太平洋锰结核生长速率的初步研究

钱江初 徐征宇 王星福

(国家海洋局第二海洋研究所)

提要本文介绍了用轴系年代法中²³⁰Th_(过剩)和²³⁰Th_(过剩)/²³²Th方法对取自太平洋海底的三个 锰结核的生长速率及在海底的运动情况进行了研究。根据锰结核顶面和底面的²³⁰Th_(过剩)及²¹⁰Th_(过剩) ²³²T_h的剖面,得出了三个锰结核的生长速率在 1—10mm/M·Yr 左右。另根据结核顶、底两面中 ²³⁰Th_(过剩)及²¹⁰Pb 放射性印度的差异,可推算出锰结核在海底的翻滚周期在 150 < T < 2.5 × 105 年之间。

关键词 锰结核 铀系测年 生长速率 翻滚周期 放射性比度 作者简介 钱江初 男 42 岁 助理研究员 海洋地质和地球化学

从 1873 年英国调查船"挑战者"号首次在大西洋海底发现锰结核至今已有百余年历史 了。现已探明在全球大洋底部这种富含铁、锰、铜、钻、镍等元素的锰结核总储量达三万亿 吨。为此许多发达国家已投入了大量的人力物力对大洋锰结核进行综合、系统的研究。在这 之中,锰结核的生长发育史及在海底的活动等情况一直是使科学家们困惑不解的难题。早在 1908 年,Joly•J就曾用放射性²²⁶Ra 方法测定了锰结核的生长速率。随着科学技术的不断 发展,测试手段日趋完备,目前可用来测定锰结核生长速率的方法已达十几种。包括:通过 测定地层的年代来推算锰结核生长速率的地层法;利用锰结核中某些元素和生长速率之间相 关性的地球化学法;通过测定锰结核核心材料的年代,然后求出平均生长速率的核心年代法 及利用放射性衰变方法测定年代的放射性年代法。在这许多方法中,用得最普遍,数据可信 程度最高的要首推放射性年代法。这包括铀系法,K / Ar 法,裂变径迹法及近几年才发展 起来的¹⁰Be 法等。笔者曾于 1985 年和 1986 年分别用铀系法(²³⁰Th_(过剩),²³⁰Th²³² 机力测定了来自太平洋的三个锰结核的生长速率,获得了较为满意的结果,对锰结核研究提供了 可靠的资料。

一、原理

²³⁰Th 是²³⁸U 衰变系列的中间子体,半衰期为 75000 年。

 $^{238}U \xrightarrow{\alpha} ^{234}Th \xrightarrow{\beta} ^{234}U \xrightarrow{\alpha} ^{230}Th \xrightarrow{\alpha} Ra$

铀(²³⁸U占99.28%)易溶于海水中,其含量与海水中的盐度成正相关

U (dpm/L) =0.068×盐度

在大洋水中铀含量一般为 2.4dpm / L。钍是不溶于海水的表面活性颗粒,在海水中的 钍很容易被悬浮颗粒或锰结核表面所吸咐并不再发生化学迁移。被锰结核吸咐的²³⁰Th 不再 得到其母体²³⁸U 的"补偿",因此子母体之间不再保持平衡,²³⁰Th 只按其半衰期不断衰减。 若测定锰结核的表层及不同深度的²³⁰Th 比度,就可用下列关系式求出锰结核的生长速率:

图 1 M₁顶面²³⁰Th (过剩) 和²³⁰Th (过剩) / ²³²Th 的剖面图

 $g = \frac{-\lambda Z}{Ln\frac{A_o}{A_z}} \qquad (1)$

此处,g:锰结核生长速率 (毫米/百万 年)

Z: 距表面的深度(毫米)

λ: ²³⁰Th 衰变常数 (0.92× 10⁻⁵/年)

Ao, A_z: 分别为表层及 Z 处 的 ²³⁰Th 放 射 性 比 度 (dpm/g)

