及周缘奥陶系五峰组—志留系龙马溪组页岩生物地层及其储集层特征[J]. 石油勘探与开发,2021,48(5):879-890.

    Wang Hongyan, Shi Zhensheng, Sun Shasha. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng-Silurian Longmaxi shale in the Sichuan Basin and surrounding areas, China[J]. Petroleum Exploration and Development, 2021, 48(5): 879-890.
    [173] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [174] Tang C A, Chen T T, Gong B. Earth’s thermal cycles and major geological events[J]. Science China Earth Sciences, 2021, 64(10): 1821-1824.
    [175] Haq B U, Schutter S R. A chronology of Paleozoic sea-level change[J]. Science, 2008, 322(5898): 64-68.
    [176] 陈旭,樊隽轩,陈清,等. 论广西运动的阶段性[J]. 中国科学:地球科学,2014,44(5):842-850.

    Chen Xu, Fan Jun-xuan, Chen Qing, et al. Toward a stepwise Kwangsian orogeny[J]. Science China: Earth Sciences, 2014, 44(5): 842-850.
    [177] 戎嘉余,陈旭,王怿,等. 奥陶—志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学:地球科学,2011,41(10):1407-1415.

    Rong Jiayu, Chen Xu, Wang Yi, et al. Northward expansion of Central Guizhou oldland through the Ordovician and Silurian transition: Evidence and implications[J]. Science China: Earth Sciences, 2011, 41(10): 1407-1415.
    [178] 王玉满,李新景,董大忠,等. 上扬子地区五峰组—龙马溪组优质页岩沉积主控因素[J]. 天然气工业,2017,37(4):9-20.

    Wang Yuman, Li Xinjing, Dong Dazhong, et al. Main factors controlling the sedimentation of high-quality shale in Wufeng–Longmaxi Fm, Upper Yangtze region[J]. Natural Gas Industry, 2017, 37(4): 9-20.
    [179] Melchin M J, Mitchell C E, Holmden C, et al. Environmental changes in the Late Ordovician - Early Silurian: Review and new insights from black shales and nitrogen isotopes[J]. GSA Bulletin, 2013, 125(11/12): 1635-1670.
    [180] 卢衍豪. 华中及西南奥陶纪三叶虫动物群[M]. 北京:科学出版社,1975:27-75.

    Lu Yanhao. Ordovician trilobite faunas of central and southwest China[M]. Beijing: Science Press, 1975: 27-75.
    [181] 穆恩之,李积金,葛梅钰,等. 华中区晚奥陶世古地理图及其说明书[J]. 地层学杂志,1981,5(3):165-170.

    Mu Enzhi, Li Jijin, Ge Meiyu, et al. Late Ordovician paleogeographic map of Central China and its description[J]. Journal of Stratigraphy, 1981, 5(3): 165-170.
    [182] 戎嘉余. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响[J]. 地层学杂志,1984,8(1):19-29.

    Rong Jiayu. Ecostratigraphic evidence of the Upper Ordovician regressive sequences and the effect of glaciation[J]. Journal of Stratigraphy, 1984, 8(1): 19-29.
    [183] Scotese C R. An atlas of Phanerozoic paleogeographic maps: The seas come in and the seas go out[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 679-728.
    [184] Li Z Y, Zhang Y G, Torres M, et al. Neogene burial of organic carbon in the global ocean[J]. Nature, 2023, 613(7942): 90-95.
    [185] 张素荣,董大忠,廖群山,等. 四川盆地南部深层海相页岩气地质特征及资源前景[J]. 天然气工业,2021,41(9):35-45.

    Zhang Surong, Dong Dazhong, Liao Qunshan, et al. Geological characteristics and resource prospect of deep marine shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 35-45.
    [186] 何骁,吴建发,雍锐,等. 四川盆地长宁:威远区块海相页岩气田成藏条件及勘探开发关键技术[J]. 石油学报,2021,42(2):259-272.

    He Xiao, Wu Jianfa, Yong Rui, et al. Accumulation conditions and key exploration and development technologies of marine shale gas field in Changning-Weiyuan block, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(2): 259-272.
    [187] 陈雷,谭秀成,郑健,等. 上扬子地区龙马溪组黑色富有机质页岩的浅水超覆沉积模式[J]. 古地理学报,2023,25(3):614-627.

    Chen Lei, Tan Xiucheng, Zheng Jian, et al. Shallow-water onlap sedimentary mode of black organic-rich shale in the Longmaxi Formation, Upper Yangtze area[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(3): 614-627.
    [188] 尹海鉴,王约,陈洪德,等. 黔北桐梓奥陶系五峰组黑色页岩的笔石定向性[J]. 贵州大学学报(自然科学版),2012,29(5):31-35.

    Yin Haijian, Wang Yue, Chen Hongde, et al. The orientations of graptolite fossils from the Ordovician Wufeng Formation black shale in Tongzi, north Guizhou, China[J]. Journal of Guizhou University (Natural Sciences), 2012, 29(5): 31-35.
    [189] 胡艳华,孙卫东,丁兴,等. 奥陶纪—志留纪边界附近火山活动记录:来华南周缘钾质斑脱岩的信息[J]. 岩石学报,2009,25(12):3298-3308.

    Hu Yanhua, Sun Weidong, Ding Xing, et al. Volcanic event at the Ordovician-Silurian boundary: The message from K-bentonite of Yangtze Block[J]. Acta Petrologica Sinica, 2009, 25(12): 3298-3308.
    [190] 郭秀梅,王剑,杨宇宁,等. 渝东北地区五峰组—龙马溪组黑色页岩储层特征[J]. 沉积与特提斯地质,2015,35(2):54-59.

    Guo Xiumei, Wang Jian, Yang Yuning, et al. Black shale reservoirs from the Wufeng and Longmaxi Formations in northeastern Chongqing[J]. Sedimentary Geology and Tethyan Geology, 2015, 35(2): 54-59.
    [191] 朱志军,陈洪德. 川东南地区早志留世晚期沉积特征及沉积模式分析[J]. 中国地质,2012,39(1):64-76.

    Zhu Zhijun, Chen Hongde. An analysis of sedimentary characteristics and model of Silurian Xiaoheba Formation in southeastern Sichuan province[J]. Geology in China, 2012, 39(1): 64-76.
    [192] 沈健伟. 贵州及邻区中奥陶世早期沉积物中鲕绿泥石鲕和海绿石的时序位置和环境意义[J]. 贵州地质,1994,11(3):207-217.

    Shen Jianwei. Sequential position and environment significance of chamositic ooids and glauconite in the early Middle Ordovician sediments in Guizhou province and adjacent areas[J]. Guizhou Geology, 1994, 11(3): 207-217.
    [193] 王云飞. 抚仙湖现代湖泊沉积物中海绿石的发现及成因的初步研究[J]. 科学通报,1983,28(22):1388.

    Wang Yunfei. The discovery and genesis of glauconite at modern lake sedimentary in Fuxian Lake[J]. Science Bulletin, 1983, 28(22): 1388.
    [194] 杨威,魏国齐,李德江,等. 四川盆地志留系小河坝组砂岩油气地质特征与勘探方向[J]. 天然气地球科学,2020,31(1):1-12.

    Yang Wei, Wei Guoqi, Li Dejiang, et al. Hydrocarbon accumulation conditions and exploration direction of Silurian Xiaoheba Formation in Sichuan Basin and its adjacent areas, SW China[J]. Natural Gas Geoscience, 2020, 31(1): 1-12.
    [195] 邱玉超,罗冰,夏茂龙,等. 四川盆地志留系小河坝组海相碎屑岩勘探方向及潜力[J]. 天然气勘探与开发,2019,42(1):1-7.

    Qiu Yuchao, Luo Bing, Xia Maolong, et al. Exploration prospect and potential: Marine clastic rocks of Silurian Xiaoheba Formation, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(1): 1-7.
    [196] 柳昊,田亚铭,邓剑,等. 川东南志留系小河坝组致密砂岩储层粒度特征及其环境指示意义[J]. 科学技术与工程,2021,21(14):5668-5676.

    Liu Hao, Tian Yaming, Deng Jian, et al. Grain size characteristics of tight sandstone reservoirs in the Xiaoheba Formation of Silurian in southeastern Sichuan and their environmental indicators[J]. Science Technology and Engineering, 2021, 21(14): 5668-5676.
    [197] 曾祥亮,刘树根,黄文明,等. 四川盆地志留系龙马溪组页岩与美国Fort Worth盆地石炭系Barnett组页岩地质特征对比[J]. 地质通报,2011,30(2/3):372-384.

    Zeng Xiangliang, Liu Shugen, Huang Wenming, et al. Comparison of Silurian Longmaxi Formation shale of Sichuan Basin in China and Carboniferous Barnett Formation shale of Fort Worth Basin in United States[J]. Geological Bulletin of China, 2011, 30(2/3): 372-384.
    [198] 刘树根,马文辛, Luba J,等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报,2011,27(8):2239-2252.

    Liu Shugen, Ma Wenxin, Luba J, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, east Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252.
    [199] 郑和荣,高波,彭勇民,等. 中上扬子地区下志留统沉积演化与页岩气勘探方向[J]. 古地理学报,2013,15(5):645-656.

    Zheng Herong, Gao Bo, Peng Yongmin, et al. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in Middle-Upper Yangtze area[J]. Journal of Palaeogeography, 2013, 15(5): 645-656.
    [200] 杨宝刚,潘仁芳,刘龙,等. 四川盆地长宁示范区地质条件对页岩有机质的影响[J]. 科学技术与工程,2015,15(26):35-41,65.

    Yang Baogang, Pan Renfang, Liu Long, et al. The influence of geological condition of Sichuan Basin Changning demonstration area on the development of organic matters in shale[J]. Science Technology and Engineering, 2015, 15(26): 35-41, 65.
    [201] 陈旭,陈清,甄勇毅,等. 志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式[J]. 中国科学:地球科学,2018,48(9):1198-1206.

    Chen Xu, Chen Qing, Zhen Yongyi, et al. Circumjacent distribution pattern of the Lungmachian graptolitic black shale (Early Silurian) on the Yichang uplift and its peripheral region[J]. Science China: Earth Sciences, 2018, 48(9): 1198-1206.
    [202] 韩京,蔡全升,黎洋,等. 海相优质页岩的形成环境及发育模式:以中扬子地区秭归新滩剖面五峰—龙马溪组页岩为例[J]. 古地理学报,2019,21(4):661-674.

    Han Jing, Cai Quansheng, Li Yang, et al. Forming environment and development model of high-quality marine shale: A case of the Wufeng-Longmaxi Formations shale in Zigui-Xintan section in the Middle Yangtze region[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(4): 661-674.
    [203] 湛小红,陈学辉,刘超,等. 重庆武隆五峰组—龙马溪组一段天生剖面特征研究[J]. 油气藏评价与开发,2022,12(1):150-159,180.

