3701 铀矿床成因的同位素地球化学研究

闵茂中^① 孔令福 江 仪

(南京大学地质系) (核工业部中南地勘局 307 大队)

提要 3701 铀矿床赋存于 L 花岗岩体外接触带泥盆系灰岩中.成矿时代属燕山晚期及喜山期.根据铀一 铅同位素体系演化特征以及硫、氧、碳同位素组成资料表明,该矿床的成矿物质是多源的,它们来自成矿围岩及花 岗岩;矿液水主要来自大气降水.成矿过程经历了围岩成岩阶段铀的预富集、花岗岩侵入时地层中铀的活化转移 和增值,围岩吸咐从花岗岩中淋出的铀,以及与燕山期、喜山期构造运动有关的热水溶液改造成矿作用.因此,它 属多源、热液改造的层控铀矿床.

主题词 铀矿床 铀一铅年龄 成矿物质来源 同位素组成 第一作者简介 闵茂中 男 45岁 讲师 地球化学

🔹 矿床地质概况

3701 铀矿床位于某区域性断裂走向变异部位的 L 花岗岩体外接触带(0~120m) 泥盆系灰岩 中(图 1). 矿区出露地层主要有下奥陶统(O₁) 粉砂岩,下、中泥盆统(D_{1~2}) 灰岩白云岩、粉砂岩 等。因花岗岩的侵人,围岩普遍发生不同程度角岩化、大理岩化、弱砂卡岩化。成矿围岩主要为中 泥盆统应堂组(D_{2i}) 中部的含生物碎屑泥质灰岩,大理岩化结晶灰岩。应堂组地层在该矿区的出露 厚度 284~376m,其岩石的现今平均铀含量为 3.12ppm (20 个样品)。该矿区断裂构造发育,尤其 F₃、F₁₅(图 1) 两断裂使泥盆系灰岩断陷,其间发育一组层间、似层间片理化带和角砾岩带,铀矿体 即赋存于花岗岩基底凹兜内灰岩的片理化带两侧及角砾岩带中,L 花岗岩体出露面积约 238 平方 公里(岩基),基本岩性主要为粗一中粒黑云母花岗岩,局部出现细粒黑云母花岗岩(边缘相)。L 岩 体的全岩物一锶等时线年龄为 283Ma。该花岗岩的现今平均铀含量为 7.11ppm(66 个样品)。

矿石呈角砾状,细脉一微脉浸染状;矿石中的铜、铅、银等伴生元素可被综合利用.该矿床的热液矿化过程可分为四个阶段:硫化物一碳酸盐阶段(I);炭质一绿泥石一沥青铀矿阶段(Ⅱ);硫化物一沥青铀矿阶段(Ⅲ)及硫化物一碳酸盐阶段(Ⅳ).主要矿石矿物为沥青铀矿,其次为铀石、铀黑、钙铀云母等。伴生金属矿物主要有:黄铁矿、闪锌矿、方铅矿、黄铜矿、砷黝铜矿和红砷镍矿等.非金属矿物有方解石、白云石、钾长石、绿泥石、水云母等。近矿围岩蚀变较弱,主要有钾长石化、"退色"化、黄铁矿化、绿泥石化和水云母化等.成矿温度约 300℃—100℃。

①执笔者,本文系南京大学地质系和核工业部中南地勤局 307 大队的联合研究成果之一。参加这项工作的还有:黎旭畅、张国 义、丁语和、肖宪昌、今月风、陈淏、陈耀周、王国庆、王海福等。

7券

D₂i³—中泥盆统应堂组上段;D₂i²—中泥盆统应堂组中段;D₂i¹—中泥盆统应堂组下段;D₁s¹—下泥盆统四排组下段;D₁y—下泥 盆统郁江组;D₁l—下泥盆统连花山组;O₁—下奧陶统;y₄—海西期L花岗岩体;1—角砾岩带;2—片理化带;3—铀矿体;4—断裂. 图 1 3701 铀矿床地质构造剖面示意图(据 307 大队)

Fig.1 Diagrammatic section showing geological structure of the 3701 Uranium deposit

