Advanced Search
Volume 42 Issue 6
Dec.  2024
Turn off MathJax
Article Contents

ZHU XiaoYu, SUN DaHai, HE WenKang, CHEN YiMing, LI XingYi, YAO WeiHua. Late Paleozoic Lithofacies Paleogeography and Tectonic-sedimentary Evolution of Eastern South China[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1918-1935. doi: 10.14027/j.issn.1000-0550.2024.094
Citation: ZHU XiaoYu, SUN DaHai, HE WenKang, CHEN YiMing, LI XingYi, YAO WeiHua. Late Paleozoic Lithofacies Paleogeography and Tectonic-sedimentary Evolution of Eastern South China[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1918-1935. doi: 10.14027/j.issn.1000-0550.2024.094

Late Paleozoic Lithofacies Paleogeography and Tectonic-sedimentary Evolution of Eastern South China

doi: 10.14027/j.issn.1000-0550.2024.094
Funds:

National Natural Science Foundation of China 42102117

Natural Science Foundation of Guangdong Province 2020A1515011224

Natural Science Foundation of Guangdong Province 2024A1515010778

  • Received Date: 2024-01-15
  • Accepted Date: 2024-09-03
  • Rev Recd Date: 2024-08-15
  • Available Online: 2024-09-03
  • Publish Date: 2024-12-10
  • Objectives Following the Early Paleozoic Wuyi-Yunkai orogeny, eastern South China experienced a tectonically quiescent period in the Late Paleozoic, with large-scale marine transgression and thick sediment deposition. Specifically, the nature of the strata in the Lower Devonian to the Kungurian stage of the Early Permian, such as isopach changes and lateral variation of lithofacies, are important for understanding the post-orogenic topography of eastern South China. Methods Stratigraphic thicknesses and lithological data for the region were collected and strata isopach maps and lithofacies maps were compiled for six main epochs/ages: the Early, Middle and Late Devonian, the Early Carboniferous, the Late Carboniferous to the Sakmarian age of the Early Permian, and the Artinskian age to Kungurian age of the Early Permian. The tectonic subsidence rate of the basin at five different localities was calculated for each epoch/age. Results The subsidence of the Late Paleozoic basin in eastern South China is divided into two stages: (i) a high subsidence rate (about 25 m/Ma) in the Devonian; and (ii) a low subsidence rate (about 10 m/Ma) in the Carboniferous to Kungurian age of the Early Permian. Conclusions Taking the regional widely-distributed and large-scale normal faults into consideration, it is speculated that the first stage of basin subsidence was mainly influenced by tectonic activity inherited from the post-Wuyi-Yunkai orogenic collapse and possibly the separation of South China from Gondwana during the Devonian. The second stage was controlled by the icehouse climate together with the sediment load in the basin during the Carboniferous to Early Permian.
  • [1] Dewey J F. Extensional collapse of orogens[J]. Tectonics, 1988, 7(6): 1123-1139.
    [2] Leech M L. Arrested orogenic development: Eclogitization, delamination, and tectonic collapse[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 149-159.
    [3] Li S G, Huang F, Li H. Post-collisional lithosphere delamination of the Dabie-Sulu orogen[J]. Chinese Science Bulletin, 2002, 47(3): 259-263.
    [4] 吴福元,黄宝春,叶凯,等. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报,2008,24(1):1-30.

    Wu Fuyuan, Huang Baochun, Ye Kai, et al. Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau[J]. Acta Petrologica Sinica, 2008, 24(1): 1-30.
    [5] Giovanni M K, Horton B K, Garzione C N, et al. Extensional basin evolution in the Cordillera Blanca, Peru: Stratigraphic and isotopic records of detachment faulting and orogenic collapse in the Andean hinterland[J]. Tectonics, 2010, 29(6): TC6007.
    [6] Therrien F. Depositional environments and fluvial system changes in the dinosaur-bearing Sânpetru Formation (Late Cretaceous, Romania): Post-orogenic sedimentation in an active extensional basin[J]. Sedimentary Geology, 2006, 192(3/4): 183-205.
    [7] Bulois C, Pubellier M, Chamot-Rooke N, et al. From orogenic collapse to rifting: A case study of the northern Porcupine Basin, offshore Ireland[J]. Journal of Structural Geology, 2018, 114: 139-162.
    [8] Sun J P, Dong Y P. Middle-Late Triassic sedimentation in the Helanshan tectonic belt: Constrain on the tectono-sedimentary evolution of the Ordos Basin, North China[J]. Geoscience Frontiers, 2019, 10(1): 213-227.
    [9] 任纪舜. 论中国南部的大地构造[J]. 地质学报,1990,64(4):275-288.

    Ren Jishun. On the geotectonics of southern China[J]. Acta Geologica Sinica, 1990, 64(4): 275-288.
    [10] Faure M, Shu L S, Wang B, et al. Intracontinental subduction: A possible mechanism for the Early Palaeozoic orogen of SE China[J]. Terra Nova, 2009, 21(5): 360-368.
    [11] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 2010, 122(5/6): 772-793.
    [12] 李三忠,李玺瑶,赵淑娟,等. 全球早古生代造山带(Ⅲ):华南陆内造山[J]. 吉林大学学报(地球科学版),2016,46(4):1005-1025.

    Li Sanzhong, Li Xiyao, Zhao Shujuan, et al. Global Early Paleozoic orogens (Ⅲ): Intracontinental orogen in South China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1005-1025.
    [13] 张国伟,郭安林,王岳军,等. 中国华南大陆构造与问题[J]. 中国科学:地球科学,2013,43(10):1553-1582.

    Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China: Earth Science, 2013, 43(10): 1553-1582.
    [14] Shu L S, Jahn B M, Charvet J, et al. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 2014, 314(1): 154-186.
    [15] Yao W H, Li Z X. Tectonostratigraphic history of the Ediacaran–Silurian Nanhua Foreland Basin in South China[J]. Tectonophysics, 2016, 674: 31-51.
    [16] Yao W H, Li Z X, Li W X, et al. Post-kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China: Evidence from ca. 435 Ma high-Mg basalts[J]. Lithos, 2012, 154: 115-129.
    [17] 刘文均,张锦泉,陈洪德. 华南泥盆纪的沉积盆地特征沉积作用和成矿作用[J]. 地质学报,1993,67(3):244-254.

    Liu Wenjun, Zhang Jinquan, Chen Hongde. Geological features of Devonian sedimentary basins in South China and their deposition and mineralization[J]. Acta Geologica Sinica, 1993, 67(3): 244-254.
    [18] 陈洪德,张锦泉,刘文均. 泥盆纪—石炭纪右江盆地结构与岩相古地理演化[J]. 广西地质,1994,7(2):15-23.

    Chen Hongde, Zhang Jinquan, Liu Wenjun. Structure of Youjiang Basin in Devonian-Carboniferous period and its evolution of lithofacies and palageogeography[J]. Guangxi Geology, 1994, 7(2): 15-23.
    [19] 刘文均. 海西—印支期华南板块的沉积特点[J]. 成都理工学院学报,1998,25(2):328-336.

    Liu Wenjun. Evolution of sedimentation of South China Plate in the Hercynian-Indosinian stage[J]. Journal of Chengdu University of Technology, 1998, 25(2): 328-336.
    [20] Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert[J]. Sedimentary Geology, 2006, 183(3/4): 203-216.
    [21] Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.
    [22] Li Z X, Li X H, Chung S L, et al. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a western Pacific-type plate boundary[J]. Tectonophysics, 2012, 532-535: 271-290.
    [23] 刘宝珺,许效松. 中国南方岩相古地理图集:震旦纪—三叠纪[M]. 北京:科学出版社,1994:1-188.

    Liu Baojun, Xu Xiaosong. Atlas of lithofacies and paleogeography of South China[M]. Beijing: Science Press, 1994: 1-188.
    [24] 牟传龙,丘东洲,王立全,等. 湘鄂赣二叠纪岩相古地理研究[J]. 岩相古地理,1997,17(6):1-21.