    Zhan Xiaohong, Chen Xuehui, Liu Chao, et al. Characteristics of Tiansheng outcrop in Wufeng Formation-1st member of Longmaxi Formation, Wulong, Chongqing[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(1): 150-159, 180.
    [204] 王兴,田景春,林小兵,等. 渝东地区五峰组—龙马溪组沉积环境及有机质主控因素分析:以接龙剖面为例[J]. 沉积学报,2024,42(1):309-323.

    Wang Xing, Tian Jingchun, Lin Xiao-bing, et al. Sedimentary environment and controlling factors of organic matter accumulation in Wufeng-Longmaxi Formations: A case study of Jielong section in eastern Chongqing[J]. Acta Sedimentologica Sinica, 2024, 42(1): 309-323.
    [205] 谢尚克,汪正江,王剑,等. 綦江观音桥中上奥陶统微量元素地球化学特征[J]. 沉积与特提斯地质,2010,30(4):60-65.

    Xie Shangke, Wang Zhengjiang, Wang Jian, et al. Trace element geochemistry of the Middle and Upper Ordovician strata in the Guanyinqiao section, Qijiang, Chongqing[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(4): 60-65.
    [206] 何龙,王云鹏,陈多福,等. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学,2019,30(2):203-218.

    He Long, Wang Yunpeng, Chen Duofu, et al. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formations in Nanchuan area, Chongqing[J]. Natural Gas Geoscience, 2019, 30(2): 203-218.
    [207] 李琪琪,蓝宝锋,李刚权,等. 黔中隆起北缘五峰—龙马溪组页岩元素地球化学特征及其地质意义[J]. 地球科学,2021,46(9):3172-3188.

    Li Qiqi, Lan Baofeng, Li Gangquan, et al. Element geochemical characteristics and their geological significance of Wufeng-Longmaxi Formation shales in north margin of the central Guizhou uplift[J]. Earth Science, 2021, 46(9): 3172-3188.
    [208] 刘雨迪,梁超,操应长,等. 川南五峰组—龙马溪组页岩岩相特征及沉积作用[J]. 沉积学报,2024,42(5):1832-1848.

    Liu Yudi, Liang Chao, Cao Ying Chang, et al. Shale Facies Characte-ristics and Sedimentation of the Wufeng Formation-Longmaxi Formation in the Southern Sichuan Basin. Acta Sedimentologica Sinica. 2024, 42(5): 1832-1848.
    [209] Zhang X G, Lin C Y, Zahid M A, et al. Paleosalinity and water body type of Eocene Pinghu Formation, Xihu Depression, East China Sea Basin[J]. Journal of Petroleum Science and Engineering, 2017, 158: 469-478.
    [210] Orekhova N A, Ovsyany E I, Gurov K I, et al. Organic matter and grain-size distribution of the modern bottom sediments in the Balaklava Bay (the Black Sea)[J]. Physical Oceanography, 2018, 25(6): 479-488.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)  / Tables(3)

Article Metrics

Article views(551) PDF downloads(61) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-02-13
  • Revised:  2023-08-02
  • Accepted:  2023-09-01
  • Published:  2025-04-10

Shale Sedimentary Patterns and Organic Matter Enrichment Patterns of the Wufeng Formation - Longmaxi Formation in the Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2023.060
Funds:

Guizhou Science and Technology Cooperation Strategic Prospecting, [2022]ZD003

Abstract: Objective The depositional environmental conditions required for the enrichment of organic matter in black shale are not only related to shale oil and gas exploration, but also to other sedimentary minerals and geosciences. For example, bauxite, phosphate rock, manganese ore, and barite ore often coexist with black shale, and the development of black shale is an important environmental or ore prospecting symbol. It is also used as an important reference for paleoclimate, and even the most important evidence of ocean anoxic events is the development of black shale; the current carbon neutralization and carbon sequestration are also required to study carbon burial. Therefore, it is imporatnt to study the development of black shale and the enrichment mechanism of the contained organic matter. It is believed that organic-rich shale develops in deep-water environments, because the deeper the water body, the stronger the reducing environment, making it conducive to the preservation of organic matter. For example, deep-water continental shelves and deep-to-semi-deep lakes can develop high-quality source rocks. However, a large number of exploration practices have proven that these views may have problems and are contrary to modern ecology. Methods For this reason, this study took the Wufeng Formation-Longmaxi Formation shale in the Sichuan Basin as an example and fully combined the spatial distribution of primary productivity and the carbon fixation rate of different water bodies. Sedimentary facies and paleogeography, fossil development, salinity and other characteristics, and the distribution characteristics of shale and its organic matter in space and time were studied. Results The study found that the development of organic-rich shale requires three characteristics: shallow, continental, and sealed. (1) "Shallow" refers to the shallow water environment. The shallower the water body is, the higher the primary productivity and carbon fixation rate; shale is symbiotic with sapropelite, humic coal, evaporite rock, and other shallow water environments; it has cross-laminated, wavy shallow-water characteristic sedimentary structures, such as laminae and grain sequence texture. Judging from the characteristics of modern peat development, organic-rich peat developed only before or at the end of the transgression; the three major ice ages (regression) from the Proterozoic to the Early Paleozoic had a good correspondence with the enrichment of organic matter, confirming that more shallow swamps and lagoons are prone to appear in the regressive environment and are rich in organic matter; during transgression or high water body sedimentation, particularly in the period of maximum flooding, it is not conducive to the enrichment of organic matter, and the dense section is not rich in organic matter. (2) "Land" has two meanings: organic-rich shale is distributed near land and far from water, and the contribution of terrigenous organic matter. Shale oil and gas have the same pattern as coal seams, the horsetail pattern: the closer to the land, the richer the organic matter, which is consistent with the modern ocean primary productivity near the land and far water; the evolution and eruption age of the organic matter types of organic-rich shale and coal is consistent with that of land. The evolution process of organisms on land is consistent. From the Proterozoic to the Early Paleozoic, the lower organisms dominated the land, and the shale and coal were sapropelic. After the outbreak of higher plants on land, the organic matter type was mainly humic. (3) "Seal" means that the water body is well sealed. Closed lagoons and bays that are less affected by tidal currents and ocean currents are conducive to the enrichment of organic matter and most minerals, and this environment is a low-energy, stagnant, and strongly reducing environment. The more closed the water body is, the higher the carbon fixation rate, and most oil and gas shales are developed in restricted low-salinity, shallow water environments. Conclusions The conclusion is that (1) the carbon, nitrogen, and phosphorus in the water body are derived from exogenous sources, such as from the land; (2) the development of terrestrial organisms controls the organic matter types of shale and coal; (3) the middle and upper Yangtze region, particularly the organic-rich shale of the Wufeng Formation- Longmaxi Formation in the Sichuan Basin, developed in a regressive environment, which is a shallow-water marine-continental transitional facies environment such as lagoons and relatively closed bays restricted by ancient continents and underwater low uplifts. It is located at the edge of the basin rather than the center of sedimentation and subsidence; the limestones of the Linxiang Baota Formation and Guanyinqiao member were developed in the open sea area with normal salinity after transgression and the bay with moderate salinity respectively; (4) Finally, the depth of the water body was established. The enrichment law of organic matter was described by a two-dimensional table of sealing; three main controlling factors of organic matter enrichment in marine shale were proposed: sealed, shallow, land, water body with good sealing, shallow water body (<40 m), It is close to the land and has a rich supply of terrestrial organic matter.

MAO XiaoPing, CHEN XiuRong, LI Zhen, LI ShuXian, LI SuiSui, ZHU QiXuan. Shale Sedimentary Patterns and Organic Matter Enrichment Patterns of the Wufeng Formation - Longmaxi Formation in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(2): 701-733. doi: 10.14027/j.issn.1000-0550.2023.060
Citation: MAO XiaoPing, CHEN XiuRong, LI Zhen, LI ShuXian, LI SuiSui, ZHU QiXuan. Shale Sedimentary Patterns and Organic Matter Enrichment Patterns of the Wufeng Formation - Longmaxi Formation in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(2): 701-733. doi: 10.14027/j.issn.1000-0550.2023.060
  • 扬子地台普遍发育五峰组、龙马溪组海相页岩,目前是我国海相页岩气勘探开发的重要层系,在全球范围内也广泛分布,被称为“hot shale”[12],因此其沉积环境是一个十分重要的基础地质问题,对于油气勘探的指导意义重大。关于五峰组页岩的沉积环境争论了五十多年,其形成环境有多种观点:形成于陆表浅海[3]、半封闭的浅水海盆[46]、远洋[78]、半深海至较深海[9]等。

    1989年我国开始引入层序地层学[10],1995年之后层序地层学大量引入国内并应用于沉积环境的分析。对于有机质的发育,其主要思路是,盆地最大湖泛期、海泛期,沉积缓慢,产生凝缩层,并富含有机质[1112],因此将粒度细的富有机质页岩层序定义为水体相对较深的海侵体系域或高位体系域[13]。蔡雄飞[14],肖传桃等[15]首次用最大海泛面来解释五峰期页岩富含有机质的现象,其中的笔石、放射虫及硅质页岩被认为是深水还原环境才有的化石,之后的很多研究就以此为基础,认为五峰组和龙马溪组为深水陆棚相[1620],沉积时水深50~200 m。凯迪阶晚期至赫南特阶早期为一次硫化缺氧事件,海平面上升(海侵)引发有机碳埋藏增加[2123]。远洋考察中在深海软泥中发现放射虫[24],导致在含硅质页岩中,只要有放射虫化石存在,就被划定为深水沉积环境[25]

    目前认为富有机质页岩主要发育在深水环境的主要证据很多,其中最主要的因素是黑色细粒页岩的发育、笔石的发育和一些地化指标。

    就笔石发育而言,最初的依据来源于Berry et al.[26]发表的一篇会议论文,他根据笔石组合和有壳底栖生物组合来判断笔石生活在水体中的相对深度;陈旭[27]认为笔石组合GA3和腕足动物组合带BA3的广泛分布明确地说明了兰多维列世全球各陆块上的陆表海和陆棚浅海均是以深度不超过60 m的浅水海盆为主,并在Berry et al.[26]的基础上,提出了笔石组合GA3和GA5的最大深度分别为60 m和200 m。之后浅水陆棚和深水陆棚就以这两个深度来定义,也是唯一一个可追溯的有明确深度信息的文献。

