Advanced Search
Volume 43 Issue 2
Apr.  2025
Turn off MathJax
Article Contents

YUAN HongQi, LI RuYue, ZHANG YaXiong, YU YingHua. Sedimentary Characteristics and Formation Mechanism of Muddy Delta in Hailaer Basin[J]. Acta Sedimentologica Sinica, 2025, 43(2): 595-608. doi: 10.14027/j.issn.1000-0550.2024.048
Citation: YUAN HongQi, LI RuYue, ZHANG YaXiong, YU YingHua. Sedimentary Characteristics and Formation Mechanism of Muddy Delta in Hailaer Basin[J]. Acta Sedimentologica Sinica, 2025, 43(2): 595-608. doi: 10.14027/j.issn.1000-0550.2024.048

Sedimentary Characteristics and Formation Mechanism of Muddy Delta in Hailaer Basin

doi: 10.14027/j.issn.1000-0550.2024.048
Funds:

National Natural Science Foundation of China 41572126

Natural Science Foundation of Heilongjiang Province LH2022D013

  • Received Date: 2023-01-16
  • Accepted Date: 2024-11-08
  • Rev Recd Date: 2024-08-26
  • Available Online: 2024-11-08
  • Publish Date: 2025-04-10
  • Objective This study aimed to reveal the sedimentary characteristics and formation mechanism of the argillaceous delta of the Damoguaihe Formation in Hailaer Basin. Methods The lithology, grain size, sedimentary structure, vertical sequence, fossil types, seismic reflection characteristics, stratigraphic structure, and distribution law of the Damoguaihe Formation were analyzed in detail by studying core, outcrop, logging, logging, and seismic data. Results The results show that the Damoguaihe Formation in Hailaer Basin has the typical three-fold structure of a Gilbert delta. The rock types of the Damoguaihe Formation are mainly mudstone, silty mudstone, argillaceous siltstone, siltstone, and fine sandstone, with a small amount of thin conglomerate. The Second member of the Damoguaihe Formation has thin coal seam deposits, and no chemical rock deposits. The vertical sequence of the single well lithology is composed of composite cycle deposits. The clastic particles are suspended and jumping populations. The suspension population is more than 70%, and the jump population is less than 30%. There is a transitional zone between the suspension and jump populations that reflects the influence of river and wave action. The stratification structures formed by fluvial sedimentation and wave transformation, such as parallel stratified siltstone reacting to fluvial deposition and wave-like stratified siltstone reacting to wave action, and sand-mud interaction sedimentation with lenticular stratification, are well developed. Multi-phase "S" type foredeposits can be identified from the second section of three-dimensinal seismic data. These foredeposits are characterized by good continuity of in-phase axis and distribution of imbricated foredeposits at small angles. The isochronous section tracing of strata indicates that these foredeposits are foliated on the plane and are distributed from the edge of the depression to the center. The distribution of the foredeposits from the Damoguaihe Formation in Hailaer Basin is different from those deposited in the slope zone, which are mostly distributed in strips parallel to the slope break zone. Fault activity in the second member of Hailaer Basin was primarily stable during the depositional period. In a specific period of tectonic evolution, there was no strong fault activity in Hailaer Basin, thus restraining the influx of coarse clastic materials. However, the overall tilt and subsidence occurred in the northeast and southwest of the basin, and a broad NE-SW trending water system was formed roughly. There may be a local SW-NE drainage pattern in the basin. In addition, the mud-dominated foredeposits in the delta of the Damoguaihe Formation are associated with many low-energy meandering rivers that mainly transport fine-grained sediments. The channel image of a meander river in the study area was identified by isochronous slices of stratigraphic dynamics, and the analysis of sediment grain size showed that the muddy delta of the Damoguaihe Formation in Hailaer Basin was weak in the sedimentary period and was mainly controlled by provenance and hydrodynamic conditions. Conclusions The above research results confirm that the mud-rich sand-poor deposits in the Second member of the Damoguaihe Formation in Hailaer Basin belong to the muddy delta deposits, and the formation of the muddy delta in this area is controlled by the fine grain source and the low energy and high bending meander river with weak hydrodynamic characteristics, which provides a theoretical basis for clarifying the sedimentary characteristics and formation mechanism of the muddy delta in the study area.
  • [1] Gilbert G K. The topographic features of lake shores[R]. Reston: U.S. Geological Survey, 1885: 69-123.
    [2] Kim S B, Chough S K, Chun S S. Bouldery deposits in the lowermost part of the Cretaceous Kyokpori Formation, SW Korea: Cohesionless debris flows and debris falls on a steep-gradient delta slope[J]. Sedimentary Geology, 1995, 98(1/2/3/4): 97-119.
    [3] Sohn Y K, Son M. Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang Basin, SE Korea[J]. Sedimentology, 2004, 51(6): 1387-1408.
    [4] Nemec W. Aspects of sediment movement on steep delta slopes[M]//Colella A, Prior D B. Coarse‐grained deltas. Oxford: International Association of Sedimentologists, 1990: 29-73.
    [5] Gawthorpe R L, Colella A. Tectonic controls on coarse-grained delta depositional systems in rift basins[M]//Colella A, Prior D B. Coarse‐grained deltas. Oxford: International Association of Sedimentologists, 1990: 113-127.
    [6] Zeng H L, Loucks R G, Brown L FJr. Mapping sediment-dispersal patterns and associated systems tracts in fourth-and fifth-order sequences using seismic sedimentology: Example from Corpus Christi Bay, Texas[J]. AAPG Bulletin, 2007, 91(7): 981-1003.
    [7] Galloway W E. Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding-surface bounded depositional unit[J]. AAPG Bulletin, 1989, 73(2): 125-142.
    [8] 朱筱敏,信荃麟. 湖泊扇三角洲的重要特性[J]. 石油大学学报(自然科学版),1994,18(3):6-11.

    Zhu Xiaomin, Xin Quanlin. Important features of lacustrine fan[J]. Journal of the University of Petroleum, China, 1994, 18(3): 6-11.
    [9] 于兴河,郑浚茂,宋立衡,等. 断陷盆地三角洲砂体的沉积作用与储层的层内非均质性特点[J]. 地球科学:中国地质大学学报,1997,22(1):51-56.