    Mou Chuanlong, Qiu Dongzhou, Wang Liquan, et al. Permian sedimentary facies and palaeogeography in the Hunan-Hubei-Jiangxi region[J]. Sedimentary Facies and Palaeogeography, 1997, 17(6): 1-21.
    [25] 何卫红,唐婷婷,乐明亮,等. 华南南华纪—二叠纪沉积大地构造演化[J]. 地球科学:中国地质大学学报,2014,39(8):929-953.

    He Weihong, Tang Tingting, Yue Mingliang, et al. Sedimentary and tectonic evolution of Nanhuan-Permian in South China[J]. Earth Science: Journal of China University of Geosciences, 2014, 39(8): 929-953.
    [26] 马永生,陈洪德,王国力. 中国南方构造—层序岩相古地理图集:震旦纪—新近纪[M]. 北京:科学出版社,2009:1-301.

    Ma Yongsheng, Chen Hongde, Wang Guoli. Atlas of tectono-sequence lithofacies and paleogeography of South China: From Sinian to Neogene[M]. Beijing: Science Press, 2009: 1-301.
    [27] Xun Z, Allen M B, Whitham A G, et al. Rift-related Devonian sedimentation and basin development in South China[J]. Journal of Southeast Asian Earth Sciences, 1996, 14(1/2): 37-52.
    [28] 马丽芳. 中国地质图集[M]. 北京:地质出版社,2002:1-348.

    Ma Lifang. Altas of geological maps of China[M]. Beijing: Geological Publishing House, 2002: 1-348.
    [29] Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58(3/4): 145-168.
    [30] Huang H, Cawood P A, Hou M C, et al. Zircon U-Pb age, trace element, and Hf isotopic constrains on the origin and evolution of the Emeishan large igneous province[J]. Gondwana Research, 2022, 105: 535-550.
    [31] Xu Y G, He B, Chung S L, et al. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province[J]. Geology, 2004, 32(10): 917-920.
    [32] 张德高. 广东二叠纪火山事件地层学研究[J]. 中国煤田地质,2000,12(3):5-9.

    Zhang Degao. Study on the Permian volcanic eventstratigraphy in Guangdong province[J]. Coal Geology of China, 2000, 12(3): 5-9.
    [33] Li X H, Li Z X, Li W X, et al. Initiation of the Indosinian orogeny in South China: Evidence for a Permian magmatic arc on Hainan Island[J]. The Journal of Geology, 2006, 114(3): 341-353.
    [34] 夏斌,林清茶,张玉泉. 广东罗定龙塘碱性花岗岩锆石SHRIMP定年及地质意义[J]. 地质科学,2006,41(3):511-517.

    Xia Bin, Lin Qingcha, Zhang Yuquan. Zircon SHRIMP dating of the Longtang alkaline granite at Luoding, Guangdong, and its geological implications[J]. Chinese Journal of Geology, 2006, 41(3): 511-517.
    [35] 谢才富,朱金初,丁式江,等. 海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿的关系[J]. 岩石学报,2006,22(10):2493-2508.

    Xie Caifu, Zhu Jinchu, Ding Shijiang, et al. Age and petrogenesis of the Jianfengling granite and its relationship to metallogenesis of the Baolun gold deposit, Hainan Island[J]. Acta Petrologica Sinica, 2006, 22(10): 2493-2508.
    [36] Xin Y J, Li J H, Ratschbacher L, et al. Early Devonian (415-400 Ma) A-type granitoids and diabases in the Wuyishan, eastern Cathaysia: A signal of crustal extension coeval with the separation of South China from Gondwana[J]. GSA Bulletin, 2020, 132(11/12): 2295-2317.
    [37] 余心起,张德会,颜铁增,等. 浙西北及江绍断裂带分别发现早古生代和晚古生代岩浆活动[J]. 地质通报,2013,32(10):1558-1565.

    Yu Xinqi, Zhang Dehui, Yan Tiezeng, et al. The discovery of the Early and Late Paleozoic magmatic activities in northwest Zhejiang province, southeast China[J]. Geological Bulletin of China, 2013, 32(10): 1558-1565.
    [38] Yu J H, Liu Q, Hu X M, et al. Late Paleozoic magmatism in South China: Oceanic subduction or intracontinental orogeny?[J]. Chinese Science Bulletin, 2013, 58(7): 788-795.
    [39] 沈林伟. 华南东南部晚古生代构造演化:来自岩浆岩及沉积岩的证据[D]. 南京:南京大学,2018:1-152.

    Shen Linwei. Late Paleozoic tectonics of southeast South China: Evidenced from igneous and sedimentary rocks[D]. Nanjing: Nanjing University, 2018: 1-152.
    [40] 周怀玲,张振贤. 华南早泥盆世的岩相古地理[J]. 广西地质,1993(3):21-32.

    Zhou Huailing, Zhang Zhenxian. Early Devonian lithofacies and palaeogeography in South China[J]. Guangxi Geology, 1993(3): 21-32.
    [41] Ma X P, Liao W H, Wang D M. The Devonian System of China, with a discussion on sea-level change in South China[J]. Geological Society, London, Special Publications, 2009, 314: 241-262.
    [42] Ma X P, Gong Y M, Chen D Z, et al. The Late Devonian Frasnian–Famennian event in South China: patterns and causes of extinctions, sea level changes, and isotope variations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 224-244.
    [43] Qie W K, Ma X P, Xu H H, et al. Devonian integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 62(1): 112-134.
    [44] 汪啸风. 中国地层典:奥陶系[M]. 北京:地质出版社,1996:1-126.

    Wang Xiaofeng. Stratigraphy of China: Ordovician[M]. Beijing: Geological Publishing House, 1996: 1-126.
    [45] Cohen K M, Finney S C, Gibbard P L, et al. The ICS international chronostratigraphic chart[J]. Episodes, 2013, 36(3): 199-204.
    [46] 高振家,陈克强,魏家庸. 中国岩石地层辞典[M]. 武汉:中国地质大学出版社,2000:1-628.

    Gao Zhenjia, Chen Keqiang, Wei Jiayong. Chinese dictionary of rock stratigraphy[M]. Wuhan: China University of Geosciences Press, 2000: 1-628.
    [47] Shen S Z, Zhang H, Zhang Y C, et al. Permian integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 62(1): 154-188.
    [48] 侯章帅. 华南二叠纪高精度定量古地理研究[D]. 合肥:中国科学技术大学,2020:1-119.

    Hou Zhangshuai. High-resolution quantitative paleogeographic study of the Permian in South China[D]. Hefei: University of Science and Technology of China, 2020: 1-119.
    [49] 杨帅,陈安清,张玺华,等. 四川盆地二叠纪栖霞—茅口期古地理格局转换及勘探启示[J]. 沉积学报,2021,39(6):1466-1477.

    Yang Shuai, Chen Anqing, Zhang Xihua, et al. Paleogeographic transition of the Permian Chihsia-Maokou period in the Sichuan Basin and indications for oil-gas exploration[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1466-1477.
    [50] 吴祥和,董文兰,王洪弟,等. 黔西南石炭—二叠“跨纪”沉积层序[J]. 地层学杂志,1983,7(4):289-298.

    Wu Xianghe, Dong Wenlan, Wang Hongdi, et al. Carboniferous-Permian cross-period sequence stratigraphy in the southwestern Guizhou[J]. Journal of Stratigraphy, 1983, 7(4): 289-298.
    [51] 周建平. 广西隆林常么马平组䗴类化石带:兼论石炭—二叠系分界[J]. 古生物学报,1991,30(3):396-405.