    为了印证海相页岩发育于较深水环境,前人采用了较多的地球化学指标来研究古水深。但多数指标是从元素横向迁移角度进行的表征,并不能直接指示古水深。(1)有学者用Fe/Mn值来确定水深,数值越小越深[2830]。这些认识的主要文献来源于刘平略等[31]以及邓宏文等[32]。前者未提到深湖,而后者认为,Mn在半咸水—咸水的间歇性闭塞—半封闭湖相泥质岩中含量最高,故Fe/Mn可以作为离岸距离的标志,Fe/Mn数值最小时是封闭、半封闭的湖湾环境而不是深湖。吴陈君等[33]通过地化指标分析了黔北地区下寒武统牛蹄塘组页岩Ni/Co 和V/Cr 值分布,得出大部分页岩样品沉积于富氧和贫氧的沉积环境(浅水环境),而不是厌氧环境(深水还原环境)。(2)用海洋环境下的铈负异常来判断水深[3435]。(3)以Mo为主的微量元素方法。Nicholls[36]分析了南极罗斯海湾(Ross Sea)现代沉积物在水深641 m,1 135 m,3 386 m处的微量元素,最后得出若满足Mo>5×10-6、Co>40×10-6等指标时,则水深可能大于250 m,但未给出250 m的来源或计算方法,并指出,“根据水深与测量误差得出任何微量元素地球化学深度指示器都不太可能检测到深度远小于1 000 m的变化。地球化学证据永远不应被视为足以反驳其他来源的相反证据,总的微量元素总量可能是定性的”。按其标准,五峰组—龙马溪组的微量元素测量结果[37]中,Mo元素的8个测量值有6个指示水深应大于250 m,而按Co、Cu、Ni的指标则全小于250 m,这显然和目前的深水陆棚认识(<200 m)不一致。张茜等[38],熊小辉等[39],Benedict et al.[40]等对水深的分析最原始的文献引用均来自Nicholls[36]的成果。因此,目前用于证明海相富有机质页岩发育环境的地球化学证据,均不能直接证明其发育于具体的水深,只能是一个水深相对指标。

    就目前对四川盆地的勘探成果表明,虽然大部分区域被划归为深水陆棚,面积较大,但只有威远、涪陵、长宁—昭通、永川这四个较局限的,面积较小的区域页岩气产量较高;而其他大面积的深水陆棚地区也进行了勘探、钻探,产量却不高,这些地区也许是受构造条件或埋深影响,或是受到勘探程度、优先开发、区块限制的影响。造成这些困惑的原因是沉积环境的判断存在问题,还是存在其他控制因素没有考虑到,值得深入探讨;另外,煤与页岩油气同样是有机质,但它们被认定的沉积环境却是截然不同,且认为二者不可类比,这显然是一个需要深入思考的问题。深究这些问题,不但涉及页岩油气勘探本身,还关联到其他学科。例如,其他沉积型矿产(如铝土矿、磷矿、锰矿、重晶石矿)常与黑色页岩共生,富有机质的黑色页岩的发育是其重要的环境标志或找矿标志;大火成岩省、大洋缺氧事件、生物灭绝、古气候等也以它作为重要的参照物或标志层,甚至大洋缺氧事件最重要的证据之一就是黑色页岩的发育;目前的碳中和、固碳也需要研究碳的埋藏,因此黑色页岩的发育及其中有机质的富集机制的研究具有重大意义。

    本文拟从生态学、化石发育、水体盐度、页岩与煤、蒸发盐岩的关系等角度分析,并与油页岩、煤的沉积环境类比,从水体受限程度(平面上)和水深(垂向上)两个维度,对前人提出的富有机质页岩沉积环境进行了更详细的分类和特征研究,提出受限的水体(封闭的海域、潟湖等)对海相页岩而言更易富集有机质;浅水水体为其必要条件。

  • 页岩油气的富集,依赖于沉积时有机质的累积,因此,有必要从生态学角度探讨现代水体初级生产力和固碳速率的分布特征和影响因素,将今论古,对古环境的推测是一个很好的约束。

  • 初级生产力主要受控于水体中的溶解氧含量和光照强度。溶解氧含量在垂向上随深度增加会有所减小,在湖泊环境10~20 m水深度处达到最低值,属浮游植物衰减区[41]。受溶解氧影响,水体的初级生产力和叶绿素浓度随深度呈指数下降趋势[42],水深0 m约为45 mg/L,50 m处仅约为5 mg/L,水越浅的环境生产力越高、越深越低。水体初级生产力高峰在水深15 m左右[43],补偿深度(约50 m)之下就没有净生产力了。林志裕等[44]研究了夏季黄海、东海初级生产力的分布及其变化,在40 m水深以下,将降至1/8~1/30,如图1所示,最大值为400 mg/(m2d)。Sugimura et al.[45]研究了我国东部及日本南部海域的溶解有机碳分布得出,溶解有机碳(DOC)在深度100 m以内为3.96 mgC/L(毫克碳/升),在1 000 m降至最低,为0.36 mgC/L。

    Figure 1.  Relationship between primary productivity and depth in the Yellow Sea and East China Sea (modified from reference [44], unit: mg/(m2 d))

    浮游植物在真光层通过光合作用生产了大量的颗粒有机碳(POC)。在POC向下沉降过程中,随着深度的增加,其不断地被浮游动物摄食和微生物分解[46],只有沉降到海底的POC中保存下来的部分,才能形成碳储,在沉积物中累积有机质。Mooy et al.[47]在热带太平洋东北部使用小的圆柱形沉积物捕捉器所获得的POC在不同深度的通量发现,在130 m水层,POC的通量为123.6±94.8 mgCm-2d-1,在480 m其通量下降至1/3。正是这种分解、吸收作用,说明水体越深其实越不利于有机质富集,如更深的洋壳环境有机质含量较低,国际大洋发现计划(IODP)对大洋洋壳进行了大量的钻探[4849]说明了这一现象;相对来说,黄、渤海较浅,其表层沉积物沉积的有机碳含量就高一些,介于0.04%~0.67%,平均值为0.36%±0.19%,且以陆源为主[50]

  • 据段晓男等[51]对我国湿地生态系统的分析资料,统计了我国主要的、不同面积大小的湖泊水体固碳(碳汇)能力与温度、湖泊面积的关系。一个总的趋势是,面积越小的湖泊,固碳速率越高,而面积大的湖泊固碳能力弱,相差达25倍。其本质可能是,面积越大的湖泊,陆源有机碎屑供给少;面积越小,岸线越长,水体与陆地的接触范围大,陆源有机碎屑(碳源)供给大。

    这样的推测有大量生态学数据支撑。很多学者用碳同位素δ13 C等手段研究了水体有机质的来源。千岛湖随强降雨开始,5—7月TOC、DOC浓度呈逐渐上升趋势,而雨量急剧下降的8月(几乎无雨),浓度也随之显著下降[52]。Bade[53]用多种同位素估算了Peter湖的DOC来源,得出80%~90%来自于陆地;Cole et al.[54]通过13C示踪,发现在富含腐殖质的美国East Long湖泊中,外源性DOC在总有机碳中所占比例高达90%。在瑞典12个湖泊中研究发现,细菌二级生产力和呼吸作用均与外源性DOC显著正相关[55]。也有学者在湖泊中心部位测得内源性DOC占比高,但处于开阔水体,总的DOC含量较低。在莱州湾海域,其陆源POC和DOC显著大于海源[56]。Sugimura et al.[45]得出,我国东部及日本南部海域的溶解有机碳DOC在近海是远洋的2.6倍,间接反映陆源的贡献。由南海初级生产力分布平面图(图2)可以看出,离大陆越近,初级生产力越高,初级生产力大于500 mg/(m2d)主要分布于靠近陆地且水深小于60 m范围内。因此,外源有机质至少是水体碳源的直接贡献者,且可能是富氢有机质的直接贡献者。因为陆地具有远大于水体的初级生产力,其枯落物(枯枝落叶,或称凋落物)的产量能达到400~900 g/(m2a)[58],主要包含叶子和果实,其中叶子和果实的比例(果子比)大约为10∶1至50∶1。曹雨虹等[59]研究了南亚热带不同林分类型枯落物组分构成及占比,得出枝叶占92%~95%,花果占2.18%~2.93%。按花果最小比例2.18%计算,则花果的产量强度约为13 g/(m2a)。果实、叶子、孢子花粉富含丰富的蛋白质和类脂物(脂肪、树脂、蜡质),属于高等植物中的可溶组分,可构成石油生源,属于富氢的有机质。虽然易被溶解、分解或吸收,但若紧靠湖泊、海洋或处于较寒冷的地质年代,在具有一定坡度且有较大汇水面积水系的地貌条件下,它们将随地下水、地表径流,快速进入较封闭的海洋或湖泊水体,有可能和水体原地的富氢有机质一起保存下来。以呼伦湖为例,其湖底沉积物中的有机质陆源相对贡献率高达80%[60],湖泊面积虽然只有2 339 km2,但其流域面积达到292 000 km2,在年平均气温较低(只有0.5 ℃)的条件下,夏秋温暖季节生产的有机质的轻组分(主要是果实、花粉等轻组分)来不及完全降解,就可汇入冷水湖泊,形成富氢的外源有机质。理想的条件下,如果这些轻组分能全部到达湖泊,外源有机质大约是内源的15.6倍。因而,陆源有机碎屑只能形成III型干酪根有机质或只能产腐殖煤可能是一个误区。Jin et al.[61]通过实验研究认为,博格达山脉北麓地区的油页岩的主要有机质丰度受湖泊生产力的控制,生物的保存条件对油页岩质量影响不大。

    Figure 2.  Distribution plan of primary productivity in the South China Sea (modified from reference [57], unit: mg/(m2 d))

    因此,越浅的、与陆地接触范围大的、盐度越低的水体初级生产力或固碳速率越高;越深、越开阔、远离陆地、正常盐度的水体固碳速率低,具有近陆远水特征。开阔外海的初级生产力极低,仅仅好于最差的沙漠环境;所有有机质,不管是I型、III型,主要生产于浅水环境(<40 m),对局限安静的水体,此深度可能小于20 m。有机质自产生后,到其最终能保存到沉积物中(固碳作用)的水体深度与有机质的生产环境应基本一致。

    目前,一般认为有机质在平面上的富集主要受控于营养物质,特别是海底喷流热液,可随上升流带来磷、氮等营养元素,提高初级生产力。主要方法采用La/Yb-Ce/La、La/Yb-REE图解、硅的稳定同位素δ30Si值[6264],相对来说,如果有现代生态学证据,应优先采纳生态学证据而不是地化证据。大量生态环境证据说明,上升流所引发的营养物质的增加量远小于陆源供给。渤海表层沉积物磷的来源主要是陆源物质;沿岸海域水体的磷浓度远高于中央海区[65]。Moore et al.[66]得出秘鲁海岸上升流区域海面因上升流营养元素磷的增加量约为0.25~0.3 μmol/kg,而春季近岸颗粒态总磷含量达到10~70 μmol/kg[67],是该数值的200倍,和前述有机质的分布特征及秘鲁海岸石英的分布特征(离岸越远越小)[68]是一致的。另外,“上升流”是根据海洋100~200 m水深处所出现的温度变化,特别是夏季出现的“冷水团”来定义的,认为夏季冷水团是更深部的冷水以约20 nm/s的速度上涌(强迫对流)造成的,如秘鲁沿岸上升流、我国的黄海冷水团(上升流)。这种微弱的流动目前没有实验证据,且可能存在错误。本文统计了秘鲁2014年1月至2017年1月共三年利马地区的气温与海温剖面发现,海温与气候的冷热波动呈正相关关系,但有大约一个季度(九十天)的时间滞后,和大陆地区变温带中、下部温度波动因热传递滞后于地面气温形成“冬暖夏凉”的现象是完全一致的,因为海水和地层的加热均会滞后于大气。因而,上升流的定义及上升流会极大促进水体初级生产力的推断存在诸多疑问。