    Yu Xinghe, Zhen Junmao, Song Liheng, et al. Features of depositional processes and permeability heterogeneities in deltaic sandbodies in faulted basins[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(1): 51-56.
    [10] 李彦芳,车启鹏,辛仁臣. 松辽盆地西部斜坡英台地区姚二、三段辫状河三角洲沉积特征研究[J]. 长春地质学院学报,1993,23(4):405-410.

    Li Yanfang, Che Qipeng, Xin Renchen. The research on the sedimentary features of braided stream delta of Y2+3 member in Yingtai area of West slope of Songliao Basin[J]. Journal of Changchun University of Earth Sciences, 1993, 23(4): 405-410.
    [11] 王俊,赵家宏,腾军,等. 浅水三角洲前缘砂体地震沉积学研究:以松南乾安地区上白垩统青三段为例[J]. 沉积学报,2018,36(3):570-583.

    Wang Jun, Zhao Jiahong, Teng Jun, et al. Seismic sedimentology research on shallow water delta front sandbodies: A case study on member 3 of Upper Cretaceous Qingshankou Formation in Qian'an area, south Songliao Basin, NE China[J]. Acta Sedimentologica Sinica, 2018, 36(3): 570-583.
    [12] 徐振华,吴胜和,刘钊,等. 浅水三角洲前缘指状砂坝构型特征:以渤海湾盆地渤海BZ25油田新近系明化镇组下段为例[J]. 石油勘探与开发,2019,46(2):322-333.

    Xu Zhenhua, Wu Shenghe, Liu Zhao, et al. Sandbody architecture of the bar finger within shoal water delta front: Insights from the Lower member of Minghuazhen Formation, Neogene, Bohai BZ25 oilfield, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2019, 46(2): 322-333.
    [13] 李军辉,李跃,张赫航,等. 海拉尔盆地贝尔凹陷南屯组扇三角洲沉积特征及模式[J]. 大庆石油地质与开发,2019,38(3):8-17.

    Li Junhui, Li Yue, Zhang Hehang, et al. Sedimentary characteristics and model for the fan delta in Nantun Formation of Beier Sag in Hailar Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(3): 8-17.
    [14] 赵贤正,王权,淡伟宁,等. 二连盆地白垩系地层岩性油藏的勘探发现及前景[J]. 岩性油气藏,2017,29(2):1-9.

    Zhao Xianzheng, Wang Quan, Dan Weining, et al. Exploration discovery and prospects of Cretaceous stratigraphic-lithologic reservoirs in Erlian Basin[J]. Lithologic Reservoirs, 2017, 29(2): 1-9.
    [15] 李鹏涛. 塔里木盆地中央隆起带二叠系南闸组沉积、储层特征研究[D]. 成都:成都理工大学,2016:59.

    Li Pengtao. The reservoir characteristics and sedimentary of Nanzha Group of central uplift belt of Tarim Basin[D]. Chengdu: Chengdu University of Technology, 2016: 59.
    [16] 朱筱敏,张义娜,杨俊生,等. 准噶尔盆地侏罗系辫状河三角洲沉积特征[J]. 石油与天然气地质,2008,29(2):244-251.

    Zhu Xiaomin, Zhang Yina, Yang Junsheng, et al. Sedimentary characteristics of the shallow Jurassic braided river delta, the Junggar Basin[J]. Oil & Gas Geology, 2008, 29(2): 244-251.
    [17] 陈志华,常森,薛雯,等. 鄂尔多斯盆地三叠系长4+5二叠系盒8沉积相及测井特征对比研究[J]. 国外测井技术,2018,39(1):46-49.

    Chen Zhihua, Chang Sen, Xue Wen, et al. Ordos Basin Chang. Ordos 4 + 5 Permian He 8 sedimentary contrast research[J]. World Well Logging Technology, 2018, 39(1): 46-49.
    [18] 胡望水,周萍,肖传桃,等. 柴达木盆地西南部砂6井第三系沉积相研究[J]. 四川地质学报,2008,28(3):169-173.

    Hu Wangshui, Zhou Ping, Xiao Chuantao, et al. The research on the Tertiary sedimentary facies in the well Sha 6, southwest Qaidam Basin[J]. Acta Geologica Sichuan, 2008, 28(3): 169-173.
    [19] 李红哲,杨占龙,吴青鹏,等. 沉积相分析在岩性油气藏勘探中的应用:以吐哈盆地胜北洼陷中侏罗统—白垩系为例[J]. 天然气地球科学,2006,17(5):698-702.

    Li Hongzhe, Yang Zhanlong, Wu Qingpeng, et al. The application of sedimentary facies analyses in lithologic pool: Taking Turpan-Hami Basin Jurassic serious and Cretaceous serious as examples[J]. Natural Gas Geoscience, 2006, 17(5): 698-702.
    [20] 李英娇. 四川盆地晚三叠世须家河组层序:古地理与聚煤规律[D]. 北京:中国矿业大学(北京),2014.

    Li Yingjiao. Sequence-palaeogeography and coal accumulation of the Late Triassic Xujiahe Formation in the Sichuan Basin[D]. Beijing: China University of Mining & Technology (Beijing), 2014.
    [21] 高丽坤,林春明,姚玉来,等. 苏北盆地高邮凹陷古近系戴南组沉积相及沉积演化[J]. 沉积学报,2010,28(4):706-716.

    Gao Likun, Lin Chunming, Yao Yulai, et al. Sedimentary facies and evolution of Paleogene Dainan Formation in Gaoyou Sag, Subei Basin[J]. Acta Sedimentologica Sinica, 2010, 28(4): 706-716.
    [22] 廖纪佳,朱筱敏,董艳蕾,等. 南襄盆地泌阳凹陷深凹区核三段沉积特征及演化[J]. 地球学报,2012,33(2):167-175.

    Liao Jijia, Zhu Xiaomin, Dong Yanlei, et al. Sedimentary characteristics and evolution of He-3 formation in deep area of Biyang Sag, Nanxiang Basin[J]. Acta Geoscientia Sinica, 2012, 33(2): 167-175.
    [23] 李群,郭建华,曾芳,等. 江汉盆地白垩系沉积相与沉积演化[J]. 西南石油学院学报,2006,28(6):5-8.