    Zhou Jianping. Fusulinid zones from Maping Formation of Changmo, Longlin, Guangxi: On Carboniferous-Permian boundary[J]. Acta Palaeontologica Sinica, 1991, 30(3): 396-405.
    [52] 李建成,洪祖寅. 福建沙县船山组䗴类生物地层:兼论石炭系—二叠系界线[J]. 地层学杂志,2003,27(3):185-192.

    Li Jiancheng, Hong Zuyin. Biostratigraphy of the Chuanshan Formation of Shaxian in Fujian with comments on the Carboniferous-Permian boundary[J]. Journal of Stratigraphy, 2003, 27(3): 185-192.
    [53] 颜铁增. 浙江省船山组的划分与对比[J]. 地层学杂志,2003,27(4):318-323.

    Yan Tiezeng. Subdivision and correlation of the Chuanshan Formation in Zhejiang[J]. Journal of Stratigraphy, 2003, 27(4): 318-323.
    [54] Watts A B, Ryan W B F. Flexure of the lithosphere and continental margin basins[J]. Developments in Geotectonics, 1976, 12: 25-44.
    [55] Sinclair H D, Naylor M. Foreland basin subsidence driven by topographic growth versus plate subduction[J]. GSA Bulletin, 2012, 124(3/4): 368-379.
    [56] 王成善,李祥辉. 沉积盆地分析原理与方法[M]. 北京:高等教育出版社,2003:1-378.

    Wang Chengshan, Li Xianghui. Sedimentary basin: From principles to analyses[M]. Beijing: Higher Education Press, 2003: 1-378.
    [57] 王清晨. 沉积盆地成因学[M]. 北京:科学出版社,2018:1-223.

    Wang Qingchen. Genetics of sedimentary basin[M]. Beijing: Science Press, 2018: 1-223.
    [58] Hegarty K A, Weissel J K, Mutter J C. Subsidence history of Australia’s southern margin: Constraints on basin models[J]. AAPG Bulletin, 1988, 72(5): 615-633.
    [59] 广西壮族自治区地质矿产局. 广西壮族自治区区域地质志[M]. 北京:地质出版社,1985:1-853.

    Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region. Regional geology of Guangxi Zhuang Autonomous Region[M]. Beijing: Geological Publishing House, 1985: 1-853.
    [60] 陈洪德,曾允孚,李孝全. 丹池晚古生代盆地的沉积和构造演化[J]. 沉积学报,1989,7(4):85-96.

    Chen Hongde, Zeng Yunfu, Li Xiaoquan. Evolution of the sedimentation and tectonics of Late Paleozoic Danchi Basin[J]. Acta Sedimentologica Sinica, 1989, 7(4): 85-96.
    [61] 广东省地质矿产局. 广东省区域地质志[M]. 北京:地质出版社,1988:1-941.

    Bureau of Geology and Mineral Resources of Guangdong Province. Regional geology of Guangdong province[M]. Beijing: Geological Publishing House, 1988: 1-941.
    [62] 毛晓冬,杨振强. 粤北泥盆纪裂陷盆地特征及其演化[J]. 华南地质与矿产,1998(3):26-36.

    Mao Xiaodong, Yang Zhenqiang. Characteristics and evolution of Devonian rift basin in northern Guangdong[J]. Geology and Mineral Resources of South China, 1998(3): 26-36.
    [63] Chen D, Tucker M E, Zhu J, et al. Carbonate sedimentation in a starved pull-apart basin, Middle to Late Devonian, southern Guilin, South China[J]. Basin Research, 2001, 13(2): 141-167.
    [64] 福建省地质矿产局. 福建省区域地质志[M]. 北京:地质出版社,1985:1-671.

    Bureau of Geology and Mineral Resources of Fujian Province. Regional geology of Fujian province[M]. Beijing: Geological Publishing House, 1985: 1-671.
    [65] 凌联海,楼法生,冯晔,等. 江西省泥盆纪岩石地层划分与对比[J]. 地层学杂志,2004,28(2):126-136.

    Ling Lianhai, Lou Fasheng, Feng Ye, et al. The Devonian lithostratigraphic classification and correlation of Jiangxi province[J]. Journal of Stratigraphy, 2004, 28(2): 126-136.
    [66] 湖南省地质矿产局. 湖南省区域地质志[M]. 北京:地质出版社,1988:1-728.

    Hunan Bureau of Geology and Mineral Resources. Regional geology of Hunan province[M]. Beijing: Geological Publishing House, 1988: 1-728.
    [67] 张宁,夏文臣. 华南晚古生代硅质岩时空分布及再扩张残留海槽演化[J]. 地球科学:中国地质大学学报,1998,23(5):480-486.

    Zhang Ning, Xia Wenchen. Time-space distribution of Late Paleozoic cherts and evolution of respreading trench in South China[J]. Earth Science: Journal of China University of Geosciences, 1998, 23(5): 480-486.
    [68] 梅冥相,马永生,邓军,等. 滇黔桂盆地及其邻区石炭纪至二叠纪层序地层格架及三级海平面变化的全球对比[J]. 中国地质,2005,32(1):13-24.

    Mei Mingxiang, Ma Yongsheng, Deng Jun, et al. Carboniferous to Permian sequence stratigraphic framework of the Yunnan-Guizhou-Guangxi Basin and its adjacent areas and global correlation of third-order sea-level change[J]. Geology in China, 2005, 32(1): 13-24.
    [69] 杨怀宇. 湘桂地区泥盆纪岩相古地理重建[J]. 西南石油大学学报(自然科学版),2014,36(1):1-8.

    Yang Huaiyu. Reconstruction of Devonian lithofacies palaeogeography in Hunan and Guangxi provinces[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(1): 1-8.
    [70] 杜远生,徐亚军. 华南加里东运动初探[J]. 地质科技情报,2012,31(5):43-49.

    Du Yuansheng, Xu Yajun. A preliminary study on Caledonian event in South China[J]. Geological Science and Technology Information, 2012, 31(5): 43-49.
    [71] 徐亚军,杜远生. 从板缘碰撞到陆内造山:华南东南缘早古生代造山作用演化[J]. 地球科学,2018,43(2):333-353.

    Xu Yajun, Du Yuansheng. From periphery collision to intraplate orogeny: Early Paleozoic orogenesis in southeastern part of South China[J]. Earth Science, 2018, 43(2): 333-353.
    [72] Chen D Z, Tucker M E, Zhu J Q, et al. Carbonate platform evolution: From a bioconstructed platform margin to a sand-shoal system (Devonian, Guilin, South China)[J]. Sedimentology, 2002, 49(4): 737-764.
    [73] 曾允孚,陈洪德,张锦泉,等. 华南泥盆纪沉积盆地类型和主要特征[J]. 沉积学报,1992,10(3):104-113.

    Zeng Yunfu, Chen Hongde, Zhang Jinquan, et al. Types and main characteristics of Devonian sedimentary basin in South China[J]. Acta Sedi-mentologica Sinia, 1992, 10(3): 104-113.
    [74] Chen B, Chen J T, Qie W K, et al. Was climatic cooling during the earliest Carboniferous driven by expansion of seed plants?[J]. Earth and Planetary Science Letters, 2021, 565: 116953.
    [75] Chen J T, Montañez I P, Qi Y P, et al. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the Late Paleozoic glaciation[J]. Geology, 2018, 46(5): 395-398.
    [76] Gao B, Xin H, Huang X, et al. A record of enhanced water cycle in the Late Paleozoic icehouse[J]. Global and Planetary Change, 2022, 218: 103957.
    [77] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
    [78] Cocks L R M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews, 2013, 117: 40-79.
  • 朱孝钰-沉积学报数据.docx
    附表1 华南东部泥盆纪—早二叠世空谷期地层厚度统计表.docx
    附表1 华南东部泥盆纪—早二叠世空谷期地层厚度统计表.xlsx
    附表1 华南东部泥盆纪—早二叠世空谷期地层厚度统计表.docx
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(1)

Article Metrics

Article views(252) PDF downloads(94) Cited by()