  • 富含有机质的海相页岩层均具有中、低盐度特征,具有普遍性。陈旭等[69]、戎嘉余等[70]、成汉钧等[71]论证了五峰组及龙马溪组盐度低,应与陆上淡水有关;中、晚石炭世时期的油页岩形成于淡、浅海环境[72];重庆酉阳、巴南三叠系中统巴东组含头足类化石,沉积环境为封闭海湾—潟湖环境,可能接受部分淡水影响[73]。国内外大量含油气盆地均以盐度、古地理特征来确定封闭性,如塔里木盆地巴楚隆起西段中下寒武统烃源岩为封闭的蒸发潟湖相[74];澳大利亚Bonaparte盆地发育于以局限海相为主要沉积环境的富含浮游藻类的泥页岩[75];美国Midland盆地上宾夕法尼亚统Cline页岩发育于一高度受限的封闭或半封闭海相环境[76];大高加索盆地(黑海与中里海之间)在侏罗纪为受限的半封闭海盆,发育黑色页岩和煤系地层[77]

    其实,较早的一些学者通过大量资料的分析,也一致认可并证明了环境封闭性的重要性。Woolnough[78]、Pan[79]等较早地提出了封闭的盆地(closed basin)、栏隔的盆地(silled basin)或限制的盆地(restricted basin)由于不受海水波浪的搅扰,为停滞状态,有机质不至于被细菌氧化或被底栖生物所吞食,可以得到保存;世界上大多数的含油气盆地属于此类。维谢洛夫斯基(Веселовский)[80]认为海成油页岩主要是在地台的浅海相和滨海相,以及具有蒸发岩标志的半封闭海盆内形成的,认为海进时大陆不平的地形,产生了海湾、弯曲的海岸、潟湖,使海水不致于过速流动,即有利于地球化学封闭条件的形成。这种因海侵造成极安静的水体(沉积环境)被槽台说解读为岩石圈的稳定沉积(构造因素)[8182]。前述穆恩之[45]、陈旭等[6]等学者也认为有机质富集于封闭的环境。张爱云等[83]将黑色页岩的沉积特征划分为稳定型、过渡型、活动型三种类型,强调了局限滞水环境,水体较深;姜在兴[84]认为油页岩的生成环境与腐泥煤近似,主要为水流闭塞环境,并认为我国东部中新生代湖相盆地中的油页岩为深水成因。邹才能等[85]引用了Picard有关富有机质页岩的4种沉积模式[86],海/湖侵模式、门槛模式、水体分层模式和洋流上涌模式。海侵模式为经典的层序地层所主张的最大海泛期密集段富有机质的观点,其他3种模式关注水体环境的封闭性和水体较深时的强还原环境。这些观点认可封闭的环境有利于有机质保存。

    除油气矿产外,环境的封闭性对于沉积型金属矿产也同等重要,且它们与碳质页岩共生,并有相应的封闭性的地化证据,碳质页岩的出现也间接地说明这些沉积型矿产的沉积环境。笔者考察了贵州多种沉积型矿产,天柱重晶石矿、铜仁锰矿、开阳磷矿等多个大型、特大型矿床,均具有和黑色页岩一样的封闭环境。天柱县震旦系灯影组发育重晶石矿,其顶底板均为碳质页岩,灯影组在四川盆地中本身也是一套较好的烃源岩;铜仁地区北部高地村南华系大塘坡组锰矿,为世界级特大型锰矿床,其母岩为碳质页岩,TOC高达2.0%~3.7%。据硫同位素δ34S异常高判断,其沉积环境为封闭水体[87];通过对该地区3个赋锰页岩样品的微量元素测试表明,其Sr/Ba值分别为0.06、0.03、0.11,指示其为低盐度的潟湖环境。贵州开阳地区大型磷矿床富集于具有水下低隆的局限水体[88]。火山灰的有效堆积(蚀变后为斑脱岩)和磷、有机质等矿物质一样,也需要较封闭的浅水环境,作者在贵州开阳陡山沱组两个磷矿层(黑色岩系)之间发现1~3 cm的斑脱岩夹层,磷矿层发育叠层石,显示为封闭及浅水背景;五峰组—龙马溪组总有机碳和磷呈较好的正相关关系[89],反映了其陆源贡献不少,和图2所示一致。

    因此,黑色富有机质页岩发育的水体环境需要与开阔海域有一定隔绝,具有较好的封闭性,才能容纳有机质和矿物质,这一结论具有普遍性。然而我国在进行页岩油气资源评价或选区评价时,却未将封闭性作为参数之一列入其中。

  • 笔石、放射虫、硅质岩发育并不一定指向深水环境。穆恩之[5]认为笔石生活的主要条件是水的静度,而不是水的深度,在隔绝的或半隔绝的海盆地,海水是平静的,最适于笔石的生长,不适合底栖生物;而开阔或半封闭的海域,无论水体多浅,波浪作用、潮汐、洋流均很强烈,不符合笔石的生存条件。冯洪真等[90]论述了五峰期上扬子海古盐度,得出上扬子五峰期海水淡化高峰与笔石的发育完全同步,即笔石指示非正常盐度,多系淡化环境,属于变盐度生物。

    由Murray主导的挑战者号远洋考察时在深海中发现含放射虫软泥,一些阿尔卑斯地质学家把陆上的放射虫燧石岩送给他鉴定,希望从他那里得到支持,但Murray并不认可这些燧石岩就是深海沉积[91]。放射虫并不是深海相的可靠标志,因为硅质岩可以是硅质生物骨架,如硅藻土和含放射虫硅质岩,均表明硅为生物骨架[25];钙质页岩,硅质页岩,易发育于半深海—深海、闭塞的海湾[92]等多种环境。从生态学角度,通过对比1982—1986年东太平洋放射虫的丰度和藻类的演化关系,发现放射虫和代表海洋表层生产力的藻类丰度有很好的正相关关系,建议可以用放射虫来作为海洋表层初级生产力的替代指标[9394],最大初级生产力在浪基面之下15~25 m处,即放射虫在此深度内丰度为最高。南海活体放射虫丰度高值与叶绿素和初级生产力最大值层有较好的对应,在冷涡发育区丰度最高值出现在水深0~25 m段,且在垂向上呈现随深度增加逐渐降低的趋势[95]。鄂尔多斯盆地东缘大宁—吉县地区山西组为潟湖相,煤与页岩互层,榆31井山2段泥岩中,发现硅质放射虫、太阳虫古生物化石[96],在附近的乡宁—甘草山剖面山西组底部发现海相腕足类、放射虫等化石[97],为潟湖等浅水环境可发育放射虫的直接证据;鄂尔多斯盆地南部富平地区上奥陶统赵老峪组发育厚层放射虫硅质岩,为离鄂尔多斯古陆不远的台地边缘礁滩(平凉期)和开阔海台地(背锅山期)[98]

    扬子地台西缘盐源盆地下志留统龙马溪组黑色页岩富含有机质且硅质含量较高,Al2O3与TiO2呈正相关与SiO2/Al2O3呈负相关说明硅质成分具有较多陆源碎屑成因;高含量的过量硅(Si过量),较低的MgO含量,矿物中的放射虫等微生物化石说明硅质主要为生物成因[99];五峰组及龙马溪组硅质岩以生物沉积作用为主,并伴有陆源输入,为大陆边缘的半局限环境[100];中上扬子地区页岩中硅质主要来源为放射虫生物骨架[101]。北京西山中元古界雾迷山组发现与波痕共生的硅质岩,主要赋存于波谷和与干涉波痕共生的硅质岩中,反映为极浅水环境[102]

    至此,我们虽然无法验证已经灭绝了的笔石是否来自深水环境,但与之共生的放射虫,在现代海洋有活体存在。而现代海洋中发现的放射虫、硅质页岩的环境研究成果说明,含放射虫化石、含硅质的海相页岩并不一定指向深水环境;我们不能否认深水陆棚(60~200 m)甚至深海海底有笔石、放射虫存在,但从现代生态学角度和统计学角度看,浅水环境发育的概率要远大于深水环境。化石的保存环境和生长环境是不完全同步的,如在冰层中发现动植物残骸不完全等同于它们就生活在寒冷的地区。

  • 很多地区存在黑色页岩与石煤、膏盐层、斑脱岩等浅水环境地层伴生,说明它们之间在相序上是连续的,而不是形成于截然不同的环境;同时,这些岩层也具有浅水环境的沉积构造现象。

    落木柔志留系剖面龙马溪组底部黑色页岩夹一层石煤,含笔石[103]。陕南紫阳蒿坪煤矿、大竹园矿区早志留世大贵坪组和梅子垭组的黑色页岩内含石煤和笔石,为半咸水环境,为海陆过渡相[104]。安康南部奥陶系上统—志留系下统斑鸠关组页岩含煤,有机物总量66.3%[105]。黔北威宁龙街向斜下石炭统祥摆组煤—页岩—砂岩互层发育[106],未被定为海陆过渡相,而是一套海相煤系页岩。湘西北慈页1井早寒武世牛蹄塘组富有机质页岩被认为是深水陆棚相,局部发育2~3层腐泥煤[107]。南华北盆地通许地区石炭纪—二叠纪发育含煤泥页岩[108],为海陆过渡相沉积。鄂尔多斯盆地东缘山西组为一套陆表海沉积的页岩层系,大吉3-4井钻遇山西组煤与页岩互层,为潟湖相[97];野外剖面出现灰岩与页岩互层[109]。黔西毕节大方背斜上二叠统龙潭组页岩与煤层频繁互层[110]。黄河北地区晚古生代煤与页岩共生[111],为障壁—潟湖环境;鄂尔多斯盆地东南缘海陆过渡相地层矿物组成复杂,页岩与砂岩、煤等岩性频繁交互[112];柴达木盆地东部石炭系发育海陆过渡相煤系页岩[113]

    川中地区中三叠统雷口坡组页岩与膏盐共生,代表着该地区海相碳酸盐岩区域的最后一个层位[114];北羌塘盆地在晚侏罗世—早白垩世时期为一个向北西开口的相对闭塞的巨大海湾,发育的油页岩与膏盐层共生[115];北美志留纪与笔石页岩分布区相邻的沉积区可见大量的生物礁、膏盐[116];塔里木盆地巴楚隆起西段中下寒武统烃源岩(I型干酪根)为蒸发潟湖相,丰度高,与膏盐共生[74]