二 同位素测定结果及其地质意义讨论

(一)成矿时代

该矿床第 II、III 矿化阶段形成的沥青铀矿的 U—Pb 同位素年龄测定结果列表 1. 由表可见, 矿床的成矿时代属第三纪(古新世,新新世),远晚于成矿围岩形成时代(约 400Ma);与 L 花岗岩 体、各类侵入岩脉形成时代(分别为 283Ma、278—158Ma)¹⁾相比,其时差甚大。因此,推测铀矿化 与花岗岩浆活动无直接成因联系,而成矿时代与地质时代的纪、世分界面及构造运动幕时间对应: 第一期铀矿化时间(65—59Ma)与燕山第 V 幕构造运动时间吻合;第二期铀矿化时间(30.7Ma)与 渐新世(E₃)—中新世(N₁)分界面及喜山期构造运动时间接近。

(二)成矿物质来源

1、硫主要来自成矿围岩 成矿围岩、花岗岩和矿石中44个黄铁矿样品的δ³⁴S‰值测定结果 列图 2. 综合对比这些测定结果可见该矿床硫同位素组成具下列特点:

(1)泥盆系应堂组、四排组地层成岩作用时形成的原生黄铁矿富含轻硫,其 δ^{34} S=-8.05— -20.49‰,平均值-16.92‰,它反映地层岩石中的硫是由海水中的硫酸盐经厌氧细菌还原作用形成,即属生物成因硫。

(2)花岗岩中黄铁矿的 $\delta^{34}S = +8.7 -+ 13.1\%$, 平均值+11.22%, 表明为较大的正值, 反映花岗 岩形成过程中有地壳硫的混入.

(3) 矿石中黄铁矿的 $\delta^{34}S = +0.8$ —-39.81‰, 平均-13.06‰, 极差达 40.61‰。矿床中未出现高 氧化态矿物重晶石及高还原态矿物磁黄铁矿, 这表明成矿热液的气逸度中等, 这时的矿石中黄铁矿 的平均 $\delta^{34}S$ ‰值可近似地代表成矿热液总硫的同位素组成。矿石中黄铁矿的平均 $\delta^{34}S$ ‰值 (-13.06‰)与成矿围岩中黄铁矿的平均 $\delta^{34}S$ ‰值(-16.92‰)接近, 表明成矿热液中的硫主要就地

1) 南京大学地质系,核工业部中南地勘局 307 大队, 1985, 3701 铀矿床物质成分及矿床成因研究(内部资料)

_									
			矿化				²⁰⁴ Pb	²⁰⁷ Рb	²⁰⁸ Pb
样	号	取样位	1 阶段	U%	Th%	РБ%	²⁰⁶ Pb	²⁰⁶ Pb	²0 € ₽b
	81044	ZK823		53.760	0.019	53.472	0.0459	0.7260	1.7823
D ₁₀ -	00028-	327.92 米	处			± 0.0489	±0.00011	± 0.00232	±0.00499
v	-70001	ZK 2607	П	II 57.445	0.091	1.1498	0.0145	0.2645	0.5617
N 10	-79001	203 米处	Ц			±0.003	± 0.0001	± 0.00072	±0.0112
K ₁₂ -	-76003	ZK2607	П	64.03			1.039		
		Pb 同							
**		P	b 同	位素	%	4	F 1	e (Ma)
样	号	P 204 Pb	b 同 ²⁰⁶ Pb	位 家 ²⁰⁷ Pb	% ²⁰⁸ Pb	4 206 / 238	E 🗱 207 / 235	(Ma 207/206) 206 / 232
 样	号	P ²⁰⁴ Pb	b 同 ²⁰⁶ Pb	位 素 ²⁰⁷ Pb	% 208 Pb	4 206 / 238 30.7	E #	(Ma 207/206) 206 / 232 19206.9
样 D ₁₀ -	号 -83866	Р ²⁰⁴ РЬ 1.290	b 同 ²⁰⁶ Pb 28.314	位 素 ²⁰⁷ Pb 20.434	•% 208 Pb 50.142	4 206 ∕ 238 30.7 ± 0.6	E # 207 / 235 7.0 ±13.5	(Ma 207/206 <0.1) 206 / 232 19206.9 +4204.5 -5315.3
样 D ₁₀ -	号 83866	Р ²⁰⁴ РЬ 1.290	b 同 ²⁰⁵ Pb 28.314	位 家 ²⁰⁷ Pb 20.434	% 208 Pb 50.142	4 206 / 238 30.7 ± 0.6 59.2	E # 207 / 235 7.0 ±13.5 61.1	(M a 207 / 206 <0.1 131.9) 206 / 232 19206.9 +4204.5 -5315.3 775.2
样 D ₁₀ -	号 	Р 204 РЬ 1.290 0.798	b 同 ²⁰⁵ Pb 28.314 54.324	位 京 ²⁰⁷ Pb 20.434 14.374	% 205 Pb 50.142 30.514		E 207 / 235 7.0 ±13.5 61.1 ±3.0	<pre>(M a 207 / 206 <0.1 131.9 +106.9 -113.2</pre>) 206 / 232 19206.9 +4204.5 -5315.3 775.2 +615.0 -634.3