有时锰结核中的²³⁰Th 比度 并不呈一定的规律,因此无法求 得其生长速率.这可能是由于海 水的²³⁰Th 通量并非衡定。此时 可用²³⁰Th / ²³²Th 比值来代替 230Th 比度作 lnA—Z 图,可以 得出满意的结果。(图 1, 2)

二、方 法

1、取样

本研究中所分析的 M_1 、 M_2 两样取自国家海洋局中太平洋锰 结核 1985 航次的拖网 12 和 11 号站. M_3 由美国 ALVIN 深潜 器 1984 年 取 自 东 太 平 洋 Bonanza 海山附近^①. 三个锰结 核的确切位置、水深及表观形状

见表 2. 它们在海底的初始状态一般可根据其表面结构来判断. 取样时分别在锰结核的顶面(向海水)和底面(向沉积物)挑选一较平坦的的部位,根据其 表面的几何形状画出正方形、长方形或三角形,然后用手术刀或牙钻向下刮取样品。每一层 的深度可根据取样面积、样品重量及比重(约 2.0g/cm³)来推算。由于取样时样品的丢 失,取样面积及比重等不确定因素,取样时总的误差在 15% 左右.

①M₃是作者85年在美国北卡国莱纳州立大学学习时由 DeMaster 博士指导下完成各项分析工作的,样品由该校的 Leven 教授提供

2、化学流程

铀系年代技术的化学分析方法比较复杂。本实验用的化学流程主要包括²³²U-²²⁸Th示 踪, 酸浸取, Dowex1-8 强酸性阴离子分离及纯化铀、钍, TTA 萃取及点源等步骤组成。 M₃样品的清液在上柱前先用银片自沉淀 Po 的方法做了²¹⁰Pb 的测定。

3、测量

Table

点在不锈钢片上的钍源及自沉淀于银片上的钋源 α 粒子的测量及能谱的分析是由金硅面 垒 α 探测器及与之匹配的脉冲高度分析器来完成的。仪器的分辨率约 50kev (²³⁹Pu 源)。由 于样品量少且放射性比度低, 钍源一般要连续测量 100—150 小时, 钋源一般需测量 24 小 时。由于钍源在分离纯化后可能尚含少量杂质、制源太厚及 TTA 膜灼烧不尽等原因都会影 响 α 能谱的分辨率, 高能峰的拖尾将重迭于低能峰上。因此对各峰的计数要进行校正,