    Li Qun, Guo Jianhua, Zeng Fang, et al. Cretaceous sedimentary facies and the evolution in Jianghan Basin[J]. Journal of Southwest Petroleum Institute, 2006, 28(6): 5-8.
    [24] 侯明才,陈洪德,黎治忠,等. 广东三水盆地沉积体系研究[J]. 地质通报,2006,25(9/10):1175-1183.

    Hou Mingcai, Chen Hongde, Li Zhizhong, et al. Study on the depositional system of the Sanshui Basin, Guangdong, China[J]. Geological Bulletin of China, 2006, 25(9/10): 1175-1183.
    [25] 王龙,齐明明,陈培元,等. 渤海F油田明化镇组下段Ⅳ油组沉积微相研究[J]. 重庆科技学院学报(自然科学版),2017,19(6):8-12.

    Wang Long, Qi Mingming, Chen Peiyuan, et al. Sedimentary microfacies of Ⅳ oil group of lower Minghuazhen Formation in F oilfield, Bohai Bay[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2017, 19(6): 8-12.
    [26] 郭静琼,赵晓明,周适,等. 东海西湖凹陷花港组一段浅水三角洲沉积及演化特征[C]//第十四届全国古地理学及沉积学学术会议论文摘要集. 焦作:中国矿物岩石地球化学学会岩相古地理专业委员会,2016.

    Guo Jingqiong, Zhao Xiaoming, Zhou Shi, et al. Sedimentary and evolutionary characteristics of shallow water delta in Huagang Formation of Xihu Depression, East China Sea[C]//14th National Academic Conference on Palaeogeography and Sedimentology. Jiaozuo: The Professional Committee of Lithology and Paleogeography of the Chinese Society of Mineral and Rock Geochemistry, 2016.
    [27] 于兴河,李顺利,曹冰,等. 西湖凹陷渐新世层序地层格架与沉积充填响应[J]. 沉积学报,2017,35(2):299-314.

    Yu Xinghe, Li Shunli, Cao Bing, et al. Oligocene sequence framework and depositional response in the Xihu Depression, East China Sea Shelf Basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 299-314.
    [28] 贾浪波,纪友亮,钟大康,等. 珠江口盆地L凹陷裂陷期始新统文昌组沉积充填模式[J]. 古地理学报,2017,19(3):525-540.

    Jia Langbo, Ji Youliang, Zhong Dakang, et al. Depositional filling model of the Eocene Wenchang Formation in rift stage of L Sag, Pearl River Mouth Basin[J]. Journal of Palaeogeography, 2017, 19(3): 525-540.
    [29] 周武. 北部湾盆地白莲地区流一段沉积相研究[D]. 大庆:东北石油大学,2018.

    Zhou Wu. A study on sedimentary facies in Bailian area of Beibuwan Basin[D]. Daqing: Northeast Petroleum University, 2018.
    [30] 刘莹,刘海燕,杨海长,等. 琼东南盆地古近纪成煤沉积体系类型及特征[J]. 石油与天然气地质,2019,40(1):142-151.

    Liu Ying, Liu Haiyan, Yang Haizhang, et al. Types and characte-ristics of Paleogene coal-forming sedimentary systems in Qiongdongnan Basin[J]. Oil & Gas Geology, 2019, 40(1): 142-151.
    [31] 左倩媚,张道军,王亚辉,等. 琼东南盆地深水区新近系海底扇沉积特征与资源潜力[J]. 海洋学报,2016,38(11):105-116.

    Zuo Qianmei, Zhang Daojun, Wang Yahui, et al. Sedimentary characteristics and exploration potential of Neogene submarine fan in the deepwater area of the Qiongdongnan Basin[J]. Haiyang Xuebao, 2016, 38(11): 105-116.
    [32] 李胜利,于兴河,谢玉洪,等. 滨浅海泥流沟谷识别标志、类型及沉积模式:以莺歌海盆地东方1-1气田为例[J]. 沉积学报,2010,28(6):1076-1080.

    Li Shengli, Yu Xinghe, Xie Yuhong, et al. Mud flow gully identification mark, type and depositional model in the littoral and neritic marine: A case study of Dongfang1-1 gas field in Yinggehai Basin[J]. Acta Sedimentologica Sinica, 2010, 28(6): 1076-1080.
    [33] 裘亦楠,肖敬修,薛培华. 湖盆三角洲分类的探讨[J]. 石油勘探与开发,1982,1(1):1-11.

    Qiu Yinan, Xiao Jingxiu, Xue Peihua. Discussion on category of lake deltas[J]. Petroleum Exploration and Development, 1982, 1(1): 1-11.
    [34] Nilsen T H, Mclaughlin R J. Comparison of tectonic framework and depositional patterns of the Hornelen strike slip basin of Norway and the ridge and Little Sulphur Creek strike slip basins of California[C]. The Society of Economic Paleontologists and Mineralogists (SEPM), 1985.
    [35] 于兴河,王德发,孙志华. 湖泊辫状河三角洲岩相、层序特征及储层地质模型:内蒙古贷岱海湖现代三角洲沉积考察[J]. 沉积学报,1995,13(1):48-58.

    Yu Xinghe, Wang Defa, Sun Zhihua. Lithofacies types、vertical profile features and reservoir geological models of braided deltaic sandbodies in faulted lake basin: The observation on deposition of modern deltas in Daihai Lake, Inner Mongolia[J]. Acta Sedimentologica Sinica, 1995, 13(1): 48-58.
    [36] Cattaneo A, Correggiari A, Langone L, et al. The Late-Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations[J]. Marine Geology, 2003, 193(1/2): 61-91.
    [37] Ridente D, Trincardi F. Pleistocene "muddy" forced-regression deposits on the Adriatic shelf: A comparison with prodelta deposits of the Late Holocene highstand mud wedge[J]. Marine Geo-logy, 2005, 222-223: 213-233.
    [38] 薛良清, Galloway W E. 扇三角洲、辫状河三角洲与三角洲体系的分类[J]. 地质学报,1991,65(2):141-153.