表 1 3701 铀矿床沥青铀矿 U~Pb 年龄 Table 1 U-Pb ages of pitchboendes from the 3701 uranium deposit

测定者:北京铀矿地质研究所。K12-76003 数据由 307 大队提供

1、地层 2、花岗岩 3、矿石

图 2 成矿围岩、花岗岩和矿石的硫同位素组成频率分布

of the host rocks, L granite and the ores

取材于成矿围岩中的同生硫.

(4)矿石中黄铁矿的δ³⁴S‰值由矿前期 (-16.65%)向矿后期(-10.24%)逐渐富重硫 (图 3), 推 测与少量花岗岩中的重硫混人并 产生硫同位素交换有关,即成矿热液中少量 硫来自花岗岩.

(5)蚀变带(角岩化、钾长石化等)围岩中 黄铁矿的 δ³⁴S‰值介于地层和花岗岩之间, 这表明花 岗岩体侵入时将其部分硫带人地 Fig.2 Frequency distribution of sulfur isotopic compositions 层, 在其后成矿时,有少量花岗岩硫进入成矿 热液中。

2. 铅主要来自花岗岩 为探索铀一铅同位素体系演化信息与铀成矿物质来源的关系,测定 了矿石中三个方铅矿样品用花岗岩中三个钾长石样品的铅同位素组成(表 2)。样品的铅同位素测 定是经化学提纯后,以 Pb(No₃)2形式用带状源在 MAT-260 型质谱计上进行的,铅同位素比值 相对误差小于 0.3%。 钾长石的铅同位素组成可代表花岗岩成岩时的初始铅,方铅矿与铀成矿作

表 2 花岗岩中钾长石、矿石中方铅矿的铅同位素组成 Lead isotopic compositions (wt%) of potassium Table 2 feldspars from L granite and galenas from the ores

序		#	铅同位素含量(%)				²⁰⁷ Pb	²⁰⁸ Pb	206Pb	模式年龄	
号	杆兮	勌	²⁰⁶ Рб	²⁰⁷ Pb	208 _{Pb}	²⁰⁴ Pb	²⁰⁴ Pb	²⁰⁴ Pb	²⁰⁴ РЪ	ф (Ма)	μ
1	γ ₂	钾	25.077	21.195	52.378	1.350	15.700	38.799	18.576	-93.15	9.091
2	ý3		25.081	21.173	52.399	1.348	15.707	38.872	18.606	-107.11	9.101
3	Y4	石	25.145	21.178	52.333	1.344	15.757	38.938	18.710	- 120.28	9.184
4	pb 170	方	25.203	21.102	52.358	1.337	15.783	39.161	18.850	-218.95	9.268
5	S L 1214	铅	25.255	21.061	52.348	1.336	15.764	39.183	18.907	-2601.40	9.183
6	1150	W	25.186	21.091	52.385	1.339	15.751	39.122	18.810	-205.78	9.166

用有同时、同成因的联系,其铅同位素组成即代表成矿时的初始铅。由表2可见,6个样品铅均具 低异常铅特征,其模式年龄为负值。在²⁰⁷Pb / ²⁰⁴Pb--²⁰⁶Pb / ²⁰⁴Pb 座标图上,六个数据点均落在零 年等时线的右侧(图 4),明显显示异常。对上述 6个数据进行回归计算后则可发现,方铅矿与钾长

1. 钾长石 2. 方铅矿

图 4

花岗岩中钾长石,矿石中方铅矿的²⁰⁷Pb / ²⁰⁴Pb--²⁰⁶Pb / ²⁰⁴Pb 座标图

²⁰⁷Pb / ²⁰⁴Pb ²⁰⁶Pb / ²⁰⁴Pb plots of galenas from the ores and potassium feldspars from L granite Fig.4

7卷

石的铅同位素数据点共同构成良好的线性关系.这充分表明成矿铅与花岗岩的成因联系,矿石与 花岗岩的铀一铅体系演化密切相关.L花岗岩中铅含量较高,岩体中分布有铅异常点带.鉴于成 矿围岩中铅背景值较高,无疑也给成矿提供部份铅源.