样品编号 順展位 (nm)重量 (g)23°Th 比度 (dpm / g)26°Th 比度 (dpm / g)26°Th 化度 (dpm / g)26°Th 化度 (dpm / g)28°Th ($\overline{\partial} 2\overline{d} \overline{d} \overline{d} \overline{d} \overline{d} \overline{d} \overline{d} \overline{d} $	r				220	130	- 1012011011113.	220
$\mathbb{M}^{12} = \mathbb{M}^{12} = \mathbb{M}^{12} = \mathbb{Q}^{12} = \mathbb{Q}$	样品编号		层位 (mm)	重重	***Th 比度		"Th 比度	└ [∞] Th(过剩)
$\mathbb{M}^{2} \mathbb{M}^{2} \mathbb{N}^{2} \mathbb{N}^{2} \begin{array}{ c c c c c c c } \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	тт µµ			(g)	(dpm / g)	(dpm / g)	(dpm / g)	/ ²³² Th
$\mathbb{M}^{2} = \begin{bmatrix} 0.104 - 0.242 & 0.0658 & 81.5 \pm 2.8 & 73.9 \pm 3.2 & 8.37 \pm 0.49 & 8.83 \pm 0.87 \\ 0.242 - 0.410 & 0.0801 & 39.3 \pm 1.4 & 31.7 \pm 1.8 & 8.48 \pm 0.52 & 3.74 \pm 0.41 \\ 0.410 - 1.318 & 0.3780 & 8.10 \pm 0.28 & - & 4.20 \pm 0.18 & - \\ 1.318 - 1.780 & 0.1789 & 7.19 \pm 0.47 & - & 2.42 \pm 0.24 & - \\ \hline 1.318 - 1.780 & 0.1789 & 7.19 \pm 0.47 & - & 2.42 \pm 0.24 & - \\ \hline 00.332 & 0.1058 & 290 \pm 10 & 282 \pm 10 & 8.89 \pm 0.79 & 31.7 \pm 3.9 \\ 0.332 - 0.617 & 0.0910 & 111 \pm 3 & 103 \pm 3 & 9.49 \pm 0.60 & 10.9 \pm 1.0 \\ 0.617 - 0.847 & 0.0713 & 63.3 \pm 2.5 & 55.6 \pm 2.8 & 15.9 \pm 0.96 & 3.50 \pm 0.42 \\ \hline 0.847 - 1.079 & 0.0758 & 34.1 \pm 1.2 & 26.4 \pm 1.5 & 9.19 \pm 0.52 & 2.87 \pm 0.33 \\ 1.079 - 1.370 & 0.0928 & 11.8 \pm 0.6 & 4.1 \pm 0.9 & 7.09 \pm 0.42 & 0.58 \pm 0.16 \\ \hline 0.23 - 0.55 & 0.1749 & 161 \pm 6 & 153 \pm 6 & 10.5 \pm 0.85 & 14.6 \pm 1.8 \\ \hline 0.55 - 0.88 & 0.1734 & 60.7 \pm 1.8 & 53.0 \pm 2.1 & 9.4 \pm 0.5 & 5.6 \pm 0.5 \\ \hline 0.88 - 1.72 & 0.4415 & 29.7 \pm 1.4 & 22.0 \pm 1.7 & 6.2 \pm 0.4 & 3.5 \pm 0.5 \\ \hline 1.72 - 2.46 & 0.3902 & 21.9 \pm 1.1 & 14.2 \pm 1.4 & 6.0 \pm 0.4 & 2.4 \pm 0.4 \\ \hline 0 - 0.37 & 0.1758 & - & - & - & - \\ \hline 0.37 - 0.75 & 0.1822 & 49.5 \pm 1.7 & 41.8 \pm 2.0 & 11.5 \pm 0.6 & 3.63 \pm 0.36 \\ \hline 0.75 - 1.22 & 0.2285 & 24.0 \pm 1.1 & 16.3 \pm 1.4 & 7.08 \pm 0.43 & 2.30 \pm 0.34 \\ \hline 1.22 - 1.74 & 0.2316 & 20.6 \pm 2.2 & 12.9 \pm 2.5 & 9.27 \pm 1.2 & 1.39 \pm 0.45 \\ 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 