    Xue Liang-qing, Galloway W E. Fan-delta, braid delta and the classification of delta systems[J]. Acta Geologica Sinica, 1991, 65(2): 141-153.
    [39] 丁大林,张训华,于俊杰,等. 长江三角洲北翼后缘晚第四纪以来的沉积粒度特征及环境演化[J]. 海洋地质与第四纪地质,2019,39(4):34-45.

    Ding Dalin, Zhang Xunhua, Yu Junjie, et al. Sediment grain size distribution patterns of the Late Quaternary on the back side of northern Yangtze River Delta and their environmental implications[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 34-45.
    [40] 时培兵,褚庆忠,陈小哲,等. 现代黄河三角洲沉积相分析[J]. 煤炭与化工,2015,38(10):45-48,51.

    Shi Peibing, Chu Qingzhong, Chen Xiaozhe, et al. Sedimentary facies analysis of the modern Yellow River Delta[J]. Coal and Chemical Industry, 2015, 38(10): 45-48, 51.
    [41] Richardson J G, Sangree J B, Sneider R M. Mud-rich deltas[J]. Journal of Petroleum Technology, 1989, 41(4): 334-335.
    [42] La Croix A D, Gingras M K. Facies characteristics and stratigraphy of an Upper Cretaceous mud‐dominated subaqueous delta: Medicine Hat member (Niobrara Formation), Alberta, Canada[J]. Sedimentology, 2021, 68(6): 2820-2853.
    [43] 王陆新,吴朝东,莫午零,等. 松辽盆地嫩江组泥质三角洲沉积特征及沉积机理[J]. 北京大学学报(自然科学版),2014,50(3):497-506.

    Wang Luxin, Wu Chaodong, Mo Wuling, et al. Sedimentary characteristics and identification of muddy deltaic in Nenjiang Formation of Songliao Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 497-506.
    [44] 平贵东,吕延防,范立民,等. 海拉尔盆地乌尔逊—贝尔凹陷油气富集规律及主控因素分析[J]. 中南大学学报(自然科学版),2013,44(10):4167-4178.

    Ping Guidong, Yanfang Lü, Fan Limin, et al. Rules and main controlling factors of hydrocarbon enrichment of Urxun-Beier Depression, Hailar Basin[J]. Journal of Central South University (Science and Technology), 2013, 44(10): 4167-4178.
    [45] 范彦文. 海拉尔盆地侏罗系地层及沉积特征:以中部断陷带为例[D]. 大庆:东北石油大学,2017.

    Fan Yanwen. The study of Jurassic strata and sedimentary characteristics of the Hailar Basin: As an example of Central Depression[D]. Daqing: Northeast Petroleum University, 2017.
    [46] 蒙启安,万传彪,乔秀云,等. 内蒙古海拉尔盆地大磨拐河组孢粉组合[J]. 地层学杂志,2003,27(3):173-184.

    Meng Qi’an, Wan Chuanbiao, Qiao Xiuyun, et al. Palynological assemblages from the Damoguaihe Formation in the Hailar Basin, Inner Mongolia[J]. Journal of Stratigraphy, 2003, 27(3): 173-184.
    [47] 张金亮,沈凤. 乌尔逊凹陷大磨拐河组三角洲储层特征[J]. 新疆石油地质,1989,10(3):75-83.

    Zhang Jinliang, Shen Feng. The characteristics of delta reservoir in Damoguaihe Group in Wuershen Depression[J]. Xinjiang Petroleum Geology, 1989, 10(3): 75-83.
    [48] 张金亮,沈凤. 乌尔逊凹陷大磨拐河组近岸水下扇储层特征[J]. 石油学报,1991,12(3):25-35.

    Zhang Jinliang, Shen Feng. Characteristics of nearshore subaqueous fan reservoir in Damoguaihe Formation, Wuerxun Depression[J]. Acta Petroleum Sinica, 1991, 12(3): 25-35.
    [49] 沈凤,张金亮. 海拉尔盆地乌尔逊凹陷上侏罗统大磨拐河组障壁砂坝和斜坡裙沉积[J]. 石油实验地质,1992,14(2):204-212.

    Shen Feng, Zhang Jinliang. On the sedimentation of the barrier bar and slope apron of the Damoguaihe Formation, Upper Jurassic, in the Wurxun Depression, the Hailar Basin[J]. Experimental Petroleum Geology, 1992, 14(2): 204-212.
    [50] 任守勤,陈芬. 内蒙古海拉尔五九煤盆地早白垩世大磨拐河组植物化石[J]. 古生物学报,1989,28(5):634-641.

    Ren Shouqin, Chen Fen. Fossil plants from Early Cretaceous Damoguaihe Formation in Wujiu Coal Basin, Hailar, Inner Mongolia[J]. Acta Palaeontologica Sinica, 1989, 28(5): 634-641.
    [51] 陈守田,刘招君,崔凤林,等. 海拉尔盆地含油气系统[J]. 吉林大学学报(地球科学版),2002,32(2):151-154.

    Chen Shoutian, Liu Zhaojun, Cui Fenglin, et al. Oil-gas bearing system of Hailaer Basin[J]. Journal of Jilin University (Earth Science Edition), 2002, 32(2): 151-154.
    [52] 许敏. 走滑盆地形成机制及沉积特征[J]. 世界地质,1994,13(3):21-25.

    Xu Min. Formation mechanism and sedimentary characteristics of strike-slip basins[J]. Global Geology, 1994, 13(3): 21-25.
    [53] 叶得泉. 海拉尔盆地大磨拐河组介形类化石的首次发现及其意义[J]. 大庆石油地质与开发,1988,7(2):1-4,22.

    Ye Dequan. First discovery of ostracoda in Damoguaihe Group, Hailaer Basin, and its significance[J]. Petroleum Geology & Oilfield Development in Daqing, 1988, 7(2): 1-4, 22.
    [54] 叶得泉,张莹. 海拉尔盆地介形类化石的发现及其地层意义[J]. 微体古生物学报,1989,6(1):17-30.