    此外,富有机质页岩中存在大量浅水环境沉积构造,如生物扰动、波纹层理、侵蚀面、正常粒序纹层等[117119]。Appalachian盆地泥盆系Marcellus-Dunkirk黑色富有机质页岩的沉积环境主要为浅水[120]。塔里木盆地西北部寒武系玉尔吐斯组为浅水超覆沉积[121]

  • 黑色页岩与煤有相似的沉积成矿模式,可以佐证前述沉积体中有机质富集程度具有近陆远水的特点。煤发育于滞水、低能、低洼沼泽环境[122],此环境虽不是强还原环境,但因沼泽本身及周边陆地具高生产力,产生的有机质数量远大于被氧化、吸收的部分,使泥炭能富集最终成煤。

    煤层发育形态从湖盆边缘向湖泊中心呈透镜状。越靠近盆地边缘煤层厚度越大,而逐渐向盆地沉积、沉降中心,煤层趋于尖灭,形成垂向叠置的多层透镜体。如果盆地边缘一些部位长期保持泥炭沼泽环境,则形成类似于图3a的马尾状,向陆一端为多层叠置的巨厚煤层,向湖盆中心各煤层减薄至尖灭(简称马尾模式)。该煤田为我国第一、也是亚洲第一大探明储量230亿吨的吐哈盆地南缘沙尔湖煤田,发育巨厚煤层[123],单层煤厚度达276 m。笔者还考察了很多煤盆地,发现都具有这种样式,如抚顺盆地古近系煤层具有典型的马尾模式[124],内蒙古霍林河煤矿、锡林浩特胜利煤矿、山西保德等都有相似的模式。马尾尾部黑色为煤层或煤线,代表了水退时形成浅水沼泽环境;白色部分为砂泥岩,代表了湖侵,这样便形成了由煤至砂泥岩的多个旋回。当水退时泥炭沼泽(煤)向水体方向迁移,并有粗碎屑进入形成砂泥夹层形成夹矸;水进时泥炭沼泽整体向陆地方向迁移,如图3b所示[125],形成有机质的“近陆远水”或“亲陆厌水”的马尾模式。海陆过渡相的煤的发育也类似,华北地区石炭纪—二叠纪煤,从南至北在同一时期有多个小型的局部封闭水体,在浅水碳酸盐岩沉积中穿插了多套垂向叠置的煤系地层(图3c)[126],南部厚,向盆地沉积沉降中心变薄,南部在厚层煤中间有砂岩穿插,和图3b巨厚层煤成矿模式类似。

    Figure 3.  Metallogenic model of coal

    因此,一套煤层或煤线的发育就意味着此时盆地处于局部低洼、低能、低水体环境。煤这时就是一个环境指示器,只要有煤层出现,必然对应水体较浅的沼泽化环境。

    页岩油也有类似的现象,大量勘探证实,页岩油主要分布在一些较浅的水体或“坡折带”而不是盆地沉积中心,且越靠近盆地边缘含油率越高[127128]

    页岩气的富集也有类似的马尾模式。如图4为美国典型的页岩发育剖面图[128129],分别为美国西部白垩纪盆地海相页岩发育剖面(图4a)和美国东部中晚泥盆世海相页岩发育剖面(图4b)。从图中看出,富有机质页岩在整个盆地演化中,只占极小部分,而多数是被不含有机质的陆源碎屑快速充填,且页岩气富集的主要部位不在盆地沉积中心,而是盆地边缘;向陆一端TOC,有机石英(biogenic quartze)增多,向盆一端黏土、碎屑增多,和煤一样,具有相同的成矿模式——马尾模式,异曲同工。当海平面下降(水退)时页岩的发育向水体方向迁移,海平面上升(水进)时页岩向陆地方向迁移。

    Figure 4.  Shale gas enrichment in the United States (modified from reference [128])

    因此,优质烃源层和煤的出现具有同等的指相标志,表示此时处于沉积盆地边缘的滞水的、低能的浅水环境,如半封闭海湾、潟湖,而不是浅水陆棚或深水陆棚等开放水体。较高的海平面与水体的封闭性是一对矛盾。当水位上升后,原先处于局限环境的海湾或完全封闭的潟湖,会被完全淹没,与开阔海域无障碍连通,水体将偏向于正常盐度,生产力与固碳速率低。从这个角度上看,最大海泛期的密集段或凝缩段或较高水体沉积段应为贫有机质段。

  • 石油地质专家认为海相富有机质页岩一般是I型有机质,应为较深水还原环境,而煤是III型,为沼泽、潟湖等海陆过渡相偏氧化环境,二者的沉积环境截然不同,不能类比。

    事实上,煤也有多种显微组分类型与泥质烃源岩是完全对应的,其中浅海型形成于浅海陆架,含腐泥煤层[130],其腐泥质含量较高,和腐泥型油页岩(I型)相当。腐泥煤形成于湖泊、沼泽中的较深水部分的强还原环境,为低等藻类、浮游生物[131],与油页岩、碳质页岩共生。腐泥煤也可形成于闭塞的浅海环境[132]。早寒武世早—中期筇竹寺组页岩含多层海相藻煤,有机质类型为I、II1型,发育于浅海静水环境[133]。山西省蒲县东河二叠系山西组藻煤(腐泥煤)中藻类体高达62%,按干酪根的显微组成划分公式可划分为II1型,与油页岩、腐殖煤互层。腐泥煤再细分为藻煤、烛煤,腐泥质含量逐渐降低,腐殖质增加[134],而多数煤是腐殖质组分较高的腐殖煤,如图5所示,从类型上看腐泥煤的类型就是I型(有机质)。湘西北慈页1井早寒武世牛蹄塘组富有机质页岩富含硅质和炭质,有机质类型为I型,TOC为3.57%,被认为是深水陆棚,局部发育2~3层腐泥煤[130]。早古生代的腐泥煤也称石煤,或藻煤,为泥盆纪前的固体可燃有机岩,未见木质结构,有三叶虫、腕足类、笔石类等海相生物化石。高灰低发热量的腐泥质煤,固定碳含量一般介于10%~40%,元素碳含量大于90%[135]。石煤发育于宁静、缺氧、滞水环境,和煤一样,发育于盆地“斜坡部位”,而不是盆地沉积中心,在45%~50%的无机组分中,硅质占40%~45%,半开放的盆地无石煤发育[136],即与前述煤的成矿模式完全一样。从发热量看,中上扬子地区安康镇坪大河谢家湾、平利县八仙大安坪多个地区寒武系石煤达到高热值级别(>25.5 MJ/kg),可媲美好的腐殖煤;上奥陶统—下志留统的斑鸠关组(与五峰组—龙马溪组同层)也发育石煤;但灰分较大(>40%),为劣质煤,发热量一般在4.19~10.47 MJ/kg[137]

    Figure 5.  Fan's diagram of sapropelic coal types worldwide

    从地球化学角度,煤和页岩发育的氧化还原条件区分不太明显,不是所有页岩一定发育在缺氧环境,而煤也不全是氧化环境。例如,王淑芳等[138]对W201,Z106井龙马溪组底部最富有机质的龙A段进行了氧化还原条件分析,发现V/Cr,Ni/Co指标有49.1%的样品在氧化段、42.1%的样品在贫氧段,而只有8.7%的样品在缺氧段,若按Th/U指标,氧化段仍有24%;李娟等[139]研究了黔北黑色富有机质页岩,V/Cr指标指示有55%的样品在氧化段。盘应娟等[140]认为五峰组—龙马溪组下部页岩普遍含少量黄铁矿,代表了深水还原环境,而煤中发育黄铁矿则较为普遍,如刘大锰等[141]认为黄铁矿是煤中分布最普遍的矿物之一,结合Ce和Eu的负异常说明煤形成于还原环境中;赵师庆等[142]从地球化学角度论述了南华北、华南多套煤层具有强还原型腐泥煤、腐殖腐泥煤,腐殖煤为较强还原型和较弱还原型。因此,氧化还原条件可能不是煤和黑色页岩发育的主控因素,也不是区分二者的重要指标。

    从有机质类型演化角度,早古生代及更早时间的元古代所发育的页岩、石煤,均为I型,石煤属于劣质煤,虽然可以达到腐殖质无烟煤的级别,但石油界却不愿承认它是煤,或认为它和I型页岩一样,是在浅海、半深海等深水低能环境下形成的[135]、或是浅海、滨海藻菌类形成的腐泥无烟煤[143]。通过地化资料甚至确定出扬子地台下寒武统石煤属于一种远洋沉积[144],或属于深水陆棚沉积[145]。于是下古生界及更老的地层均划分为海相,发育偏腐泥质页岩,这就造成元古代至泥盆纪烃源岩只有海相,无海陆过渡相的错误结论,似乎此时不存在沼泽、潟湖;而泥盆纪之后,石炭系—二叠系只有海陆过渡相,发育偏腐殖质页岩,几乎全是沼泽或潟湖,这显然存在问题。更有可能的原因是沉积物受控于陆上生物圈的演化。在地质历史上水体中的生物量变化不太大,可以算作常量,而陆上生物圈变化巨大,算作变量。从元古代至志留纪只有低等植物,即使有沼泽、潟湖也无法形成腐殖质页岩和煤,如塔里木盆地中下寒武统玉尔吐组烃源岩为I~II型,但已明确其环境为潟湖[74]。到泥盆纪时,裸蕨植物较为繁盛,有少量的石松类植物,泥盆纪的煤既不同于腐泥煤,也不同于腐殖煤,但更偏向腐泥煤[146],是一个生物种类的重要转换时期,也是由腐泥质向腐殖质转换的重要时期。真正的腐殖质煤是从泥盆纪之后石炭纪植物登陆成林才形成的,生长早期的裸子植物(如苏铁、松柏、银杏等)。此时生物大爆发,大规模森林出现,出现了许多高大的乔木类型,构成大面积的沼泽森林景观[147],在数量上立即碾压原先的藻类等低等植物。在多个地区的海陆过渡相均发现来自陆源高等植物,如川东龙潭组具有高等植物碎片[148149];下扬子区龙潭组有完整的植物叶部化石[150];大城地区山西组含植物根、茎化石[151]。这也是海陆过渡相有机质以陆源为主的直接证据。由于陆源生物的巨大变化,从晚古生代至中新生代的页岩和煤虽以偏腐殖型为主体,但也有小部分腐泥煤和腐泥质页岩。如民和盆地海石湾井田薄层腐泥型煤与腐殖型煤、油页岩、炭质泥岩共生,腐泥煤作为薄层和夹层与腐殖煤共生[152]、鄂尔多斯盆地东南部山西组页岩层有1.85%的为腐泥型(I型),77.78%为III型[153],还有山西浑源7号煤为太原组藻煤、徐州大屯矿区太原组17号腐泥煤、水城晚二叠世烛煤、东河早二叠世藻煤、霍县太原山西组藻煤等。从这个比例可以看出,当陆源生物与水体生物同时大量出现时,陆源有机质的直接或间接贡献(外源)远大于水体(内源),这虽然是一个定性的比例,但和前述生态学采用碳同位素获得湖泊有机质的来源比例及图2是一致的。