10 & \frac{10 - 0.37}{10.17 - 0.5} & 0.1232 & 39.9 \pm 3.3 & 151.1 \pm 8.1 & 8.5 \pm 0.41 & 17.8 \pm 0.13 \\ \hline 0.35 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 64.6 \pm 5.4 & 5.9 \pm 0.47 & 10.8 \pm 0.18 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 0.56 - 0.78 & 0.1529 $		顶面	0-0.104	0.0499	323 ± 10	315±10	$\boldsymbol{6.87 \pm 0.69}$	45.9±6.1
$\mathbb{M}^{4} = \begin{bmatrix} 0.4420.410 & 0.0801 & 39.3 \pm 1.4 & 31.7 \pm 1.8 & 8.48 \pm 0.52 & 3.74 \pm 0.41 \\ \hline 0.410 - 1.318 & 0.3780 & 8.10 \pm 0.28 & & 4.20 \pm 0.18 & \\ \hline 1.318 - 1.780 & 0.1789 & 7.19 \pm 0.47 & & 2.42 \pm 0.24 & \\ \hline 00.332 & 0.1058 & 290 \pm 10 & 282 \pm 10 & 8.89 \pm 0.79 & 31.7 \pm 3.9 \\ \hline 0.332 - 0.617 & 0.0910 & 111 \pm 3 & 103 \pm 3 & 9.49 \pm 0.60 & 10.9 \pm 1.0 \\ \hline 0.617 - 0.847 & 0.0713 & 63.3 \pm 2.5 & 55.6 \pm 2.8 & 15.9 \pm 0.96 & 3.50 \pm 0.42 \\ \hline 0.847 - 1.079 & 0.0758 & 34.1 \pm 1.2 & 26.4 \pm 1.5 & 9.19 \pm 0.52 & 2.87 \pm 0.33 \\ 1.079 - 1.370 & 0.0928 & 11.8 \pm 0.6 & 4.1 \pm 0.9 & 7.09 \pm 0.42 & 0.58 \pm 0.16 \\ \hline 0.55 - 0.88 & 0.1734 & 60.7 \pm 1.8 & 53.0 \pm 2.1 & 9.4 \pm 0.5 & 5.6 \pm 0.5 \\ \hline 0.88 - 1.72 & 0.4415 & 29.7 \pm 1.4 & 22.0 \pm 1.7 & 6.2 \pm 0.4 & 3.5 \pm 0.5 \\ \hline 1.72 - 2.46 & 0.3902 & 21.9 \pm 1.1 & 14.2 \pm 1.4 & 6.0 \pm 0.4 & 2.4 \pm 0.4 \\ \hline 0.37 - 0.75 & 0.1822 & 49.5 \pm 1.7 & 41.8 \pm 2.0 & 11.5 \pm 0.6 & 3.63 \pm 0.36 \\ \hline 0.75 - 1.22 & 0.2285 & 24.0 \pm 1.1 & 16.3 \pm 1.4 & 7.08 \pm 0.43 & 2.30 \pm 0.34 \\ \hline 1.22 - 1.74 & 0.2316 & 20.6 \pm 2.2 & 12.9 \pm 2.5 & 9.27 \pm 1.2 & 1.39 \pm 0.45 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 1.74 - 0.30 & 0.123 & 39.9 \pm 3.3 & 151.1 \pm 8.1 & 8.5 \pm 0.41 & 17.8 \pm 0.13 \\ \hline 0.35 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 64.6 \pm 5.4 & 5.9 \pm 0.47 & 10.8 \pm 0.18 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 1.55 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 64.6 \pm 5.4 & 5.9 \pm 0.47 & 10.8 \pm 0.18 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 1.55 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 64.6 \pm 5.4 & 5.9 \pm 0.47 & 10.8 \pm 0.18 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 1.55 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 64.6 $			0.104-0.242	0.0658	81.5±2.8	73.9 ± 3.2	8.37 ± 0.49	8.83 ± 0.87