    Ye Dequan, Zhang Ying. Discovery of ostracods from the Hailar Basin and its stratigraphic significance[J]. Acta Micropalaeontologica Sinica, 1989, 6(1): 17-30.
    [55] 万传彪. 海拉尔盆地藻类化石的发现及其意义[J]. 植物学报,1992,34(2):140-145.

    Wan Chuanbiao. Discovery of algal fossils from the Hailar Basin and its significance[J]. Acta Botanica Sinica, 1992, 34(2): 140-145.
    [56] Yuri Z N, Eder V G, Zamirailova A G. Composition and formation environments of the Upper Jurassic–Lower Cretaceous black shale Bazhenov Formation (the central part of the West Siberian Basin)[J]. Marine and Petroleum Geology, 2008, 25(3): 289-306.
    [57] Borodkin V N, Kurchikov A R. Materials for refining the stratigraphic chart of the Berriasian–Lower Aptian in West Siberia with regard to the clinoform subsurface structure[J]. Russian Geology and Geophysics, 2010, 51(12): 1267-1274.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(1)

Article Metrics

Article views(85) PDF downloads(12) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-01-16
  • Revised:  2024-08-26
  • Accepted:  2024-11-08
  • Published:  2025-04-10

Sedimentary Characteristics and Formation Mechanism of Muddy Delta in Hailaer Basin

doi: 10.14027/j.issn.1000-0550.2024.048
Funds:

National Natural Science Foundation of China 41572126

Natural Science Foundation of Heilongjiang Province LH2022D013

Abstract: Objective This study aimed to reveal the sedimentary characteristics and formation mechanism of the argillaceous delta of the Damoguaihe Formation in Hailaer Basin. Methods The lithology, grain size, sedimentary structure, vertical sequence, fossil types, seismic reflection characteristics, stratigraphic structure, and distribution law of the Damoguaihe Formation were analyzed in detail by studying core, outcrop, logging, logging, and seismic data. Results The results show that the Damoguaihe Formation in Hailaer Basin has the typical three-fold structure of a Gilbert delta. The rock types of the Damoguaihe Formation are mainly mudstone, silty mudstone, argillaceous siltstone, siltstone, and fine sandstone, with a small amount of thin conglomerate. The Second member of the Damoguaihe Formation has thin coal seam deposits, and no chemical rock deposits. The vertical sequence of the single well lithology is composed of composite cycle deposits. The clastic particles are suspended and jumping populations. The suspension population is more than 70%, and the jump population is less than 30%. There is a transitional zone between the suspension and jump populations that reflects the influence of river and wave action. The stratification structures formed by fluvial sedimentation and wave transformation, such as parallel stratified siltstone reacting to fluvial deposition and wave-like stratified siltstone reacting to wave action, and sand-mud interaction sedimentation with lenticular stratification, are well developed. Multi-phase "S" type foredeposits can be identified from the second section of three-dimensinal seismic data. These foredeposits are characterized by good continuity of in-phase axis and distribution of imbricated foredeposits at small angles. The isochronous section tracing of strata indicates that these foredeposits are foliated on the plane and are distributed from the edge of the depression to the center. The distribution of the foredeposits from the Damoguaihe Formation in Hailaer Basin is different from those deposited in the slope zone, which are mostly distributed in strips parallel to the slope break zone. Fault activity in the second member of Hailaer Basin was primarily stable during the depositional period. In a specific period of tectonic evolution, there was no strong fault activity in Hailaer Basin, thus restraining the influx of coarse clastic materials. However, the overall tilt and subsidence occurred in the northeast and southwest of the basin, and a broad NE-SW trending water system was formed roughly. There may be a local SW-NE drainage pattern in the basin. In addition, the mud-dominated foredeposits in the delta of the Damoguaihe Formation are associated with many low-energy meandering rivers that mainly transport fine-grained sediments. The channel image of a meander river in the study area was identified by isochronous slices of stratigraphic dynamics, and the analysis of sediment grain size showed that the muddy delta of the Damoguaihe Formation in Hailaer Basin was weak in the sedimentary period and was mainly controlled by provenance and hydrodynamic conditions. Conclusions The above research results confirm that the mud-rich sand-poor deposits in the Second member of the Damoguaihe Formation in Hailaer Basin belong to the muddy delta deposits, and the formation of the muddy delta in this area is controlled by the fine grain source and the low energy and high bending meander river with weak hydrodynamic characteristics, which provides a theoretical basis for clarifying the sedimentary characteristics and formation mechanism of the muddy delta in the study area.