3、碳主要来自成矿图岩 成矿图岩、矿石的碳同位素组成测定结果表明:成矿图岩的 δ¹³=+1.004—-0.965‰,平均值-0.152‰,接近零值,具典型海相碳酸盐岩的碳同位素组成特征. 这种岩石生于海相原生碳酸盐岩带,在含气水带之下接近沉物和水界面的有机质,由于受到需氧细 菌的作用而很快被分解并生成二氧化碳,后者向上扩散进入沉积水中溶解,即这种碳酸盐是一定生物作用和物理化学作用的产物.

矿石中方解石的 δ¹³c=-0.23—-1.53‰, 平均值-0.815‰, 接近零值, 它主要继承了成矿围岩的碳同位素组成特征, 证明成矿热液中的碳主要是就地取材于成矿围岩.

由图 5 可见,与成矿围岩的碳同位素组成相比,矿石的 δ^{13} C 值向负值方向偏移,这表明地层中的发曾受到一种富含¹²C 的二氧化碳的交换平衡,这正提供了花岗岩中的轻炭(一般岩浆岩的 δ^{13} C = -5—-8‰)参与了该矿床成矿作用的地球化学信息,这和硫的趋势是一致的.

Ⅰ花岗岩;Ⅱ海相碳酸盐岩;Ⅲ海相碳酸盐岩δ¹³C平均值;
 Ⅳ应堂组泥质灰岩; Ⅴ矿石

图 5 成矿围岩、矿石和花岗岩的碳同位素组成

Fig.5 Carbon isotopic compositions of the host rocks. L granite and the ores

4、部分铀来自花岗岩 为了研究 L 花岗岩体岩石的原始含铀量及铀的后生变化特征,进而 判断成矿热液中铀的可能来源,对不同产出部位的新鲜花岗岩系统取样。分别测定其铀、铅同位素 组成并计算岩石中铀的得失量(表 3)、结合地质资料,分析测定和计算结果后可得出以下认识:

花岗岩的现今含铀量较低,为5.1-8.2ppm.

花岗岩中原始铀分布不均匀,越靠近与围岩的接触带,其原始铀含量越低。研究表明,近接触带的花岗岩岩性未变,因此,这种铀含量连续降低,主要是因花岗岩侵入时岩石中的部分铀在接触带附近的热、压差驱动下,以及期后热水溶液等作用下迁入围岩,并促使后者的铀含量增高(由 2.45-3.05ppm 增至 3.96-6.93ppm,25 个岩石样品分析结果),这是该矿床赋存于岩体外接触带热变质晕内的重要原因之一,可能是一部分铀矿床常赋存于花岗岩侵入体外带热变质晕内的普遍机制之一。

与原始铀含量相比,近接触带花岗岩现今的铀含量不同程度被递增,愈近接触带,其递增量愈大.

近地表样品(y₀₇、y₂₀、y₂₆)的铀明显丢失。这表明L花岗岩体原来是富铀的(达13-19ppm), 以后的地质作用使其中铀不断丢失,并在接触带附近增值,它可为在外接触带成矿提供部分铀源。

(三)成矿溶液中水的来源

根据脉石矿物的氧同位素组成算得的该矿床成矿溶液之 $\delta^{18}O_{H20}$ %变化范围为-3.14—+13.92‰ (SMOW)平均值+5.87‰ (表 4,图 6),其中矿前期矿液水的 $\delta^{18}O_{H20}$ =+12.14—+13.92‰,平均值+13.03‰,成矿期矿液水的 $\delta^{18}O_{H20}$ =+11.38‰,矿后期矿液水的 $\delta^{18}O_{H20}$ =-3.14—+3.26‰,平均值-0.74‰.