$\mathbb{M}^{1} = \begin{bmatrix} 0.410 - 1.318 & 0.3780 & 8.10 \pm 0.28 & - & 4.20 \pm 0.18 & - \\ \hline 1.318 - 1.780 & 0.1789 & 7.19 \pm 0.47 & - & 2.42 \pm 0.24 & - \\ \hline 0.332 & 0.1058 & 290 \pm 10 & 282 \pm 10 & 8.89 \pm 0.79 & 31.7 \pm 3.9 \\ \hline 0.332 - 0.617 & 0.0910 & 111 \pm 3 & 103 \pm 3 & 9.49 \pm 0.60 & 10.9 \pm 1.0 \\ \hline 0.617 - 0.847 & 0.0713 & 63.3 \pm 2.5 & 55.6 \pm 2.8 & 15.9 \pm 0.96 & 3.50 \pm 0.42 \\ \hline 0.847 - 1.079 & 0.0758 & 34.1 \pm 1.2 & 26.4 \pm 1.5 & 9.19 \pm 0.52 & 2.87 \pm 0.33 \\ \hline 1.079 - 1.370 & 0.0928 & 11.8 \pm 0.6 & 4.1 \pm 0.9 & 7.09 \pm 0.42 & 0.58 \pm 0.16 \\ \hline 0.23 - 0.55 & 0.1749 & 161 \pm 6 & 153 \pm 6 & 10.5 \pm 0.85 & 14.6 \pm 1.8 \\ \hline 0.55 - 0.88 & 0.1734 & 60.7 \pm 1.8 & 53.0 \pm 2.1 & 9.4 \pm 0.5 & 5.6 \pm 0.5 \\ \hline 0.88 - 1.72 & 0.4415 & 29.7 \pm 1.4 & 22.0 \pm 1.7 & 6.2 \pm 0.4 & 3.5 \pm 0.5 \\ \hline 1.72 - 2.46 & 0.3902 & 21.9 \pm 1.1 & 14.2 \pm 1.4 & 6.0 \pm 0.4 & 2.4 \pm 0.4 \\ \hline 0 - 0.37 & 0.1758 & - & - & - & - \\ \hline 0.37 - 0.75 & 0.1822 & 49.5 \pm 1.7 & 41.8 \pm 2.0 & 11.5 \pm 0.6 & 3.63 \pm 0.36 \\ \hline 0.75 - 1.22 & 0.2285 & 24.0 \pm 1.1 & 16.3 \pm 1.4 & 7.08 \pm 0.43 & 2.30 \pm 0.34 \\ \hline 1.22 - 1.74 & 0.2316 & 20.6 \pm 2.2 & 12.9 \pm 2.5 & 9.27 \pm 1.2 & 1.39 \pm 0.45 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline 1.74 - 0.35 & 0.1232 & 39.9 \pm 3.3 & 151.1 \pm 8.1 & 8.5 \pm 0.41 & 17.8 \pm 0.13 \\ 0.35 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 64.6 \pm 5.4 & 5.9 \pm 0.47 & 10.8 \pm 0.18 \\ \hline 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 1.55 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 1.55 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 1.55 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 1.55 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 1.55 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline 1.55 - 0.56 & 0.1443 &$			0.2420.410	0.0801	39.3±1.4	31.7±1.8	8.48 ± 0.52	3.74 ± 0.41