YUAN HongQi, LI RuYue, ZHANG YaXiong, YU YingHua. Sedimentary Characteristics and Formation Mechanism of Muddy Delta in Hailaer Basin[J]. Acta Sedimentologica Sinica, 2025, 43(2): 595-608. doi: 10.14027/j.issn.1000-0550.2024.048
Citation: YUAN HongQi, LI RuYue, ZHANG YaXiong, YU YingHua. Sedimentary Characteristics and Formation Mechanism of Muddy Delta in Hailaer Basin[J]. Acta Sedimentologica Sinica, 2025, 43(2): 595-608. doi: 10.14027/j.issn.1000-0550.2024.048
  • 三角洲概念最早提出于公元前400年,对于古代三角洲的研究始于吉尔伯特[1],随后有众多学者在此方面进行了大量的研究,使得三角洲的概念逐渐发展并趋于丰富[210]。三角洲作为世界上重要的含油气沉积体系,许多大型油气田都属于三角洲沉积。我国三角洲相储集层在油气勘探开发中占据了重要地位,松辽、渤海湾、鄂尔多斯以及海拉尔等盆地的主要储集相类型多为三角洲相,而且从目前国内所公开发表的文献来看,大部分含油气沉积盆地的三角洲沉积物均以砂岩为主,柴达木、准噶尔等盆地的砂地比甚至可达90%(表1[1132]。这也导致多年来无论是古代三角洲还是现代三角洲沉积研究,主要研究的还是粗粒沉积[3337]。例如三角洲分类谱系图[38]中列出的扇三角洲、辫状河三角洲与正常三角洲,其平原与前缘亚相均以砾或砂沉积为主,缺少以细粒沉积为主(富泥三角洲)的组成部分。又如我国长江三角洲现代沉积,发育多期前积结构,经钻孔分析证实其前积体主要为富砂沉积[39];黄河三角洲现代沉积,也发育经典吉尔伯特型三角洲的三褶结构,然而其前缘亚相的沉积物也以砂岩为主,泥岩占比不大[40]。泥质三角洲概念最早由Richardson et al.[41]1989年提出:当河流携带的沉积物的沉积速度比盆地水流再造作用快时,形成富含泥质的三角洲,与富含砂质的三角洲相比,泥质三角洲在河口坝和三角洲前缘含有更多的粉砂岩和页岩。显然,目前人们对以泥质岩沉积为主的泥质三角洲的研究是比较少的。La Croix et al.[42]认为加拿大阿尔伯塔省东南部圣托尼时代梅德辛帽段发育泥质岩沉积为主的泥质三角洲,在河流、波浪、风暴和沿岸流的作用下,该区三角洲主要发育四种沉积相:远端三角洲前缘、近端前三角洲、远端前三角洲和分流河道间的海湾沉积。王陆新等[43]认为泥质三角洲主要形成于水下网状河末端,是低密度流型悬浮沉积,三角洲前缘较发育。而海拉尔盆地的白垩系大磨拐河组具有经典吉尔伯特型三角洲三褶结构,同时其前积体主要为泥质岩沉积,砂地比值低,笔者研究认为属于泥质三角洲,这为泥质三角洲的沉积特征及成因机理研究提供了一个典型的案例。且海拉尔盆地大磨拐河组油气成藏受控于砂体是否发育和分布位置[44],因此,研究大磨拐河组泥质三角洲沉积特征和成因机理,既可从理论上丰富三角洲的分类体系及成因机制,又可从实践上指导海拉尔盆地白垩系大磨拐河组的油气勘探开发。

    地区盆地层位主要储集体相类型砂地比范围资料来源
    东部地区松辽白垩系浅水三角洲0.40~0.80文献[11]
    渤海湾新近系鸟足状浅水三角洲、辫状河浅水三角洲0.35~0.90文献[12]
    海拉尔下白垩统冲积扇、扇三角洲、辫状河三角洲、曲流河三角洲>0.05文献[13]
    二连白垩系扇三角洲、辫状河三角洲、近岸水下扇、湖底扇0.40~0.90文献[14]
    中西部地区塔里木白垩系、三叠系、二叠系扇三角洲、三角洲、辫状河三角洲、河流0.35~0.90文献[15]
    准噶尔新近系、古近系、白垩系、侏罗系、三叠系辫状河三角洲、扇三角洲0.40~0.95文献[16]
    鄂尔多斯晚三叠统、早二叠统、晚石炭统河控浅水三角洲、网状河—浅水三角洲、曲流河—浅水海相三角洲0.40~0.80文献[17]
    柴达木新近系分流砂坝型浅水三角洲、冲积扇、扇三角洲、辫状河三角洲0.40~0.90文献[18]
    吐哈侏罗系、下白垩系辫状河浅水三角洲0.50~0.65文献[19]
    南方地区四川晚三叠统浅水三角洲、斜坡、浅滩0.35~0.65文献[20]
    苏北古近系、白垩系扇三角洲、辫状河三角洲、三角洲0.40~0.08文献[21]
    南襄古近系、白垩系扇三角洲、辫状河三角洲、曲流河三角洲0.35~0.80文献[22]
    江汉白垩系浅水三角洲、辫状河三角洲、冲积扇0.40~0.80文献[23]
    三水古近系、白垩系辫状河三角洲、扇三角洲、冲积扇0.50~0.70文献[24]
    海域渤海新近系浅水三角洲、辫状河三角洲、曲流河三角洲0.40~0.70文献[25]
    东海新生界辫状河三角洲、冲积扇、滨海0.40~0.65文献[2627]
    珠江口古近系辫状河三角洲、扇三角洲、近岸水下扇0.50~0.90文献[28]
    北部湾古近系辫状河三角洲、洪冲积扇、扇三角洲0.40~0.70文献[29]
    琼东南新近系、古近系三角洲、斜坡扇、盆底扇、浅海沙坝、生物礁0.40~0.85文献[3031]
    莺歌海新近系、古近系滨浅海、浅海—半深海、三角洲、扇三角洲、盆底扇、陆坡扇0.40~0.70文献[32]

    Table 1.  Major petroliferous reservoir facies type in China

  • 海拉尔盆地位于我国内蒙古自治区东北部的呼伦贝尔盟,盆地整体呈NE向展布,面积为4.4×104 km2。海拉尔盆地向西南方向与蒙古国塔木察格盆地相连,因其在地质上的统一性,二者可合称为“海—塔盆地”,总面积为7×104 km2[45]。海拉尔盆地作中新生代陆相裂谷盆地,由一系列小的断凹组成。盆地构造格局总体上呈两隆三拗的特征:由东向西顺次为呼和湖拗陷、巴彦山隆起、贝尔湖拗陷、嵯岗隆起、扎赉诺尔拗陷,且又细分为20个二级构造单元(图1)。海拉尔盆地基底由前中生界组成,沉积盖层自下而上为:下侏罗统东宫组,下白垩统阿尔公组、铜钵庙组、南屯组、大磨拐河组、伊敏组、呼伦组,上白垩统青元岗组,古新统,上新统呼查山组,第四系,总厚度超过10 000 m。

    Figure 1.  Geographical location and comprehensive column chart of Hailaer Basin

    大磨拐河组建组剖面位于内蒙古喜桂图旗(现为牙克石市)大磨拐河右岸的五九煤田,根据地层岩性垂向分布特点,大磨拐河组可划分为上下两个岩性段:下部称之为大磨拐河组一段(简称为大一段,K1d1),上部称之为大磨拐河组二段(简称为大二段,K1d2)。

    大一段为湖盆断陷期的沉积产物。因沉积于较深水环境,沉积物以湖相泥岩为主,泥岩含量普遍介于30%~90%,可见双壳类与藻类化石、蕨类植物孢子等[46],地层总厚度一般介于350~400 m。其电测曲线低平,偶有齿化。地震资料上,大一段底界面对应T22反射轴,该反射轴之下可见明显的削截,之上可见明显的上超,大一段与下伏南屯组为不整合接触关系(图2)。