Proportional views
Related
Publishing history
  • Received:  2024-01-15
  • Revised:  2024-08-15
  • Accepted:  2024-09-03
  • Published:  2024-12-10

Late Paleozoic Lithofacies Paleogeography and Tectonic-sedimentary Evolution of Eastern South China

doi: 10.14027/j.issn.1000-0550.2024.094
Funds:

National Natural Science Foundation of China 42102117

Natural Science Foundation of Guangdong Province 2020A1515011224

Natural Science Foundation of Guangdong Province 2024A1515010778

Abstract: Objectives Following the Early Paleozoic Wuyi-Yunkai orogeny, eastern South China experienced a tectonically quiescent period in the Late Paleozoic, with large-scale marine transgression and thick sediment deposition. Specifically, the nature of the strata in the Lower Devonian to the Kungurian stage of the Early Permian, such as isopach changes and lateral variation of lithofacies, are important for understanding the post-orogenic topography of eastern South China. Methods Stratigraphic thicknesses and lithological data for the region were collected and strata isopach maps and lithofacies maps were compiled for six main epochs/ages: the Early, Middle and Late Devonian, the Early Carboniferous, the Late Carboniferous to the Sakmarian age of the Early Permian, and the Artinskian age to Kungurian age of the Early Permian. The tectonic subsidence rate of the basin at five different localities was calculated for each epoch/age. Results The subsidence of the Late Paleozoic basin in eastern South China is divided into two stages: (i) a high subsidence rate (about 25 m/Ma) in the Devonian; and (ii) a low subsidence rate (about 10 m/Ma) in the Carboniferous to Kungurian age of the Early Permian. Conclusions Taking the regional widely-distributed and large-scale normal faults into consideration, it is speculated that the first stage of basin subsidence was mainly influenced by tectonic activity inherited from the post-Wuyi-Yunkai orogenic collapse and possibly the separation of South China from Gondwana during the Devonian. The second stage was controlled by the icehouse climate together with the sediment load in the basin during the Carboniferous to Early Permian.

ZHU XiaoYu, SUN DaHai, HE WenKang, CHEN YiMing, LI XingYi, YAO WeiHua. Late Paleozoic Lithofacies Paleogeography and Tectonic-sedimentary Evolution of Eastern South China[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1918-1935. doi: 10.14027/j.issn.1000-0550.2024.094
Citation: ZHU XiaoYu, SUN DaHai, HE WenKang, CHEN YiMing, LI XingYi, YAO WeiHua. Late Paleozoic Lithofacies Paleogeography and Tectonic-sedimentary Evolution of Eastern South China[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1918-1935. doi: 10.14027/j.issn.1000-0550.2024.094
  • 一般来说,发生在造山晚期的深部岩石圈拆沉会导致地表山脉垮塌[13]。对于现代造山带,造山垮塌可直接被造山带范围内的地貌变化所记录[45];对于古老造山带,与造山垮塌相关的地表地貌变化常常会被后期地质运动改造,因此需要通过其他证据来识别和研究古老造山带的造山垮塌事件。前人研究表明,如果原造山带在造山垮塌后进入一段构造平静期,因造山垮塌引起的地貌变化则可一定程度地保存在这段构造平静期的沉积充填序列中;通过研究该沉积充填序列,可有效提取其中保留的有关造山垮塌事件的信息[67]。例如,贺兰山地区中—上三叠统沉积充填序列研究表明,该套地层沉积于中亚造山带造山垮塌后的中晚三叠世伸展型盆地中,其冲积扇相—河湖相沉积序列是对造山垮塌地貌的沉积响应[8]。通过造山垮塌后构造平静期沉积序列来间接研究造山垮塌期地表地貌变化的思路,也可用于华南古生代造山作用研究中。

    位于华南东部的武夷—云开造山褶皱带是一条因早古生代挤压造山作用而形成的古老造山带[912],其造山活动历史对华南地区显生宙地貌格局的塑造具有重要意义[13]。该造山褶皱带于奥陶纪发生岩层褶皱和山脉隆升[1415],至中志留世发生山体垮塌[16],之后进入泥盆纪构造平静期,并在造山褶皱带范围内沉积了厚达数千米的上古生界沉积序列[1720]。由于华南东部又经历了多次中—新生代构造活动[2122],与武夷—云开造山垮塌相关的地表地貌均已被破坏和改造,直接研究该造山垮塌事件及地貌变化面临着较大困难。而造山垮塌后华南东部形成的上古生界沉积序列,却为间接研究中志留世武夷—云开造山垮塌事件提供了一个新途径。

    上古生界沉积序列中,泥盆系—下石炭统以陆源碎屑岩和海相碳酸盐岩为主,陆源碎屑物质由华南本地暴露在海平面之上的古陆隆起提供[1719];上石炭统—下二叠统空谷阶(栖霞组,下同)以厚层海相碳酸盐岩为特色,华南全域均浸没在海平面之下,基本无古陆出露[20,2325]。从盆地沉降—沉积充填角度来看,泥盆系—下二叠统空谷阶记录了华南东部从武夷—云开造山垮塌后盆地开始沉降到完全被海相沉积物填满的过程[23,26]。因此,研究华南东部这套上古生界沉积序列,不仅可以帮助了解晚古生代华南东部盆地沉降、沉积充填、海平面变化等特征,还有望为武夷—云开造山垮塌及伴生的地表地貌变化研究提供重要证据。

    本文对华南东部晚古生代地层进行沉积地层厚度和岩性梳理统计,编制晚古生代各世期的区域地层等厚图和岩相图,并计算各世期的盆地沉降速率。在此基础上,探讨武夷—云开造山垮塌后华南地区各世期沉积物展布规律、岩相变化特征,着重分析华南东部的盆地沉降和沉积充填过程。最后,探讨晚古生代盆地沉积充填和早古生代造山垮塌之间的动力学联系,为研究古生代华南地区构造—沉积演化提供基础资料。

  • 早古生代挤压造山作用导致华南东部于造山结束时大幅褶皱隆起上升成陆,绝大部分地区缺失志留系,仅桂南钦州地区保留了志留系,该地区的志留系与泥盆系之间为连续整合接触关系[18,23,2628]

    泥盆系露头广泛分布于华南各省区(图1)。下泥盆统以陆源碎屑岩为特色,仅分布在滇黔桂地区,而华南东部其他地区普遍缺失下泥盆统[27]。中泥盆统覆盖滇黔桂湘粤等地,滇黔桂地区以碳酸盐岩为主,湘粤地区以陆源碎屑岩为主。上泥盆统在粤西—桂东云开大山地区以海相灰岩为特色,在闽浙武夷山地区则以陆源砂岩为主,局部含砾石。石炭纪地层露头分布相对局限,以黔桂湘粤地区为主,其余地区有零星分布(图1)。下石炭统仍以陆源碎屑岩为主,但海相碳酸盐岩含量较之泥盆系有明显上升。上石炭统—下二叠统萨克马尔阶主要是一套灰岩和白云岩组合,局部地区有少量陆源碎屑岩夹层。下二叠统亚丁斯克阶—空谷阶的露头分布更为零星,主要分布在黔西、桂中、闽、赣等地区[23],岩性以灰岩为主,局部夹少量泥灰岩和硅质岩。

    Figure 1.  Schematic geological map of eastern South China, highlighting the Late Paleozoic sedimentary outcrops and major growth normal faults (modified from references [17,26,28])

    华南地区晚古生代岩浆活动以发生在中晚二叠世之交(~260 Ma)的峨眉山大火成岩省为特色[2930],岩浆覆盖区域以华南西部川滇地区为主[29,31],华南东部也有少量中晚二叠世岩浆记录[3235]。相比之下,泥盆纪—早二叠世岩浆记录则较少,仅在东南沿海有零星岩浆岩的报道,如闽西北建宁地区早泥盆世(410~400 Ma)花岗岩[36]、浙中金华地区早石炭世(~334 Ma)辉长闪长岩[37]以及闽北宁德地区晚石炭世(~317 Ma)花岗岩[3839]