$ \mathbb{M}^{1} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	'		0.410-1.318	0.3780	8.10 ± 0.28		4.20 ± 0.18	
$ M = \begin{bmatrix} 0 - 0.332 & 0.1058 & 290 \pm 10 & 282 \pm 10 & 8.89 \pm 0.79 & 31.7 \pm 3.9 \\ 0.332 - 0.617 & 0.0910 & 111 \pm 3 & 103 \pm 3 & 9.49 \pm 0.60 & 10.9 \pm 1.0 \\ 0.617 - 0.847 & 0.0713 & 63.3 \pm 2.5 & 55.6 \pm 2.8 & 15.9 \pm 0.96 & 3.50 \pm 0.42 \\ \hline 0.847 - 1.079 & 0.0758 & 34.1 \pm 1.2 & 26.4 \pm 1.5 & 9.19 \pm 0.52 & 2.87 \pm 0.33 \\ 1.079 - 1.370 & 0.0928 & 11.8 \pm 0.6 & 4.1 \pm 0.9 & 7.09 \pm 0.42 & 0.58 \pm 0.16 \\ \hline 0 - 0.23 & 0.1286 & 629 \pm 28 & 621 \pm 28 & 17.8 \pm 1.7 & 34.9 \pm 4.9 \\ \hline 0.23 - 0.55 & 0.1749 & 161 \pm 6 & 153 \pm 6 & 10.5 \pm 0.85 & 14.6 \pm 1.8 \\ \hline 0.55 - 0.88 & 0.1734 & 60.7 \pm 1.8 & 53.0 \pm 2.1 & 9.4 \pm 0.5 & 5.6 \pm 0.5 \\ \hline 0.88 - 1.72 & 0.4415 & 29.7 \pm 1.4 & 22.0 \pm 1.7 & 6.2 \pm 0.4 & 3.5 \pm 0.5 \\ \hline 1.72 - 2.46 & 0.3902 & 21.9 \pm 1.1 & 14.2 \pm 1.4 & 6.0 \pm 0.4 & 2.4 \pm 0.4 \\ \hline M & \frac{0 - 0.37 & 0.1758 & - & - & - & - \\ \hline 0.37 - 0.75 & 0.1822 & 49.5 \pm 1.7 & 41.8 \pm 2.0 & 11.5 \pm 0.6 & 3.63 \pm 0.36 \\ \hline 0.75 - 1.22 & 0.2285 & 24.0 \pm 1.1 & 16.3 \pm 1.4 & 7.08 \pm 0.43 & 2.30 \pm 0.34 \\ \hline 1.22 - 1.74 & 0.2316 & 20.6 \pm 2.2 & 12.9 \pm 2.5 & 9.27 \pm 1.2 & 1.39 \pm 0.45 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline M & \frac{10}{11} & \frac{335.6 \pm 12}{0.35 - 0.56} & 0.1443 & 33.6 \pm 2.4 & 64.6 \pm 5.4 & 5.9 \pm 0.47 & 10.8 \pm 0.18 \\ \hline 0.55 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline \end{bmatrix}$			1.318-1.780	0.1789	7.19 ± 0.47	-	2.42 ± 0.24	
$\mathbb{M}^{2} \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0-0.332	0.1058	290±10	282±10	8.89±0.79	31.7 ± 3.9