    Figure 2.  Contrast profile of logging and seismic incorporation based on the Damoguaihe Formation stratigraphic framework in the Wuerxun Depression of Hailaer Basin (SE⁃NW)

    大二段沉积环境为沼泽相、沼泽化湖相。沉积物以厚层黑灰色泥岩为主,泥岩含量可达70%,地层多段见煤层沉积,产双壳类、叶肢介、藻类、腹足类、孢粉等化石[46]。地层厚度一般介于140~560 m。大二段沉积范围大,在全区均有分布。自然伽马(GR)测井曲线为齿化箱型与漏斗型。地震资料上,大二段底界面对应T2c反射层,与下伏大一段整合接触。顶界面对应T2反射层,与上覆伊敏组整合接触。大二段在地震剖面上可见明显前积反射结构(图2),利用三维地震资料可对此前积反射进行等时追踪,从而识别出多期前积体,且不同期次前积体沉积范围与沉积位置均不相同。例如乌北次凹可识别出5期北东向依次进积的前积体,乌南—贝尔次凹可识别出8期南东向依次进积的前积体。不同期次前积体等时单元的砂岩均不太发育,砂地比值较低,录井岩性及取心资料统计表明砂地比不超过30%。

    在海拉尔盆地油气勘探过程中,随着研究技术手段的革新以及研究资料的丰富,对大磨拐河组的沉积认识也在逐渐改变。在勘探初期,地质学家将大磨拐河组归属到中侏罗统,有学者认为大磨拐河组中上部为三角洲沉积,并根据河流及湖浪作用的相对强弱,可分为浪控三角洲和河控三角洲两种类型[47];也有学者认为大磨拐河组在乌尔逊凹陷中部主要发育近岸水下扇,在凹陷边缘的缓坡浅水地带发育障壁砂坝,在深水斜坡地带发育斜坡沉积[4849]。随着勘探的深入,前人对海拉尔盆地采集的植物化石进行对比分析后,认为其地层应归属于白垩系下统[50]。但对大磨拐河组沉积属性仍有不同意见:(1)有学者依据海拉尔盆地经历早期张裂、中期张扭、晚期反转的演化过程及明显的前积结构,认为大磨拐河组是盆地演化中期张扭作用阶段的产物,大二段为张扭作用下形成的吉尔伯特型三角洲[51],但无法解释泥质沉积为主的成因。(2)也有学者认为这属于“卸车建造”沉积,由于走滑变形造成了湿润型冲积扇沉积相发生横向迁移,造成了不同期次扇体叠覆出现(图3),形成了前积的假象[52]。然而,笔者综合大磨拐河组岩性、粒度、沉积构造、垂向序列、生物化石种类、地层结构及分布等特征,研究发现其为泥质三角洲沉积。

    Figure 3.  Basin alluvial fan and source patterns of migration (after reference [34])

    研究工作主要基于录井、测井、取心资料及覆盖贝尔凹陷和乌尔逊凹陷的三维地震资料(cdp间距为25 m)。在利用地震合成记录对钻穿大磨拐河组地层212口探井精细标定的基础上,编制了34条井震联合地层对比剖面,建立了研究区大磨拐河组的等时地层格架,并沿三维地震工区的主测线和联络测线方向,以4 cdp×4 cdp密度对三角洲内部各界面进行了追踪,对各等时沉积体分布进行了精细刻画,同时利用钻井资料对大磨拐河组地层的岩性、粒度、沉积构造、垂向序列和化石类型进行了分析,最后结合地震反射特征所体现的地层结构及分布规律对大磨拐河组的沉积性质进行了界定,并结合前人研究成果对海拉尔盆地大磨拐河组泥质三角洲的形成机理进行了探讨。

  • 如前所述,笔者认为海拉尔盆地白垩系的大磨拐河组为泥质三角洲沉积,其沉积特征方面的证据如下。

  • 根据录井资料及岩心资料分析,大磨拐河组岩石类型以泥岩、粉砂质泥岩、泥质粉砂岩、粉砂岩与细砂岩为主,夹少量薄层砾岩,大二段多见薄煤层沉积,且未见化学岩沉积,同三角洲沉积物岩石类型单一,发育砂泥岩和煤层的岩性特征相符合(图4)。以盆地边部的乌22井为例,其大二段主要为粉砂质泥岩、泥岩夹粉砂岩沉积。在1 402~1 802 m深度段见薄层煤沉积。同时井震联合分析表明,尽管该井由于位于盆地边缘更加靠近物源区,但其前积层S25~S15也以泥质岩沉积为主,430 m厚的地层泥岩累计厚度为360 m,泥地比为84%(图4)。

    Figure 4.  Seismo⁃geological composite response column of well Wu22 in Wuerxun Depression, Hailaer Basin

  • 单井岩性垂向序列以复合旋回沉积为主。乌22井大二段中下部沉积以厚层灰黑色泥岩夹薄层灰色粉砂质泥岩为主,垂向上呈现反韵律,其中灰黑色泥岩的单层厚度可达50 m。乌22井大二段上部主要为粉砂质泥岩、泥岩和泥质粉砂岩、粉砂岩含少量细砂岩互层沉积,垂向上呈现出向上变细的正韵律,反韵律和块状韵律层很少出现,单层砂岩厚度大多介于0.5~1.5 m,少数在3.0 m左右(图4)。

  • 从贝40井大二段岩样的概率值累积曲线可看出,碎屑颗粒主要为悬浮总体和跳跃总体(图5)。悬浮总体占70%以上,跳跃总体不到30%,悬浮总体和跳跃总体之间存在过渡带,反映河流和波浪作用影响。此外,贝尔凹陷14口井大二段110个岩石样品粒度C-M图也反映出碎屑颗粒主要为均匀悬浮沉积,RS段数据点较多(图6)。其次为递变悬浮沉积,QR段数据点也有一定分布;而仅有少量数据点分布在PQ段,滚动组分沉积较少(图6)。

    Figure 5.  Grain⁃size distribution curve of K1d2 in Beier Depression (well B40, 1 522 m)