    华南东部晚古生代构造活动多以同沉积断裂带的形式出现,呈北东、北西走向产出(图1)。华南东部大部地区(即原武夷—云开造山褶皱带)主要产出北东走向断裂带,如绍兴—江山—萍乡断裂、邵武—河源断裂、丽水—海丰断裂等;位于西部的黔桂地区则产出少数北西走向断裂带,包括那坡—广南断裂、百色断裂、南丹—河池断裂带等[17,26,40]。这些断裂带多为地壳基底断裂,在早古生代武夷—云开造山期已出现,晚古生代再次以泥盆纪同生断裂的形式出现,具有多期活动的特点[1718,2627]

  • 本文以华南八省1∶20万幅和1∶5万幅区域地质调查报告和地质图资料为基础,对原属武夷—云开造山褶皱带及周边地区的泥盆纪、石炭纪和早二叠世(即乌拉尔世,下同)地层进行厚度和岩性统计,收集和整理了722条上古生界剖面数据,并将其划分为下泥盆统、中泥盆统、上泥盆统、下石炭统、上石炭统—下二叠统萨克马尔阶、下二叠统亚丁斯克阶—空谷阶(附表1)。

    剖面时代年龄范围/Ma持续时间/Ma实测累积地层厚度/km平均孔隙度/%脱压累积地层厚度/km水深/km累积构造沉降量/km构造沉降速率/(km/Ma)
    贵港P12290~273175.5270.3228.1580.1102.4460.013
    C2-P11323~290335.0050.3257.4130.1102.2330.014
    C1259~323363.9090.3325.8500.1101.7850.008
    D3383~359243.2140.3394.8600.1101.5020.012
    D2393~383102.4940.3503.8360.1101.2080.029
    D1419~393261.7760.3702.8190.1100.9170.035
    桂林P12290~273174.1640.3316.2220.1101.8920.002
    C2-P11323~290334.0970.3316.1260.1101.8640.003
    C1259~323363.8890.3335.8300.1101.7790.017
    D3383~359242.4010.3403.6360.1101.1510.016
    D2393~383101.4480.3662.2830.1100.7640.017
    D1419~393261.0240.3931.6870.1100.5930.023
    韶关P12290~273172.4840.3753.9720.1101.2470.007
    C2-P11323~290332.1880.3853.5560.1101.1280.009
    C1259~323361.6710.4112.8370.0200.8320.008
    D3383~359241.0060.4571.8510.0200.5500.016
    D2393~383100.2870.4580.5300.0200.1720.017
    D1419~39326000000
    邵阳P12290~273173.3330.3355.0120.1101.5450.003
    C2-P11323~290333.2170.3364.8460.1101.4980.017
    C1259~323361.7980.3652.8310.1100.9210.007
    D3383~359241.1600.3881.8970.1100.6530.017
    D2393~383100.3080.3340.4620.1100.2420.024
    D1419~39326000000
    涟源P12290~273173.4870.3715.5420.1101.6970.004
    C2-P11323~290333.3100.3755.2920.1101.6250.013
    C1259~323362.4760.4004.1250.0201.2010.012
    D3383~359241.6420.3732.6200.0200.7700.012
    D2393~383100.8780.3431.3360.1100.4930.049
    D1419~39326000000
    注:(1)实测地层厚度取值于各地层剖面中各世期地层的累计厚度。其中,部分剖面的泥盆纪地层中有少量中—粗粒砂岩及砾岩层,实测厚度在该世期的总实测地层厚度中占比较小(1%~6%),因此在累积厚度计算时直接对实测厚度进行取值,未做校正。(2)C2⁃P11为晚石炭世—早二叠世萨克马尔期,P12为早二叠世亚丁斯克期—空谷期。(3)平均孔隙度以各世期地层剖面中砂岩/泥岩/粉砂岩/灰岩所占比例进行累计加权计算得出,初始孔隙度取值以砂岩34%、粉砂岩50%、泥岩52%、灰岩30%为参考[58]。(4)脱压地层厚度S*=S(1+Φ)/(1-Φ),其中S为实测地层厚度,Φ为平均孔隙度。(5)盆地构造沉降量SS=Wd+S*[(ρm-ρs)/(ρm-ρw)]-ΔSL[ρm/(ρm-ρw)],其中S*为脱压地层厚度,ρs为地层平均密度(2 650 kg/m3),Wd为沉积时的古水深,ρmρw分别为地幔密度(3 330 kg/m3)和水体密度(1 030 kg/m3),ΔSL为海平面变化值。

    Table 1.  Tectonic subsidence rates in five localities in the Late Paleozoic sedimentary basin, South China

    在数据收集和整理过程中,笔者发现这批区域地质调查报告资料大多出版于20世纪70—80年代,受化石鉴定技术的限制,以化石组合为主要地质年代划分依据的地层时代略有纰漏。因此,笔者广泛搜集和挖掘近年来发表的科研项目成果、学术论文、矿产资源报告资料,从中提取最新的有关上古生界厚度、岩性、古生物组合、地质时代等数据。着重关注新资料中对于化石组合的再鉴定和所属地质年代的再厘定,对722条剖面上各地层组、群的所属时代进行逐层梳理[4144],提供了一套相对可信的华南东部上古生界年代地层格架(图2)。此外,根据最新发表的研究成果和资料,将各世期的地层组与国际年代地层单位[45]进行了匹配。其中,泥盆系下、中、上统与国际年代地层表中的泥盆系下、中、上统一一对应;石炭系下统、上统分别对应于国际年代地层表中的石炭系密西西比亚系、宾夕法尼亚亚系[46];二叠系下统栖霞组、梁山组分别对应于国际年代地层表中的二叠系乌拉尔统空谷阶、亚丁斯克阶[4749]。需指出的是,前人研究成果认为上石炭统船山组(马平组)是一套穿时至早二叠世萨克马尔期的沉积地层[5053],因此船山组(马平组)应对应到国际年代地层表中的上石炭统顶部—下二叠统萨克马尔阶。最终,本文将华南东部晚古生代各世期的时间范围厘定如下:早泥盆世419~393 Ma,中泥盆世393~383 Ma,晚泥盆世383~359 Ma,早石炭世359~323 Ma,晚石炭世—早二叠世萨克马尔期323~290 Ma,早二叠世亚丁斯克期—空谷期290~273 Ma。

    Figure 2.  Late Paleozoic stratigraphic framework of eastern South China (modified from references [41⁃44])

    以六组沉积地层厚度数据(附表1)为基础,使用Surfer软件分别绘制各世期的地层等厚图。为了减小原始数据在网格化后的偏差性并考虑描述对象的空间最大相关性,网格化算法选取克里金插值法。再结合地层剖面的实际出露情况,对Surfer绘制的地层等厚图进行合理调整,从而得到最终的各世期地层等厚图。在地层等厚图基础上,以各剖面上统计得到的各地层组岩性数据和前人已发表数据为蓝本[23,26],绘制各世期的岩相图。

  • 为了探究晚古生代沉积盆地的沉降过程,从华南东部原武夷—云开造山褶皱带范围内选取了五条较连续的沉积剖面(图1)进行盆地沉降历史重建计算。盆地基底沉降量的计算使用回剥分析法[5455],非构造沉降量的计算(包括古水深、沉积物负载等)则使用地壳重力均衡模型法[5657]。华南东部各沉积剖面在晚古生代各世期的沉降量和沉降速率计算结果见表1

  • 早泥盆世时期,华南东部大部地区受武夷—云开造山隆升地貌的影响依然处于古陆剥蚀区[17,20,23,2627],仅滇黔桂一带处于沉积区(图3)。下泥盆统包括滇黔地区的翠峰山组、坡脚组、边箐沟组和黔桂地区的莲花山组、那高岭组、郁江组[44]图2)。