	》的中		+49.56				-59.51		
轴的得失	%	+112.72	+47.43	+25.27	+2.86	-70.52	-47.46	-60.54	
	wdd	+2.8	+2.64	+1.29	+0.22	-13.40	-6.5	-9.21	
京 京 田 田 古 古	(mqq)	2.29	5.56	5.11	7.68	19.00	13.89	15.21	
铅原	子献	207.194	207.173	207.178	207.188	207.146	207.180	207.182	
²⁰⁶ pb	204 _{Pb}	38.47	37.93	38.00	38.37	38.55	38.33	38.68	
²⁰⁷ pb	204 _{Pb}	13.73	16.14	15.70	15.7	15.64	15.22	15.33	供.
206 pb	204 _{Pb}	19.34	20.12	19.92	19.55	22.33	20.08	20.17	07 大队提
	208 _{Pb}	51.94	50.45	50.93	51.42	49.73	51.36	51.45	数据由 3
祖成 (%)	207 _{Pb}	20.60	21.46	21.04	21.04	20.18	20.39	20.39	芝士5%。
4回位素(206 _{Pb}	26.11	26.76	26.29	26.20	28.80	26.91	26.83	以均方以
	204 _{Pb}	1.35	1.33	1.34	1.34	1.29	1.34	1.33	结果,相
qd	(PPm)	2	10	10	20	10	20	20	這週让
D	(PPm)	5.1	8.2	6.4	7.9	5.6	7.3	6.0	发射光
ш Ш Ц	取样位質		离接触带 70 米 (钻孔)	南接触带 110 米 (钻孔)	离接触带 360 米 (钻孔)	感接触带 (浅部)	远离接触带 (浅部)	远离接触带 (浅部)	京铀矿地质研究。不
-i7	¥	÷	₩ \$	ž FK	田立	私	ъđ	2	[沪 [沪
#	цр Т	115	1025	1114	1051	707	¥20	¥26	通道社

表3 花岗岩中铀得失量计算结果

Table 3 U-Pb analytical data and calculative resultes of addition and loss amount for uranium in L granite

	microcrystalline quartzes from t	be 3701 uranium	n deposit	carcites	anu
Table 4	Oxygen isotopic compositions	(SMOW) of	associated	calcites	and
	表 4 3701 铀矿皮井生方罐石和微息石	"芷的复同位春组成	(SMOW)		

样号	测定矿物	形成温度(℃)	δ ¹⁸ O # # % (SMOW)	δ ¹⁸ O H ₂ 0‰ (SMOW)	产状及取样位置
Q ₅₁	-t-	281	+19.58	+13.92	矿前期。钻孔 ZK409 160 米处。
Q56	<u>,</u> 	281	+17.80	+12.14	矿前期。钻孔 413 280 米处。
Q ₆₀		220	+19.42	+11.38	成矿期。钻孔 I _本 1 81 米处。
Q43	11	113	+18.52	+3.26	矿后期。钻孔Ⅲ一3 110米处。
Q ₁₂₀₈	微晶	120*	+18.70	-2.34	矿后期。钻孔 ZK 215 280 米处。
Q1226		120*	+17.90	-3.14	矿后期。钻孔 ZK315 340 米处。

"*"为爆裂温度,其余为均一法测温结果。测定者:宜昌矿产地质研究所。

计算公式: (1) .1000Lna 方解石一水=2.78×10⁶×T⁻²-3.40 (0-800℃)⁽⁵⁾;

(2) 1000Lna 石英水 = 3.56×10⁶×T⁻²−2.59(<200℃)⁽⁶⁾

如上文已指出的那样,该矿床矿化年龄与L花岗岩体、各类岩脉的形成年龄相差甚大,尚无任何证据表明岩浆热液活动直接参与成矿作用,因此,成矿溶液的 $\delta^{18}O_{H20}$ %值增高显系其它因素造成的.根据矿床产出位置及已有的地质,地球化学资料,笔者认为该矿床的成矿溶液基本来自成矿时期当地的大气降水,该地区中、新生代大气降水的 $\delta^{18}O_{H20} = -9$ ——10%,但由于成矿围岩是海相碳酸盐岩,据笔者测得其 $\delta^{18}O_{H20}$ %值高达+12.68—+26.15%,因此,当贫¹⁸O 的大气降水在这种富₁₈O 的沉积岩中渗流循环时,便会与围岩产生水—岩反应,并进行氧同位素交换.在温度较高(该矿床成矿温度约300°—100°)条件下,这种氧同位素交换的结果导致成矿溶液的 $\delta^{18}O_{H20}$ %值不断升高。由矿前期至矿后期,随着成矿温度的降低,水—岩之间的氧同位素交换反应逐渐减弱,成矿溶液的 $\delta^{18}O_{H20}$ %值也随之降低.