    Figure 6.  The C/M pattern of sediments transport based on deposits of K1d2 in Beier Depression

  • 通过对研究区大磨拐河组10余口取心井观察描述可知,本组岩石层理类型比较丰富,同时发育流水沉积作用及波浪改造作用所形成的层理构造。以凹陷边部的乌22井为例,既发育平行层理粉砂岩(图7a),反映流水沉积作用,又发育带有波状层理的泥质粉砂岩沉积(图7b),反映沉积物受到了波浪作用的改造。同时也见透镜状层理的砂泥交互沉积(图7c),反映了流水及波浪作用均较弱的沉积环境。

    Figure 7.  Core scanning photo of well Wu22 in Wuerxun Depression, Hailaer Basin

  • 大磨拐河组总体上具有既发育陆相生物化石,又发育湖相生物化石的特征。前人研究表明[5355],无论是钻孔取心资料,还是野外露头资料,既可见拟木贼、真蕨、银杏等陆相植物化石,又可见介形虫、藻类等湖相化石(图8)。

    Figure 8.  Outcrop rock specimens of Damoguahe Formation in Minduhe Depression, Hailaer Basin

  • 通过三维地震资料在大二段可识别出多期“S”型前积沉积体,如图2所示,T2a-4反射层和T2a-1反射层之间可见典型的“S”型前积反射结构,同相轴连续性较好,小角度叠瓦状前积展布。通过三维地震资料等时追踪可发现这些前积体在平面上呈现朵叶状,从凹陷边部向中间依次进积分布(图9)。总体上乌北次凹发育5期前积体,乌南—贝尔次凹发育8期前积体。乌北次凹前积体向北东方向进积,乌南—贝尔次凹前积体向南西方向进积。从这一点可以看出,海拉尔盆地大磨拐河组前积体的平面分布特征与斜坡带沉积的前积体分布是不同的,斜坡带不同期前积体多平行于坡折条带状展布[5657]

    Figure 9.  Stratal slice graph of K1d2 in Beier Depression

  • 这种特殊泥质三角洲的沉积特征及形成机理是沉积学领域亟需解决的一个重要理论问题,国外关于泥质三角洲的研究也仅仅初现端倪,亚德里亚海大陆架的第四纪沉积是为数稀少的实例之一。该大陆架边缘晚更新世—全新世的沉积地层由5个区域不整合界面划分为4个三级层序(由新到老依次命名为层序1~层序4),每个三级层序内均发育带有前积结构的地层,并被钻孔所证实为泥质沉积,是一种新的三角洲类型[15]。目前对于这种特殊的泥质三角洲的形成机理存在两种观点:一种观点认为特殊的平流的水动力条件(向南流动的底托槽水流)是三角洲前积体富泥的主要原因[14]。La Croix et al.[42]认为加拿大阿尔伯塔省东南部圣托尼时代梅德辛帽段的泥质三角洲主要受蒙大纳北部河流提供的细粒物源和低梯度沉积环境控制。沉积早期水动力强、沿岸流发育时带走了砂岩等粗粒沉积,沉积晚期水动力变弱,细粒沉积物向盆地中央进积(图10a)。另一种观点认为强制性水退沉积条件下前积体中富砂部分被侵蚀掉,仅留下倾斜的低角度“S”形泥质增生体(图10b),从而形成泥质三角洲[15]

    Figure 10.  Sedimentary mechanism of muddy deltas

    笔者研究认为,海拉尔盆地大二段沉积期断裂活动趋于稳定,与此同时,盆地的东北部和西南部均发生了整体的倾斜和沉降。在构造演化的特定时期,海拉尔盆地没有强烈的断裂活动,从而抑制了粗碎屑物质的涌入,大致形成了广泛的NE—SW向水系,地表略有倾斜,但由于局部古地形抬升,盆地内可能出现了局部的SW—NE向水系。此外,大磨拐河组三角洲以泥岩为主的前积层与许多河流有联系,这些河流明显是低能量的蜿蜒河流,主要输送细粒沉积物。海拉尔盆地大磨拐河组泥质三角洲沉积时主要受物源及水动力条件控制。首先无论岩心资料还是露头资料,大磨拐河组均发现大量介形虫及叶肢介化石,表明大磨拐河组沉积时期处于温暖环境。同时,大磨拐河组地层多见薄煤层沉积,表明大磨拐河组沉积时期处于潮湿环境。其次,从地震剖面上见到的大型“S”型前积反射结构以及地震切片上三角洲平原部分所见的曲流河道影像同样印证了这一观点。图9a地震剖面上可以看到黑色虚线为图10b所展示的地层切片所对应垂向位置,切片切过了贝57井处的前积反射;从地层切片上可以清楚地看到平原区(贝53井东北)发育众多近南北向展布的条带型河道,切片上反映为黑色或白色的条带,河道有的弯曲不一,连续性好,错叠连片;前缘区(贝57井一线)可见清晰的河道分叉现象,切片上反映为白色分叉条带;而前三角洲区(贝41井西南)主要为泥质沉积,切片上为单一、光滑的灰色块区(图9b)。从几何角度看,大磨拐河组沉积物的高角度堆积符合吉尔伯特型三角洲体系。然而,沉积物的粒度要比吉尔伯特型三角洲前缘沉积物的粗粒堆积细得多。这表明沉积时该区水动力较弱,结合前积体分布特征认为其为点物源主导的分散进积沉积(图10c)。

  • (1) 海拉尔盆地大磨拐河组的泥质三角洲沉积具有富泥贫砂特征,泥地比可达84%,以泥岩、泥质粉砂岩、粉砂质泥岩等细粒岩为主,区别于正常三角洲沉积。在地震剖面上可识别出多期“S”型反射结构,前积层广泛发育,这表明不止粗粒的砂质可以形成沉积体,细粒物质也可以进行沉积。

    (2) 海拉尔盆地大二段沉积时期,细粒物源供给为泥质三角洲形成提供必要条件和物质基础,而低能量、高弯曲度的曲流河、较弱的水动力条件是形成非典型吉尔伯特三角洲的泥质前积体的根本原因。

Reference (57)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return