    Figure 3.  Early Devonian strata in eastern South China: (a) isopach map; (b) lithofacies map

    早泥盆世地层等厚图共统计剖面50个,覆盖地层出露于滇黔桂一带。统计剖面中,大多数剖面早泥盆世地层以不整合接触关系覆盖于早古生代地层之上(附表1)。统计结果表明,下泥盆统的沉积厚度存在明显差异,厚度值从14 m到1 790 m不等。等厚图自西向东可分为三个厚度区,即滇东曲靖相对凹陷区、桂西百色相对隆起区和桂中贵港相对凹陷区。其中,桂中贵港相对凹陷区位于原武夷—云开造山褶皱带西南端,沉积区厚度等值线呈北东—南西走向(图3a)。位于该凹陷区沉积中心的广西贺州黄姚剖面(D1-15,附表1),下泥盆统厚度可达1 790 m,岩性以灰黄色泥岩、灰色泥灰岩为主[59]

    从岩相平面变化来看,从盆地边缘河口滨岸粗砂岩相、中细砂岩相,到盆地腹地浅海陆棚泥岩—灰岩相、泥岩相和开阔台地白云岩—灰岩相,直至盆地中心次深海泥岩—硅质岩相(图3b),下泥盆统整体呈现从粗碎屑岩相—细碎屑岩相—黏土岩相—碳酸盐岩相—硅质岩相过渡的趋势[23]。从岩相垂向变化来看,桂北河池地区从早泥盆世早期砂岩相转变为早泥盆世晚期灰岩相[60],桂西右江地区从早泥盆世早期泥岩—粉砂岩相过渡到早泥盆世晚期灰岩—泥灰岩相[18]和灰黑色页岩相[26],岩相整体呈现陆源碎屑岩—灰岩—泥灰岩的演变特征。此外,受一系列北西、北东走向同生断裂的控制,早泥盆世沉积盆地内的岩相相带呈北西向带状展布[17,26,60]

  • 中泥盆世时期,沉积沉降区向北、北东方向扩大至覆盖滇桂湘赣粤等地区(图4)。对比之下,处于海平面之上的古陆剥蚀区退减到闽浙全域和赣粤局部地区[23,26]。中泥盆统包括黔桂地区的东岗岭组、四排—应堂组,湘粤赣地区的桂头群、跳马涧组、棋子桥组、老虎坳组和滇中地区的箐门组、缩头山组、红崖坡组、曲靖组[44]图2)。

    Figure 4.  Middle Devonian strata in eastern South China: (a) isopach map; and (b) lithofacies map (modified from reference [23])

    中泥盆世地层等厚图共统计剖面111个,覆盖地层出露的六省区市。统计剖面中,滇桂地区中泥盆统整合覆盖于下泥盆统之上,而湘赣粤地区中泥盆统则角度不整合于早古生代地层之上(附表1)。统计结果表明,中泥盆统沉积厚度存在明显差异,厚度值从22 m到2 330 m不等。等厚图自西向东可见四个明显的沉积中心,即滇北昭通地区、滇东文山地区、桂南南宁地区和粤东河源地区(图4a)。其中,桂南南宁沉积中心和粤东河源沉积中心位于原武夷—云开造山褶皱带范围内(图1图4a)。桂南南宁沉积中心以马山古零剖面(D2-70,附表1)为代表,中泥盆统整合覆盖于下泥盆统之上,是一套厚层灰色白云岩、钙质灰岩组成的海相碳酸盐岩台地建造,沉积厚度为1 697 m[59]。粤东河源沉积中心以紫金龙颈剖面(D2-24,附表1)为代表,中泥盆统以角度不整合接触关系覆于寒武系之上,是一套青灰色厚层砂砾岩、砂岩、粉砂岩组成的滨岸陆源碎屑岩建造,沉积厚度达2 330 m[61]

    从岩相平面变化来看,中泥盆统仍呈现从盆地边缘粗碎屑岩相到盆地腹地细粒碎屑岩—碳酸盐岩相再到盆地中心硅质岩相的演化趋势(图4b)。具体来说,岩相从盆地边缘的河流环境砂砾岩相、滨海—潮坪环境粉砂—细砂岩相,向盆地腹地的浅海陆棚台地环境泥岩—泥灰岩相、白云岩—灰岩相过渡,直至盆地中心的次深海环境泥岩—硅质岩相。从岩相垂向变化来看,粤东河源地区从中泥盆世早期河流—三角洲环境砂砾岩相转变为中泥盆世晚期浅海陆棚粉砂—细砂岩相[62],桂北河池地区从中泥盆世早期浅海陆棚粉砂岩相转变为中泥盆世晚期台盆环境灰岩相[26,60,63]。相比早泥盆世岩相分布,中泥盆世仍以海相和海陆过渡岩相组为主,但陆相(河流相)岩相组分布范围明显扩大[23,26]图4b)。

  • 晚泥盆世时期,沉积覆盖区继续向北东向、北向扩展。上泥盆统覆盖华南东部大部分地区,仅赣闽浙局部地区仍处于古陆剥蚀区(图5)。上泥盆统包括黔桂地区的榴江—融县组、桑郎组、代化组,湘粤赣地区的佘田桥组、锡矿山组、天子岭组、帽子峰组和闽浙地区的南靖群、西湖组[44]图2)。

    Figure 5.  Late Devonian strata in eastern South China: (a) isopach map; (b) lithofacies map (modified from reference [23])

    晚泥盆世地层等厚图共统计剖面99个,地层厚度值从54 m到1 712 m不等(附表1)。所有统计剖面中,上泥盆统均整合覆盖在中泥盆统之上(附表1)。地层等厚图自西向东可见三个沉积中心,即桂西百色地区、桂北桂林地区和闽西永安地区,其最大沉积厚度均超过1 100 m(图5a)。这三个沉积中心均位于原武夷—云开造山褶皱带范围内(图1图5a)。桂北桂林沉积中心以灵川冷水田剖面(D3-41,附表1)为代表,上泥盆统是一套由厚层深灰色灰岩、白云质灰岩组成的海相碳酸盐岩台地建造,沉积厚度为1 606 m[59]。闽西永安沉积中心以永安安砂剖面(D3-01,附表1)为代表,上泥盆统是一套冲积扇环境紫红色砂砾岩相,沉积总厚度为1 197 m[64]

    从岩相平面变化来看,晚泥盆世陆相沉积地层范围明显增大(图5b)。冲积扇、河流等陆相环境下形成的砂砾岩相、中—粗砂岩相、细砂岩相占据盆地边缘的多数地区[23,26,65]。盆地内部以浅海陆棚开阔台地和局限台地环境灰岩—泥灰岩相、白云岩—灰岩相为主,而位于盆地沉降中心的桂南钦州地区保留了次深海泥岩—硅质岩相(图5b)。从岩相的垂向变化来看,位于盆地内部的桂北河池地区从上泥盆统底部灰岩相到中部白云质灰岩相至顶部砂质灰岩、粉砂质灰岩相的变化,记录了晚泥盆世早期海平面持续上升、盆地范围扩展,到晚泥盆世晚期海平面下降、盆地收缩变浅、边缘发育少量碎屑岩相的全过程[18,26,60]

  • 早石炭世时期,盆地沉积范围较晚泥盆世略有缩小,仍主要分布在桂粤湘、滇东、黔南、鄂南、闽东、浙西北等地区,而湘北、粤东北和浙闽沿海地带仍为遭受剥蚀的古陆区(图6)。下石炭统包括滇黔桂湘粤地区的岩关组、大塘组、摆佐组以及赣浙闽地区的下石炭统(不分组)[44]图2)。

    Figure 6.  Early Carboniferous strata in eastern South China: (a) isopach map; (b) lithofacies map (modified from reference [23])