    为了说明页岩和煤发育的时代、有机质类型的演化的相似性,本文统计了我国20多个含油气、含煤盆地71个层系有机质类型与地质年代的关系。图6为基于曹涛涛等[154]对页岩的沉积环境演化总结,添加了对应的煤的发育、古生物、古气候的对比图,发现页岩与煤除了成矿模式一样外,主要发育的时代和有机质类型也基本一致。如中上扬子筇竹寺组富氢页岩对应下寒武统石煤;旧司组腐殖质页岩对应旧司组腐殖煤、太原组腐殖质页岩对应太原组腐殖质煤等;到中新生代,陆上生物达到顶峰,腐殖质(III型、II2型)占绝大多数,和此时煤的发育和有机质类型也是同步的(图7)。这种同步不是偶然的巧合,而是陆上生物的演化主导了有机质类型的演化。从这个角度上讲,不能因为早古生代没有III型干酪根(有机质),就将黑色页岩,甚至石煤都归至深水环境的浮游藻类沉积,认为没有沼泽和潟湖;或认为石煤和普通腐殖质煤发育的海陆过渡相沉积环境不同。因此,早古生代的海相页岩可能不是真正的海相,而更可能是和煤一样的海陆过渡相,即腐泥型页岩和腐泥煤(富氢煤)一样,为比腐殖质煤与腐殖质油页岩略深一些的沼泽或浅水潟湖环境。

    Figure 6.  Comparison of development ages of shale and coal in different times in China (cartographic style and shale layer from reference [154])

    Figure 7.  Relationship between organic matter types and geological ages in oil and gas bearing basins in China

    因此,煤和页岩油气在沉积环境上是可连续过渡的,均需要还原环境,而非截然不同的环境,所以二者是可以类比的。

  • 目前优质页岩发育于低能、滞水、还原环境已成为共识,但环境的封闭性却慢慢被淡化、深水还原环境被过分强调。海相页岩,如五峰组—龙马溪组页岩一定发育于深水陆棚的强还原环境被特别强调,且I型干酪根只能发育于深水还原环境,而不能发育于浅水环境的观念被固化了。这里从两个维度分析(也可理解为空间维度),一是有机质的生产(垂向上),二是有机质的保存(垂向上和平面上)。

    第一个维度,有机质的生产,可从垂向上进行分析。从前述生态学角度看,初级生产力最高是在浅水环境,浮游生物丰度最高出现在0~30 m的水深范围,即不管是哪种类型的干酪根,I型、II型或III型,有机质的生产只能在这个深度范围内,开阔海域略深,但也不超过50 m(图1)。

    第二个维度是有机质保存,可细分为垂向上和平面上。在垂向上,从李鹤等[155]对海洋溶解氧的分布来看(图8a),深水陆棚50~200 m水深处,溶解氧含量约为6.5 mg/L,为富养环境;只有大于800~1 200 m水深段才不受洋流影响,溶解氧可达到最低值3 mg/L,此深度段称为大洋最小含氧带(Oxygen Minimum Zone,OMZ)。在中低纬度,OMZ段的出现具有普遍性,西太平洋深水盆地,最深的马里亚纳海沟等均会在此深度段出现最小含氧带(图8a)。而对于较安静的潟湖、湖泊环境,在15~20 m处存在一个“氧跃层”,为浮游植物衰减深度段,或称温跃层溶解氧最小值段(Metalimnetic Oxygen Minimum, MOM),溶解氧达到最低2 mg/L的超强还原环境(图8b)。缺氧段最易出现在夏、秋气温较高的季节,或中低纬度地区,这是因为夏、秋季水面温度高于水底,水的密度上轻下重,垂向对流弱,减弱了溶解氧的再分配;冬季因水面比水底温度低,上重下轻,易出现垂向对流。水体中的溶解氧随深度增加,并不会单调降低,主控因素是水体的安静度而非深度,且湖底或海底并非最强的还原环境,而深海海底和上层海洋可能是富氧带。这是因为水体中的溶解氧含量与压力呈正相关、和温度呈负相关关系,水体越深压力越大、温度越低则溶解氧越高。因而水体越深就一定处于更强的还原环境的经典理论存在问题,这就导致很多指示氧化还原条件的地球化学指标(如U/Th、V/Cr等)不能直接指示水深,具有多解性,需具体分析。另外,从前述生态学角度,Mooy et al.[47]认为水体越深,水体中的颗粒有机碳POC在掉入海底过程中也会被大量吸收、分解,并不是水体越深越有利于有机质富集。

    Figure 8.  Variation of dissolved oxygen in oceans and lakes with depth

    在平面上,开阔的环境与封闭的环境差异大。对于我国周边开阔的现代大陆架,有大量底流研究成果。栾锡武等[156]分析了南海北部陆架陆丰滩附近(116.29° E,21.5° N,水深190 m)的海底洋流测量结果,得出9 MKII站洋流(底流)平均流速为15 cm/s,最大流速为48 cm/s,足以搬动中、细砂、粗砂。南海潮波引发159 m深处水体最大流速75 cm/s[157]。这种底流使陆架会产生大量大型沙丘(沙波)。洋流、潮流产生的20~100 cm/s的底流,在水深30~1 000 m处,形成波长10~1 000 m,波高1~40 m的沙波(沙丘)[158],一些学者称之为深水牵引流沉积[159]。潮汐作用深度远大于河流、洋流,其规模会影响到整个海洋,在Porcupine深海平原深海底边界层(Bottom Boundary Layer,BBL)内水深超过4 800 m内的悬浮物浓度具有明显的大小潮周期[160],深海海底(洋壳)流速达到±0.15 m/s。因此,开阔深水区域不但不是低能环境,其水动力强度可能仅次于潮间带。南海北部表层沉积物在水深0~2 000 m以粉砂、中砂、粗砂为主,缺少黏土。其中,50~200 m的深水陆棚区则主要是细砂,因而,深水陆棚发育页岩,甚至富集有机质的可能性极小。黏土主要发育于水深2 500 m以下[161],为远洋软泥,如图9所示,其有机质含量极低,不能作为有效烃源岩。在东太平洋5 000 m海底表层沉积物总有机碳仅为0.10%~0.45%,平均为0.30%[162];中太平洋海盆水深介于4 500~6 000 m总有机碳约为0.35%[163]。渤海东部与黄海北部表层为粉砂,也缺少黏土。半封闭的渤海湾海域也同样存在环流作用,主要发育粉砂,极少有泥[164],只有全封闭海域或潟湖、沼泽才可能有黏土发育,受潮波、洋流影响小,如现今的黑海[165]。由此看来,在开阔的大陆架、陆坡、远洋,页岩都很难发育,对沉积环境要求更刁钻的有机质更难富集。造成这种现象的关键因素是洋流和潮汐,这种现象在任何地质年代都存在,因此,以现代海洋环境类比古大洋这种将今论古的思路是合理的。

    Figure 9.  Distribution of surface sediment types in the northern South China Sea(distribution of sediment types and sand waves are from reference [161])

    有隔挡的海湾或潟湖则不同,即封闭性较好的水体,无潮波、无洋流。水体安静,笔石易发育,有较长的岸线接受周围大陆淡水、有机质碎屑、营养盐的注入。导致海水为低盐度、富含有机质,为接纳来自陆地的碳源、氮源、磷源最佳的容器,这里才具有低能、滞水和强还原的沉积环境。故封闭环境是页岩发育、有机质富集和煤发育的前提条件。潟湖受空间限制潮波影响弱(面积较大的除外),底流要远弱于海洋,进入超强还原环境水深段MOM就更浅(<20 m)。纵观我国周边海域,只有渤海湾处于半封闭状态,表层沉积物中有机碳含量仍较低,一般为0.5%[166],即,半封闭的现代渤海湾,水深虽然较浅,平均水深18 m,也非富集有机质的环境。通过钻探发现,渤海湾西北部在全新世刚开始海侵前(8 830~6 255 Cal. a B.P.)存在较封闭的潟湖、沼泽环境,普遍发育“基底泥炭”层,富含有机质、有孔虫、贝壳[167],向南在长三角一带的钻孔也常能钻遇到这一层泥炭;中更新世晚期200 ka由陆相向海相过渡的海相地层发育时[168]发育富有机质泥炭,即,在低海平面背景下有更多的封闭环境(潟湖、沼泽)才富集有机质。

    综上7大证据,海相页岩气不是发育于开阔的深水环境,而是封闭—较封闭的浅水海湾、潟湖等海陆过渡相环境。

  • 为了说明海相页岩发育于浅水、封闭环境,本文以四川盆地及周缘为例进行分析,也从上述7个方面说明其有机质富集规律的普适性。

  • 中上扬子五峰组—龙马溪组海相页岩的发育与古陆有着密切的关系。从奥陶纪至志留纪,中上扬子整体上为水体变浅、海域缩小的过程。早中奥陶世该地区离西北部的松潘古陆、西部的康滇古陆较远,陆源供应少,这一地区发育了一套碳酸盐岩台地沉积建造,东南厚,西北薄,地层厚度在数十米到700 m,其中中奥陶统湄潭组发育巨厚混积陆棚,反映此时盆地高差大,基底快速沉降,水体深,海域面积大,为盆地快速堆积,岩性纵向上发育为灰质砂岩、钙质粉砂岩、砂质泥岩、薄层灰岩、泥岩互层沉积[169]图10a)。西部的川中隆起和东南的江南雪峰隆起,为中晚奥陶世所发生的较为强烈的一次构造抬升事件,盆地总体隆升,中奥陶统晚期十字铺组—临湘组—宝塔组沉积期变浅,为碳酸盐缓坡岩台,发育厚层灰岩,厚度稳定连续,几乎覆盖整个中上扬子地区,海域面积大;至五峰组—龙马溪组沉积期四周古陆夷平作用相当强烈,已高度的准平原化,陆源碎屑供应量少,沉积速率低,沉积厚度薄,厚度不稳定不连续,如贵州乌当、东深1井—华蓥山、巫溪—神农架厚度小,近乎缺失,为分割性很强的、有大量陆地碳源供给的局限海湾或潟湖,海域面积比临湘—宝塔组范围更小(图10b,蓝虚线)。至志留纪末期,东南的江南—雪峰古陆隆升,晚志留世则遭受大面积隆升、剥蚀。

    Figure 10.  Ordovician stratigraphic profile of the Middle and Upper Yangtze and paleogeographic plan at the end of the Ordovician