本研究是在张祖还教授亲自指导下完成的;沈渭洲对初稿提出了宝贵意见;野外和室内工作曾 得到核工业部中南地勘局 307 大队的大力支持,在此一并致谢。

收稿日期 1986 年 10 月 31 日

参考文献

(1)李耀菘等, 1985, 地球化学, 第1期, 20-25页

(2)陈锦石等, 1983, 碳同位素地质学概论, 地质出版社

(3)张理刚, 1985, 稳定同位素在地质科学中的应用, 陕西科技出版社

(4)B.R.Doc et al. 1979, Econ. Geol. Vol. 74, p.1-26

(5) Gunter Faure, 1977, Principles of isotope geology. New York, Wiley

(6) J.R.O'neil, R.N.Clayton and T.K.Mayeda, 1969, J.Chem.Phys.Vol.51, p.5574-5558
(7) J.S.Stuckless, I.T.Nkomo, 1987, Econ.Geol.Vol.73, p.427-441

STUDY ON ISOTOPIC GEOCHEMISTRY OF ORIGIN OF THE 3701 URANIUM DEPOSIT

Min Maozhong Kong Lingfu

(Department of Geology, Nanjing University)

Jiang Yi

(No.307 Geological Party, Bureau of Geology and Exploration of Center-Southern China)

Abstract

The ore deposit occured in carbonate rocks located in an exocontact belt (O-120m) of the L granite batholith (Fig. 1). The deposit was hosted by argillaceous limestone of the Yingtang Formation, Middle Devonian. The L granite body with an area of 238km²has K-Ar age of 202-318Ma.

U-Pb ages of pitchblende from the deposit are 65.0 ± 0.6 Ma, 59.2 ± 0.6 Ma, 30.7 ± 0.6 Ma. The time-gap between the age of granite and the time of ore deposition is large, which indicates there is not a direct relationship between the mineralization and intrusive activity of the L granite body.

Sulfur isotopic compositions of 30 pyrites from the ores range from δ^{34} S values of +0.8 to -39.81 per mil which are approximately similar to those of the host rocks (ranging from -8.05 to -20.49 per mil for pyrites (Table 2).

The 4 analyzed calcites from ores have δ^{13} C values between -0.23 and -1.53 per mil (Table 4). The 4 analyzed host rocks have δ^{13} C values between +1.004 and -0.965 per mil. These data are very similar.

U-Pb isotopic compositions of 3 K-feldspars from the granite, 3 galenas associated with pitchblende and 7 granitic rocks have been determined (Table 3, 5). The calculative results suggest: (1) .All leads belong to an anomalous type low in radiogenetic lead. These data possess a good linear relation in 207 Pb / 204 Pb- $_{206}$ Pb / 204 Pb plots (Fig.4), implying a genetic connection between the granite and the ore. (2) .Average loss of uranium in granite has been 59.51% since the granite is formed, while average addition of uranium in granite near limestone has been 49.56%. It is an important uranium source for the mineralization.

The δ^{18} O values (SMOW, 6 samples) of orc- forming fluid at 120° - 281°C in equilibrum with microcrystalline quartzs and calcites range from -3.14 to +13.92 per mil (Table 6), which are higher than those of ancient meteoric water in the area. It may be due to the oxygen isotopic exchange between the meteoric water $(\delta^{18}O_{H2O} = -9 \sim -10 \text{per mil})$ and limestone $(\delta^{18}O_{H2O} = +12.68 \sim +26.15 \text{ per mil})$.

There are reasons to believe that in the ore constituents S. C were mainly derived from the host rocks

(argillaceous limestone), and U, Pb mainly from the granite. The ore-forming fluid was dominated by meteoric water. It can be imagined that the surface water in the period of continental weathering and oxidation (Cretaceous) infiltrated downwards, leaching out large amounts of uranium from the granitic rocks to form infiltration solution. A part of uranium in solution was adsorpted by argillaceous limestones. The solution was heated at large depth and then moved upwards, during which it dissolved constantly uranium from the host rocks to form the deposit. Therefore, the 3701 uranium deposit is a stratabound one of the multi-source and later multi-superimposition of hydrothermal transformation.