    早石炭世地层等厚图共统计剖面160个,覆盖地层出露的八省区。统计剖面中,湘桂粤地区大多数剖面的下石炭统与下伏地层呈整合接触,而赣闽浙地区下石炭统则多以不整合关系与下伏地层相接触(图2)。统计结果表明,下石炭统沉积厚度存在明显差异,厚度值从13 m到2 866 m不等(附表1)。原武夷—云开造山褶皱带范围内,可见两个沉积厚度大于1 300 m的沉积中心,即湘中邵阳地区和桂北柳州地区(图6a)。湘中邵阳沉积中心以武冈倪家岭剖面(C1-143,附表1)为代表,下石炭统整合覆盖于上泥盆统之上,是一套由深灰色灰岩、泥灰岩、粉砂岩组成的浅海陆棚沉积建造,厚度为1 457 m[66]。桂北柳州沉积中心以柳城太平剖面(C1-94,附表1)为代表,下石炭统整合覆盖于上泥盆统之上,是一套以灰色灰岩、灰白色泥页岩、泥质灰岩为主的浅海台地建造,沉积厚度达2 866 m[59]

    从岩相平面变化来看,下石炭统陆相沉积范围再次缩小,盆地转为滨浅海粉砂岩—泥岩相、泥岩相和浅海台地泥岩—灰岩相、白云岩—灰岩相沉积(图6b),指示早石炭世海侵事件再次活跃,但盆地沉降幅度减小[18]。盆地沉降中心依然位于桂南钦州地区,以次深海凝灰岩—硅质岩相沉积为主[23,26,67]。从岩相垂向变化来看,位于盆地内部的桂北河池地区从下石炭统底部泥岩—硅质岩相到中上部灰岩—泥晶灰岩相的转变,记录了早石炭世早期到晚期海平面上升再下降的变化趋势[18,60,68]

  • 晚石炭世—早二叠世萨克马尔期,盆地沉积范围再次迅速扩大。除闽浙沿海地区之外,华南东部绝大多数地区沉降至海平面之下的浅海沉积区(图7)。上石炭统包括滇黔桂地区的黄龙组、大埔组,湘赣浙闽地区的黄龙组及闽粤地区的壶天群下部[44]。上石炭统顶部—下二叠统萨克马尔阶包括滇黔桂地区的马平组、湘赣闽浙地区的船山组和闽粤地区的壶天群顶部(图2)。

    Figure 7.  Late Carboniferous to Early Permian (Sakmarian age) strata in eastern South China: (a) isopach map; (b) lithofacies map (modified from reference [23])

    晚石炭世—早二叠世萨克马尔期地层等厚图共统计剖面83个,覆盖地层出露的八省区。除闽浙沿海古陆区附近,研究区上石炭统与下伏下石炭统之间均为整合接触(附表1)。统计剖面中,上石炭统—下二叠统萨克马尔阶的地层厚度值从56 m到1 978 m不等,厚度变化大。等厚图中可见桂北河池地区和湘中邵阳地区两个沉积中心,沉积厚度均在1 400 m以上(图7a)。桂北河池沉积中心以宜州甘相剖面(C2-53,附表1)为代表,上石炭统—下二叠统萨克马尔阶是一套由浅灰色灰岩、白云质灰岩组成的浅海碳酸盐台地建造,厚度1 978 m[59]。湘中邵阳沉积中心以邵东罗丝塘剖面(C2-72,附表1)为代表,也是一套以浅灰色灰岩、白云质泥灰岩为主的浅海台地建造,沉积厚度1 419 m[66]

    从岩相平面变化来看,华南东部基本被海相碳酸盐岩相覆盖,自盆地边缘砂岩—灰岩相到盆地内部白云岩—灰岩相,碳酸盐岩在盆地占主导地位(图7b)。盆地沉降中心仍然位于桂南钦州地区,范围较早石炭世略有缩小,仍以凝灰岩—硅质岩相为主[23,26]。钦州地区石炭纪凝灰岩和闽北沿海地区晚石炭世花岗岩的发现[3839],说明华南东部在晚古生代有岩浆活动发生。桂北河池地区部分剖面见碳酸盐岩正粒序沉积序列,表明盆地局部地区于晚石炭世—早二叠世萨克马尔期发生过盆地收缩和水体变浅[60]

  • 早二叠世亚丁斯克期阶段,盆地的浅海沉积范围继续扩大(图8),至空谷期时,浅海碳酸盐岩覆盖华南全域,区域上再无暴露于海平面之上的古陆[23,26]。这说明因武夷—云开造山隆升引发的碎屑风化剥蚀作用趋近于零,盆地被沉积物和海水填满。下二叠统亚丁斯克阶—空谷阶包括滇黔地区的梁山组、栖霞组以及华南其他地区的栖霞组[44]图2)。

    Figure 8.  Early Permian (Artinskian and Kungurian ages) strata in eastern South China: (a) isopach map; (b) lithofacies map (modified from reference [23])

    早二叠世亚丁斯克期—空谷期地层等厚图共统计剖面219个,覆盖整个华南东部。研究区西部的滇黔桂地区和湘西局部地区,亚丁斯克阶—空谷阶以平行不整合接触关系覆盖在古生代地层之上;而在研究区东部的赣粤闽浙地区,亚丁斯克阶—空谷阶则与下伏地层呈整合接触(附表1)。从所有统计剖面来看,亚丁斯克阶—空谷阶的地层厚度值变化较大(3~726 m),但约70%统计剖面地层厚度值均小于200 m(附表1)。从地层等厚图上也可看出,亚丁斯克阶—空谷阶整体地层厚度较均一,仅湘北长沙地区、黔西南兴义地区和桂中来宾地区存在三个地层厚度值略大的沉积中心(图8a)。

    从岩相平面变化来看,华南东部全域以浅海台地灰岩相为主,中部可见一个泥灰岩—灰岩相的带状区域(图8b)。桂南钦州地区仍然是盆地深水区,以半深海硅质岩相为主[69]。湘鄂赣地区在亚丁斯克期—空谷期早期位于陆棚斜坡,沉积一套生物碎屑灰岩—泥晶灰岩;亚丁斯克期—空谷期晚期海平面持续上升,该地区转变为与华南其他地区一致的浅海碳酸盐台地,接受灰岩—白云岩相沉积[24]

  • 根据晚古生代沉积盆地不同地区在不同世期的沉降—沉积差异,从原武夷—云开造山褶皱带范围内选取了五条沉积较为连续的剖面,进行连剖面地层—岩相对比(图9)及盆地沉降速率计算(表1图10)。

    Figure 9.  Stratigraphic and lithological correlations of five stratigraphic sections of the Late Paleozoic sedimentary basin in eastern South China (interpretations of sedimentary environments modified from references [23,26])

    Figure 10.  Tectonic subsidence curves for different localities in the Late Paleozoic sedimentary basin, eastern South China

    结果表明,早泥盆世时期,仅位于西南部的贵港和桂林剖面发生构造沉降并接受沉积,沉积物以滨海环境陆源碎屑岩为主;而位于东北大部地区的韶关、邵阳和涟源剖面均无下泥盆统(图9)。中—晚泥盆世时期,盆地沉降范围逐渐扩展到东北部,韶关、邵阳和涟源剖面保存了中—上泥盆统滨海—潮坪环境陆源碎屑岩和台盆—台地环境碳酸盐岩[26];盆地主要沉降区依然位于研究区的西南部,贵港和桂林剖面的中—上泥盆统厚度较研究区东北部韶关、邵阳和涟源剖面的地层厚度更大(图9)。

    早石炭世—早二叠世空谷期阶段,区域内各沉积剖面之间的地层总厚度变化较之泥盆纪阶段更小,各剖面的下石炭统—下二叠统空谷阶厚度趋近相同(图9)。另外,五个剖面在早石炭世—早二叠世空谷期阶段的平均构造沉降速率也较为相似(8~11 m/Ma,表1),说明晚古生代盆地的沉降—沉积充填在全区逐渐趋近一致。