    整个中上扬子在五峰期—龙马溪期周围存在多个古陆、浅滩、岛屿、水下低隆[19,170172],如图10b所示褐色、黄色、浅绿区块,为一受限海域。其中,江津—重庆—华蓥山(图10b,东深1井—座3井—华蓥山)在十字铺组—临湘组沉积期为内缓坡,发育厚层碳酸盐岩,到五峰期沉积较薄;龙一段期仍保持水下低隆状态,沉积了较薄的含笔石页岩[172],这一水下低隆使西南威远—长宁保持了较好的封闭性。从已发现并建产能的页岩气田(图中的红色区块)看,其面积是有限的,它们并非浅水—深水陆棚,而是更为受限的潟湖、较封闭的海湾等浅水环境。奥陶系最大厚度800 m,中奥陶统厚度大且连续、分布范围大(图10a),而富有机质的五峰组厚度小且不连续,最厚仅30 m、分布范围缩小,这为海退背景下的产物。图10b中桃红色五角星为盐度采样点,反映了整个四川盆地为淡化海环境,虽然目前认为盆地东北部巫溪与开阔海连通,但巫溪的五峰组页岩发育也属于低盐度环境,且从剖面图上看,向东厚度减薄至缺失。

  • 非常规油气资源沉积富集与重大地质环境突变密切相关,是全球性或区域性构造与海(湖)平面升降、火山活动、气候突变、生物灭绝等多种地质事件沉积耦合的结果[173],五峰组—龙马溪组沉积期就是一次较大的气候突变(图11a),为奥陶纪末大冰期[174175],对应地球第三次大冰期和第一次生物大灭绝。

    Figure 11.  Paleozoic climate, sea level, and fossil development

    奥陶纪末—志留纪初为大冰期[176177],前人认为观音桥段沉积前后因海侵水深超过碳酸盐台地的水深,沉积富有机质页岩,为深水陆棚,深度可达200 m[1620,178179],如图10b所示浅蓝、深蓝区块。这显然和该地区处于总体隆升和大冰期的大背景是不太一致的,这一地区变成比浅水碳酸盐台地还深的水体的可能性较小。

    根据海域范围的不断缩小,上扬子区晚奥陶世的海退现象,从古地理的变迁角度早已证实[180181],戎嘉余[182]从生态地层方面对四川长宁双河、贵州沿河甘溪、遵义董公寺地层剖面进行了考察,得出上奥陶统临湘组、五峰组及观音桥层分别发育底栖组合B.A. 4-5、B.A. 3-4、B.A. 2-3,是一个水体变浅的渐变过程(图11b)。可以看出,五峰组—龙马溪组页岩沉积时海平面因冰期最低,局部有小的气温回升,海平面上升导致观音桥段发育泥质灰岩,但没有超过该套烃源层的底板(临湘组—宝塔组)和顶板(龙二段)沉积时期,Scotese[183]甚至认为奥陶纪末的气温比石炭纪—二叠纪还低。从前述渤海湾现代泥炭富集特征看也支持在低海平面时,海侵前或海侵结束,才会有富有机质的泥炭发育[168169],在海进初期,由陆相转潮坪—浅海相之间发育一层“渤海基底泥炭”,这层泥炭在今渤海湾西部、北部、长三角多个钻孔普遍存在,年代介于10 000~8 830 a,为末次冰期最大海退后的海平面初期回返。现代半封闭的渤海湾水深较浅,平均水深仅18 m,表层沉积物总有机碳含量一般小于0.5%。

    从元古代至晚古生代,气温变化(图6最后一列)与有机质的富集有较好的对应关系。第2次冰期震旦纪冰期对应震旦纪陡山沱组烃源岩;第3次为奥陶纪末冰期,对应五峰组—龙马溪组页岩,为我国唯一大规模商业化开发的海相页岩层系;第4次为石炭纪末大冰期对应古生代最好的、储量最大的太原组—山西组海陆过渡相煤系和全球最大的阿巴拉契亚煤田,也包括页岩。其根本原因是在于冰期海平面下降,陆地面积增加,沼泽及封闭环境水体面积增加,有机质有利于保存等,经计算,如果海平面下降100 m,全球陆地面积 约增加13.38%。Li et al.[184]团队利用大洋钻探成果研究得出新近纪全球海底有机碳埋藏速率在中中新世较低提出中新世碳埋藏和全球气温有很好的负相关关系,中中新世海侵期间(约17 Ma)碳储速率为0.08 GtC/a,上新世海退期(约4 Ma)高达0.23 GtC/a,高近3倍。上述有机质富集与气候的关系充分说明,低水体深度和低温环境才是有机质富集的最佳沉积环境。

  • 中上扬子地区五峰组—龙马溪组页岩也和美国海相页岩类似,具有近陆远水特征。图12为威远地区已建产能的页岩气田页岩发育剖面,向古陆(左)一端黑色页岩变厚,向海(右)一端变薄。靠川中古陆的半封闭海湾W202井,W10-2井,W204井测试产气量高,均大于16×104 m3/d;由川中隆起向东南水体越来越深,页岩厚度由厚变薄,威远以东W205井的测试产气量只有2.6×104 m3/d。从更大的尺度看,图13为川南地区五峰组—龙马溪组页岩厚度与TOC平面图,最富有机质的区域(TOC>3.4%)更靠近川中古陆(威远W202井、泸县L203)和黔中古陆(长宁气田),均不在沉积中心泸州(深蓝色区域),和剖面图12a是一致的。认定这套页岩为深水陆棚[186]就显得很牵强,因为产气量最高的W202离川中古陆只有约13 km,各套地层向川中古陆为超覆接触至尖灭。陈雷等[187]从野外观察、地震剖面多个角度论证了这一地区含笔石页岩形成于水体较浅且受限的沉积环境:页岩与粉砂互层,存在生物扰动、交错纹层、波状纹层、粒序纹理、泥砾定向排列、底部侵蚀面等沉积构造,具明显的浅水特征;总体有向川古隆起边缘不断超覆迁移的特征。

    Figure 12.  Well profile of shale development in the Wufeng Formation⁃Longmaxi Formation, Weiyuan area(modified from reference [17])

    Figure 13.  Thickness and total organic carbon (TOC) plan of sub⁃segment 1 of Wufeng Formation⁃Longmaxi Formation (modified from reference [185])

    从化石和一些特殊岩石角度也能反映出近陆、浅水特征。在其南部黔北桐梓红花园山王庙奥陶系五峰组剖面中,尹海鉴等[188]观察到笔石具有一定的定向性排列,推测五峰组沉积环境中的水动力可能来源于沿岸流,并见多层斑脱岩和火山碎屑岩,反映其环境为浅水。胡艳华等[189]认为斑脱岩的发育与冰期有关。作者也在重庆武隆天生剖面、宜昌王家湾剖面等多地发现有斑脱岩发育。斑脱岩和有机质、磷酸盐等进入开阔海域后将会被稀释,无法有效保存,因而斑脱岩的发育进一步佐证了环境的封闭性。

    作为对比,奥陶纪—志留纪是否存在真正的深水环境?从前述开阔海域海底表面沙波发育可知,由于洋流、潮波等打乱了砂体的正常分布,在水体较深的、远离大陆的区域,可能有粗砂,而较浅的、靠陆的区域有粉砂、砂质黏土这种反常现象,如图9所示。在巫溪—城口田坝剖面龙马溪组(沉积中心)泥质粉砂岩中可见自生矿物海绿石,贫有机质[190];在志留系小河坝组三角洲前缘亚相远砂坝粉砂岩中可见海绿石[191],贫有机质;在早中奥陶世交替时期黔北、南川、德江海绿石广泛分布,含量高达15%,并与这一次上扬子地区广泛海侵对应[192],这些应该是真正的较深水环境;而五峰组—龙马溪组富有机质段与富氧的浅水碳酸盐矿物伴生的页岩里未见海绿石。海绿石发育于海侵或深水湖泊环境,如在抚仙湖现代沉积物中,海绿石分布在35~150 m的湖底表层[193]。另外,这些发育海绿石的地层内部存在孤立的透镜状砂体,如在泸州一带中奥陶统湄潭组沉积中心中细砂岩被解释为浅滩[169],阳深2井地层厚度409 m,砂质层占36.6%(图10a)、川东巫山—万县—石柱—三汇志留系小河坝粉砂岩储层被解释为远端砂坝[194],但这些砂体与前三角洲并不相连,很符合深水环境的沙波或沙丘地貌。利用三维地震数据体振幅属性,对万州高峰场小河坝组进行等比例切片,可以对砂体展布进行精细刻画,砂体呈北东—南西向展布,与北西向物源流向垂直,各砂体孤立分布[195],符合经典的沙波发育特点;在回龙场剖面、双流坝剖面均能观察到小河坝组粉砂岩波痕构造[196],粒度概率累积曲线以跳跃及悬浮组分为主,不是潮间带波浪作用的产物。从这个角度上看,开阔的深水环境(大陆架)并非低能滞水环境,古、今均存在的洋流和潮流使海底少泥、砂移(重新分布)。

  • 大量地化证据说明了五峰组—龙马溪组页岩沉积环境的封闭性。成汉钧等[71]通过四川盆地北部五峰组与龙马溪组黑色笔石页岩的C/S古盐度法测定,得出此时期为淡化海,部分采样点如图10b所示五角星符号,分布范围较大,反映当时整个上扬子与开阔海有一定隔挡。由五峰期上扬子为淡化海说明,上扬子区五峰组与龙马溪组黑色笔石页岩,是一套半封闭的陆表浅水滞流海盆缺氧环境下的沉积产物[6971];四川盆地为局限浅海盆地沉积[197];Barnett页岩与龙马溪组页岩具有一定的相似性,都发育于闭塞盆地[198]。中上扬子地区龙马溪组沉积时期,呈现半封闭沉积格局[199]。长宁示范区龙马溪时期为海相闭塞,半闭塞的滞留海沉积环境[200];王玉满等[178]研究了四川盆地长宁气田、威远气田及巫溪探区,均为弱封闭—半封闭;陈旭等[201]论证了宜昌上升五峰组处于半封闭的大海湾式的滞留盆地环境。韩京等[202]分析了中扬子地区秭归新滩剖面五峰组—龙马溪组页岩,得出优质页岩主要形成于低盐度—正常盐度、弱封闭—半封闭的缺氧环境中。重庆武隆天生剖面五峰组—龙马溪组一段沉积主体处于闭塞滞留沉积环境[203],附近的接龙剖面五峰组页岩沉积于流通性极差的强滞留水体环境[204],即潟湖。