    从沉降速率的计算结果来看,贵港和桂林剖面的构造沉降历史表现较为一致,沉降曲线具有先陡后缓的两段式特征(图10a,b)。贵港剖面中,第一段(泥盆纪)的平均构造沉降率25 m/Ma,构造沉降量为1 502 m;第二段(石炭纪—早二叠世空谷期)的平均构造沉降率为10 m/Ma,构造沉降量944 m(表1)。桂林剖面中,第一段(泥盆纪)的平均构造沉降率为19 m/Ma,构造沉降量1 151 m;第二段(石炭纪—早二叠世空谷期)的平均构造沉降速率为9 m/Ma,构造沉降量为741 m(表1)。

    相比之下,韶关、邵阳和涟源剖面均从中泥盆世开始发生构造沉降,并接受沉积(图10c~e)。韶关剖面的构造沉降历史(图10c)也可划分泥盆纪(构造沉降率16 m/Ma)和石炭纪—早二叠世空谷期(构造沉降率8 m/Ma)两个阶段(表1)。邵阳剖面的总构造沉降量为1 545 m,泥盆纪构造沉降速率为19 m/Ma,石炭纪—早二叠世空谷期构造沉降速率为10 m/Ma(表1),形成先快后慢的两阶段沉降史(图10d)。涟源剖面的总构造沉降量为1 697 m(表1),沉降曲线也可见明显先陡后缓的两段式(图10e):中泥盆世阶段(49 m/Ma)和晚泥盆世—早二叠世空谷期阶段(11 m/Ma)。

  • 根据地层等厚图、岩相图的演化特点及盆地沉降历史的阶段性,可将华南东部晚古生代盆地的沉降—沉积充填历史分为两个阶段。

    第一阶段为泥盆纪,盆地的构造沉降幅度较大(平均沉降速率25 m/Ma),以盆地边缘陆源碎屑沉积、盆地内部碳酸盐岩—硅质岩沉积为特色。武夷—云开造山运动结束后,华南东部大部分地区褶皱隆起成陆,仅桂南钦州地区保留了一个北东向楔形残留盆地,盆地内充填了志留纪深水沉积地层[23,26,7071]。自早泥盆世开始,海水自钦州地区涌入华南大陆(图3),由南依次向北东、北西方向逐渐扩展,至晚泥盆世达到高潮[19]。盆地沉积中心经历了从西往东、再往西的迁移过程,而盆地沉降中心始终保持在桂南钦州—南宁地区(图3~5)。相比之下,闽浙赣大部分地区依然处于隆起剥蚀区。早泥盆世晚期滇黔桂地区出现了具有线状分布、不对称的硅质岩—泥灰岩欠补偿深水区,并与孤立的碳酸盐台地一起,组成台—盆相间分布、相互包围的古地理景观[63,72]。华南东部发育了一系列北东、北西向同生基底断裂[1718,2627,40,69,73],且桂南右江地区深水区见小规模基性岩浆喷发活动[18]。这些地质现象表明泥盆纪同生基底断裂及其伴生的拉张作用是引发滇黔桂地区台盆相间分布的主要机制。

    第二阶段为石炭纪—早二叠世空谷期,盆地的构造沉降幅度明显减小(平均沉降速率10 m/Ma),以空谷期浅海碳酸盐台地全面覆盖盆地为特色。早石炭世早期盆地范围略有减小,早石炭世晚期—晚石炭世海域面积再次扩大,海水自西南向东北逐渐侵入闽浙赣地区,至早二叠世空谷期海侵达到最大高潮(图6~8)。盆地沉积中心基本保持在桂北地区,盆地深水硅质岩区也保持在桂南钦州地区,盆地范围逐渐缩小[23,26]。滇黔桂地区台盆相间分布的古地理景观被改造,深水台盆大部分因物质充填而萎缩,盆地沉积物中碳酸盐岩的含量明显增加,而硅质岩含量有所减少[20]。火山活动基本处于停滞状态,仅闽北地区有少量岩浆活动[3839]。桂南钦州地区深水硅质岩中发现的少量凝灰物质[23,26,67],可能和这次岩浆活动有关。综合分析上述地质现象,认为石炭纪—早二叠世空谷期盆地内发生的构造沉降活动规模较小,引发盆地沉降的动力机制主要来源于海平面升降、沉积负载和(或)气候的变化,受构造因素的影响较小。

    值得一提的是,晚古生代气候变冷始于晚泥盆世弗拉期—法门期之交[74],而自早石炭世杜内期开始,地球表层的各种势力大量消耗大气圈中的二氧化碳,海洋中的碳酸盐沉积物快速堆积,地球进入全球性晚古生代大冰期[7576]。受其影响,全球海平面自早石炭世开始全面下降[77],高纬度地区发育大型冰川及冰碛岩沉积,低纬度地区发育以冰川控制的海平面变化所驱动的旋回性沉积[74]。从华南东部来看,陆源碎屑岩在泥盆纪时期的分布较广,在石炭纪—早二叠世时期的分布则较为局限(图3~5)。与之相对的是,在泥盆纪处于次要地位的碳酸盐岩,自早石炭世开始逐渐成为华南海洋沉积物的主宰(图6)。华南的这一沉积转变,与泥盆纪温暖气候向石炭纪寒冷气候的全球性转变、泥盆纪陆源碎屑岩向石炭纪碳酸盐岩的转变等是一致的,说明华南晚古生代盆地第二阶段(石炭纪—早二叠世空谷期)的沉降—沉积充填与当时的气候变化有密切关系。

    从古生代构造演化来看,华南东部经历了志留纪武夷—云开造山垮塌,泥盆纪大型同生基底断裂发育及伴生的盆地快速沉降、海域沉积范围的扩展。一定程度上,志留纪造山垮塌应该是泥盆纪同生断层发育、盆地沉降的触发机制,原因如下。第一,武夷—云开造山垮塌伴生的岩浆活动在时空上呈现西段早东段晚的穿时性[11]。泥盆纪华南东部的盆地沉降和沉积充填也呈现西部早、东部晚的特性,原属造山带东段的闽浙地区最后发生沉降和沉积充填(图3~5),说明盆地沉降和造山垮塌具有步调一致的穿时性。第二,造山垮塌一般会将原逆冲褶皱带活化,形成区域正断层[67]。而华南东部泥盆纪盆地沉降的主控因素正是区域同生基底断裂带[1718,2627,73]。需注意的是,从全球超大陆演化角度来看,泥盆纪时期华南板块正在从冈瓦纳大陆东北缘裂离[36,78],时间上和华南晚古生代盆地演化的第一阶段重合。因此认为华南从冈瓦纳裂离所产生的拉张作用也可能对盆地的早期沉降产生影响。

  • (1) 早古生代武夷—云开造山运动结束后,华南东部形成一个晚古生代拉张型盆地,盆地范围由南西向北东逐渐扩展,自早泥盆世开始发生沉降和沉积充填,至早二叠世空谷期盆地被海相碳酸盐岩填满。

    (2) 晚古生代盆地的沉降—沉积充填历史可分为两个阶段:第一阶段为泥盆纪,盆地沉降主要受控于区域性拉张作用和同生基底断裂的活动;第二阶段为石炭纪—早二叠世空谷期,盆地沉降主要受控于气候变化和盆地内沉积物负载作用。

    (3) 泥盆纪时期,区域性拉张作用和同生基底断裂的活动与武夷—云开造山垮塌有密切关系,与华南从冈瓦纳大陆的裂离作用也有一定关联。

Reference (78)
Supplements:
朱孝钰-沉积学报数据.docx
附表1 华南东部泥盆纪—早二叠世空谷期地层厚度统计表.docx
附表1 华南东部泥盆纪—早二叠世空谷期地层厚度统计表.xlsx
附表1 华南东部泥盆纪—早二叠世空谷期地层厚度统计表.docx

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return