    封闭性在垂向上变化也能通过地化较好地反映。冯洪真等[90]研究发现,汉源县轿顶山五峰期大渡河组底部和龙马溪组底部含笔石页岩的Sr/Ba<0.15,为低盐度的潟湖环境;而其间的不含黑色页岩的层系Sr/Ba较高,为中等盐度,特别是五峰组顶部的灰岩/介壳灰岩(图14),推测为中盐度的半封闭的海湾环境,为奥陶纪大冰期大背景下的一次小规模海侵,水体比其底部五峰组下段和顶部龙马溪组深。何龙等[206]研究了重庆南川地区五峰组—龙马溪组的Ce异常,得出观音桥段为0.83~0.85,为明显的负异常,负异常越大表示水体越深,得出观音桥段水体较深,二者可相互印证。即只有封闭的、低盐度海退背景才有富有机质页岩的发育。从更大的尺度看,重庆綦江观音桥剖面中奥陶统十字铺组、上奥陶统宝塔组、临湘组Sr/Ba值分别为2.0~5.75、2.12~5.62、0.78~1.37[206],逐渐降低至五峰组的0.15,反映出离岸由远及近、由深至浅的海退过程(图14带正方形蓝色线条),和图11a所示海平面升降是完全一致的。本文在重庆武隆黄莺乡对临湘组灰岩、五峰组—龙马溪组页岩进行了野外采样和微量元素测试,并投点至图14中(三角形标识)。结果显示,临湘组灰岩Sr/Ba>0.65,表示其发育于偏正常盐度的环境,V/Cr<2反映为氧化环境;含笔石页岩Sr/Ba<0.15,反映了页岩发育于较封闭的淡化海环境,V/Cr>4.25反映为还原环境,如表1所示;中间的观音桥段Sr/Ba比页岩略高,介于0.23~0.32,推测为半封闭的海湾环境,和冯洪真等[90]的结果是基本一致的。封闭的潟湖环境可能存在比海洋平均盐度更高或更低的多种情况,但反过来,低盐度环境(Sr/Ba<0.3)一定可以归至封闭的环境,如潟湖。因而,将黑色页岩的低盐度现象作为冰期中的一次冰川融化和海侵时的“稀释”效应[90],和将五峰组观音桥段沉积期介壳灰岩段盐度上升归结为受赫南特期冰室效应海平面迅速下降的“浓缩”效应[18,208]均存在问题。因为现代南极冰川全部融化后海水的盐度降低幅度也不大,小于1.8%,用古盐度资料很难反映出来;多个地区的黑色页岩均Sr/Ba<0.15,如果按Zhang et al.[209]的定义,古盐度Sr/Ba<0.50指示陆相淡水环境,这显然不是海洋整体的盐度的降低所致;经计算,海平面降至最低达-200 m时,大洋平均盐度最大可增高5.3%(表2),地形数据来自于GEBCO全球海洋及大陆地形模型数据库http://www.gebco.net/;而现代半封闭的渤海湾其盐度就比正常海水盐度低21.4%;与五峰组底界临湘组、宝塔组、十字铺组气候条件相矛盾。

    Figure 14.  Vertical variations in lithology and salinity of the Middle Upper Ordovician Lower Silurian

    样品编号样品层位小层名称VCrNiSrBaThUSr/BaV/CrU/Th盐度
    S1龙一段5小层288.1082.27117.96160.161 326.2616.3410.440.123.500.64低盐度
    S2龙一段5小层306.2868.28112.20206.361 400.7012.9513.500.154.491.04低盐度
    S3龙一段4小层585.8957.5457.6156.971 248.186.597.410.0510.181.13低盐度
    S4龙一段3小层584.4957.2376.5065.701 311.746.338.470.0510.211.34低盐度
    S5龙一段3小层龙马溪组497.5746.3574.8742.981 152.945.427.060.0410.741.30低盐度
    S6龙一段2小层龙马溪组815.9766.2782.8955.101 196.639.9315.710.0512.311.58低盐度
    G2*观音桥段观音桥段487.2128.9541.75432.581 367.515.757.340.3216.831.28中低盐度
    G1*观音桥段观音桥段69.7756.8039.05616.192 734.627.461.930.231.230.26中低盐度
    W7五峰组1小层220.1843.6330.1426.35999.214.256.620.035.051.56低盐度
    W8五峰组1小层底240.03128.9445.2141.481 220.7915.007.130.031.860.48低盐度
    L10宝塔组宝塔组148.5126.9821.55442.95686.1210.580.670.651.800.06中等盐度
    L11宝塔组宝塔组233.5417.3619.14324.26334.104.390.640.971.930.15中等盐度
    注:*表示数据来源于文献[207]

    Table 1.  Trace elements in the Wufeng Formation⁃Longmaxi Formation profile of Huangying, Wulong, Chongqing (μg/g)

    海平面升降/m海洋体积变化/×108 km3变化比例/%盐度/百分数盐度变化率/%
    -200-0.689-0.0500.0365.297
    -150-0.520-0.0380.0363.952
    -100-0.350-0.0250.0352.628
    -50-0.178-0.0130.0351.316
    500.1840.0130.034-1.325
    1000.3730.0270.034-2.654
    1500.5680.0410.033-3.982
    2000.7670.0560.033-5.306
    注:海洋总体积按13.7×108计算。

    Table 2.  Impact of sea level fluctuations on ocean salinity

  • 综合前面的论述,单一的有机质富集于深水陆棚的理论不能准确地把握有机质的富集规律,需要加以细化和条件限定。本文从有机质的生产(垂向,水深)和有机质的保存(平面,水体的封闭性)两个维度来细化,如表3所示为有机质生产—保存二维表,或称水体深度—封闭性二维表来刻画有机质的富集环境。表中水深是一个相对指标,总的原则是,强调封闭性和水体深度,水体越开阔、越深有机质越贫,而水体越封闭、越浅,有机质越富集。封闭的环境受洋流和潮汐的影响极小,更易富集有机质,主要为低盐度的潟湖;“较封闭”为受洋流影响较小的海湾;浅水才具有高初级生产力和固碳速率,为必要条件。不能单独强调封闭性或单独强调水深,需要二者相结合。例如,黑海虽为完全封闭的水体,但面积较大,是四川盆地面积的2倍,存在潮汐作用,其平均水深达1 250 m,表层沉积物有机质丰度极低,只有0.1%~0.4%,而在黑海北部克里木半岛最南部巴拉克拉瓦(Balakalava)半封闭海湾浅水地区(宽220 m,长1 300 m)有机质丰度可超过1%~2%[210]

    封闭性深度/m封闭(低盐度)较封闭(中等盐度)开阔海域(正常盐度)
    0~2腐泥煤/腐殖煤/页岩油气腐泥煤/腐殖煤细砂粉砂
    2~30腐殖煤/腐泥煤/页岩油气少量腐泥煤/少量页岩油气碳酸盐岩/细砂粉砂
    30~60少量油气少量油气碳酸盐岩/细砂粉砂
    60~200碳酸盐岩/细砂粉砂
    注:表中深度为一水深相对指标。

    Table 3.  Relationship between organic matter production and preservation

    将前述研究总结为一个有机质富集的主控因素关系图,如图15所示。由淡化海等确定了水体的封闭性;与煤、斑脱岩、膏盐岩共生,代表了浅水环境,和初级生产力是一致的,且笔石发育与生产力呈现相关性。水体中的初级生产力、有机质具有近陆远水特征,且页岩发育具有和煤一样的马尾模式,结合碳同位素分析现代水体中的有机质,发现其以陆源为主、从元古代至现今的有机质类型演化和陆源生物具有极大相关度,可判断出陆源有机质具有较大贡献。结合这些证据,又因页岩与煤的爆发式发育与冰期高度吻合,故认为冰期海退环境才是有机质富集的主控因素。在海退背景下,陆地面积增大、潟湖沼泽等封闭环境增加,反馈至生产力提高。最后,提出页岩沉积期有机质富集具有浅、陆、封三大特征:浅水水体、陆源及近陆远水、封闭性好。同理,陆相含油气盆地也需具有这三大特征。

    Figure 15.  Relationship between main controlling factors of organic matter enrichment during shale deposition

  • (1) 不同类型的有机质(I型、II型或III型),主要产生于浅水环境(<40 m),是海相页岩气富集的必要条件;封闭的潟湖或半封闭的海湾为滞水低能环境,更易富集有机质,同时也是可容纳陆源有机质的最好的容器。威远地区含笔石页岩、塔里木盆地玉尔吐斯组存在大量浅水沉积构造,并超覆于周围的古陆说明了其有机质富集于浅水环境。

    (2) 页岩中的有机质丰度与陆地距离呈负相关关系,陆源生物的演化主导了有机质类型的演化。外源有机质的供给(陆地有机碎屑,枯落物)不可忽视,可能是海相页岩的主要碳源,甚至可能是I型有机质的直接贡献者;海底喷流及上升流所产生的磷、氮等营养物质对初级生产力的贡献远小于陆源供给(约差2个数量级)。

    (3) 大量页岩油气田,包括威远、长宁地区,和煤田等有机质的富集均具有近陆远水的特点,具有相同的成矿模式(马尾模式)和相似的有机质类型演化历程。高海平面会让局限水体环境变成开阔水体,不利于有机质富集,最大海泛期凝缩段是贫有机质的。

    (4) 水体的溶解氧随深度不是单调下降,水体越深还原性越强存在错误,最深的湖底和海底并不一定是缺氧环境。沉积环境的氧化还原条件地化指标不能直接指示水体深度,存在多解性。黑色页岩和煤的发育,均不一定需要强还原环境,即沉积时的氧化还原条件可能不是必要条件。

    (5) 中上扬子地区五峰组—龙马溪组海相页岩发育于海退期(第3次冰期),为相对安静的封闭与半封闭的分割性很强的浅水潟湖环境;观音桥段灰岩及五峰组底板临湘组—宝塔组为正常盐度的海湾或开阔海环境。

    (6) 建立了水体深度—封闭性二维表来描述生产力与有机质保存二个维度12种有机质富集的环境,提出了富有机质页岩沉积环境具有封、浅、陆(封闭性强、较浅水体、近陆和陆源)三大特征。

    该认识对于我国海相页岩油气勘探具有重要的意义,可以明确地指出其沉积背景。建议在大型盆地的“斜坡”带上,经过精细小尺度埋藏史分析,寻找可能存在的半封闭的海湾、潟湖、沼泽环境,提高勘探的命中率;在海相页岩油气资源评价中将水体的封闭性和深度看作重要指标。前面在描述斜坡和坡折带时特意加了双引号,表示其古环境不一定是现在看到的斜坡或坡折带。

    存在的问题是,为何富有机质页岩与煤的爆发式发育大多位于冰期,按理只有较温暖、潮湿气候下初级生产力最高,陆地和水生动植物能快速生长的环境才是最佳。推测的原因是,初级生产力、氧化还原条件均不是最终的控制因素,且冰期海退可能仅是表面现象,其核心实质是,在冰期有机质能得以较好的保存,即使在氧化或弱氧化条件下,受篇幅所限,且需要更深入的资料支撑和细致地研究,在此略。

Reference (210)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return