$\mathbb{M}^{2} = \begin{bmatrix} \frac{1}{101} \\ 0.617 - 0.847 \\ 0.0713 \\ 0.079 - 1.370 \\ 0.0928 \\ 11.8 \pm 0.6 \\ 4.1 \pm 0.9 \\ 7.09 \pm 0.42 \\ 0.9 \pm 0.52 \\ 2.87 \pm 0.33 \\ 1.079 - 1.370 \\ 0.0928 \\ 11.8 \pm 0.6 \\ 4.1 \pm 0.9 \\ 7.09 \pm 0.42 \\ 0.58 \pm 0.16 \\ 0.00 \pm 0.23 \\ 0.1286 \\ 629 \pm 28 \\ 621 \pm 28 \\ 17.8 \pm 1.7 \\ 34.9 \pm 4.9 \\ 0.23 - 0.55 \\ 0.1749 \\ 161 \pm 6 \\ 153 \pm 6 \\ 10.5 \pm 0.85 \\ 14.6 \pm 1.8 \\ 0.55 - 0.88 \\ 0.1734 \\ 60.7 \pm 1.8 \\ 53.0 \pm 2.1 \\ 9.4 \pm 0.5 \\ 5.6 \pm 0.5 \\ 1.46 \pm 1.8 \\ 0.55 - 0.88 \\ 0.1734 \\ 60.7 \pm 1.8 \\ 53.0 \pm 2.1 \\ 9.4 \pm 0.5 \\ 5.6 \pm 0.5 \\ 1.46 \pm 1.8 \\ 0.55 - 0.88 \\ 0.1734 \\ 60.7 \pm 1.8 \\ 53.0 \pm 2.1 \\ 9.4 \pm 0.5 \\ 5.6 \pm 0.5 \\ 1.46 \pm 1.8 \\ 0.55 - 0.88 \\ 0.1734 \\ 60.7 \pm 1.8 \\ 53.0 \pm 2.1 \\ 9.4 \pm 0.5 \\ 5.6 \pm 0.5 \\ 1.46 \pm 1.8 \\ 0.5 \pm 0.4 \\ 1.5 \pm 0.6 \\ 3.63 \pm 0.36 \\ 0.36 \pm 0.36 \\ 0.75 - 1.22 \\ 0.2285 \\ 24.0 \pm 1.1 \\ 16.3 \pm 1.4 \\ 7.08 \pm 0.43 \\ 2.30 \pm 0.34 \\ 1.22 - 1.74 \\ 0.2316 \\ 20.6 \pm 2.2 \\ 12.9 \pm 2.5 \\ 9.27 \pm 1.2 \\ 1.39 \pm 0.45 \\ 1.74 - 2.20 \\ 0.2073 \\ 17.2 \pm 0.6 \\ 9.5 \pm 0.9 \\ 6.40 \pm 0.32 \\ 1.48 \pm 0.21 \\ 0.57 - 0.15 \\ 0.17 - 0.35 \\ 0.1232 \\ 39.9 \pm 3.3 \\ 151.1 \pm 8.1 \\ 8.5 \pm 0.41 \\ 17.8 \pm 0.13 \\ 0.35 - 0.56 \\ 0.1443 \\ 33.6 \pm 2.4 \\ 64.6 \pm 5.4 \\ 5.9 \pm 0.47 \\ 10.8 \pm 0.18 \\ 0.56 - 0.78 \\ 0.1529 \\ 36.9 \pm 2.4 \\ 41.8 \pm 3.2 \\ 5.9 \pm 0.42 \\ 7.0 \pm 0.14 \\ 0.5 - $		底面	0.332-0.617	0.0910	111±3	103 ± 3	9.49 ± 0.60	10.9 ± 1.0
$\mathbb{M} = \begin{bmatrix} \Pi \\ 0.847 - 1.079 \\ 0.0758 \\ 1.079 - 1.370 \\ 0.0928 \\ 11.8 \pm 0.6 \\ 4.1 \pm 0.9 \\ 7.09 \pm 0.42 \\ 0.58 \pm 0.16 \\ 0.58 \pm 0.16 \\ 0.58 \pm 0.16 \\ 0.55 - 0.82 \\ 0.1749 \\ 161 \pm 6 \\ 153 \pm 6 \\ 10.5 \pm 0.85 \\ 14.6 \pm 1.8 \\ 0.55 - 0.88 \\ 0.1734 \\ 60.7 \pm 1.8 \\ 53.0 \pm 2.1 \\ 9.4 \pm 0.5 \\ 5.6 \pm 0.5 \\ 0.88 - 1.72 \\ 0.4415 \\ 29.7 \pm 1.4 \\ 22.0 \pm 1.7 \\ 6.2 \pm 0.4 \\ 3.5 \pm 0.5 \\ 1.72 - 2.46 \\ 0.3902 \\ 21.9 \pm 1.1 \\ 14.2 \pm 1.4 \\ 6.0 \pm 0.4 \\ 2.4 \pm 0.4 \\ 0 - 0.37 \\ 0.1758 \\ 0.1758 \\ 0.175 - 1.22 \\ 0.2285 \\ 24.0 \pm 1.7 \\ 11.8 \pm 2.0 \\ 11.5 \pm 0.6 \\ 3.63 \pm 0.36 \\ 0.75 - 1.22 \\ 0.2285 \\ 24.0 \pm 1.1 \\ 16.3 \pm 1.4 \\ 7.08 \pm 0.43 \\ 2.30 \pm 0.34 \\ 1.22 - 1.74 \\ 0.2316 \\ 20.6 \pm 2.2 \\ 12.9 \pm 2.5 \\ 9.27 \pm 1.2 \\ 1.39 \pm 0.45 \\ 1.74 - 2.20 \\ 0.2073 \\ 17.2 \pm 0.6 \\ 9.5 \pm 0.9 \\ 6.40 \pm 0.32 \\ 1.48 \pm 0.21 \\ 0.5 - 0.15 \\ 0.17 - 0.35 \\ 0.1232 \\ 39.9 \pm 3.3 \\ 151.1 \pm 8.1 \\ 8.5 \pm 0.41 \\ 17.8 \pm 0.13 \\ 0.35 - 0.56 \\ 0.1443 \\ 33.6 \pm 2.4 \\ 64.6 \pm 5.4 \\ 5.9 \pm 0.47 \\ 10.8 \pm 0.18 \\ 0.56 - 0.78 \\ 0.1529 \\ 36.9 \pm 2.4 \\ 41.8 \pm 3.2 \\ 5.9 \pm 0.42 \\ 7.0 \pm 0.14 \\ \end{bmatrix}$	样品编 M ¹ M ²		0.617-0.847	0.0713	63.3±2.5	55.6 ± 2.8	15.9±0.96	3.50 ± 0.42
$ M^{2} \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.847-1.079	0.0758	34.1±1.2	26.4±1.5	9.19±0.52	2.87 ± 0.33
$\mathbb{M}^{2} \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1.079-1.370	0.0928	11.8±0.6	4.1±0.9	7.09±0.42	0.58 ± 0.16
$ \mathbb{M}^{2} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		顶面	0-0.23	0.1286	629 ± 28	621 ± 28	17.8±1.7	34.9 ± 4.9
$\mathbb{M}^{2} \xrightarrow{[] 0]{}} \mathbb{M} = \begin{array}{ $			0.230.55	0.1749	161 ± 6	153±6	10.5 ± 0.85	14.6±1.8
$\mathbb{M}^{2} \begin{array}{ c c c c c c c c } \mathbb{M} & \begin{array}{c} 0.88 - 1.72 & 0.4415 & 29 \ 7 \pm 1.4 & 22.0 \pm 1.7 & 6.2 \pm 0.4 & 3.5 \pm 0.5 \\ \hline 1.72 - 2.46 & 0.3902 & 21.9 \pm 1.1 & 14.2 \pm 1.4 & 6.0 \pm 0.4 & 2.4 \pm 0.4 \\ \hline 1.72 - 2.46 & 0.3902 & 21.9 \pm 1.1 & 14.2 \pm 1.4 & 6.0 \pm 0.4 & 2.4 \pm 0.4 \\ \hline 0 - 0.37 & 0.1758 & - & - & - & - \\ \hline 0.37 - 0.75 & 0.1822 & 49.5 \pm 1.7 & 41.8 \pm 2.0 & 11.5 \pm 0.6 & 3.63 \pm 0.36 \\ \hline 0.75 - 1.22 & 0.2285 & 24.0 \pm 1.1 & 16.3 \pm 1.4 & 7.08 \pm 0.43 & 2.30 \pm 0.34 \\ \hline 1.22 - 1.74 & 0.2316 & 20.6 \pm 2.2 & 12.9 \pm 2.5 & 9.27 \pm 1.2 & 1.39 \pm 0.45 \\ \hline 1.74 - 2.20 & 0.2073 & 17.2 \pm 0.6 & 9.5 \pm 0.9 & 6.40 \pm 0.32 & 1.48 \pm 0.21 \\ \hline & & & & & & & & \\ \hline \mathbb{I} \\ \hline \begin{array}{c} 00.17 & 0.1121 & 232 \pm 11 & 335.6 \pm 12 & 8.9 \pm 0.52 & 37.6 \pm 0.15 \\ 0.17 - 0.35 & 0.1232 & 39.9 \pm 3.3 & 151.1 \pm 8.1 & 8.5 \pm 0.41 & 17.8 \pm 0.13 \\ 0.35 - 0.56 & 0.1443 & 33.6 \pm 2.4 & 64.6 \pm 5.4 & 5.9 \pm 0.47 & 10.8 \pm 0.18 \\ 0.56 - 0.78 & 0.1529 & 36.9 \pm 2.4 & 41.8 \pm 3.2 & 5.9 \pm 0.42 & 7.0 \pm 0.14 \\ \hline \end{array}$	M ²		0.55-0.88	0.1734	60.7±1.8	53.0 ± 2.1	9.4±0.5	5.6±0.5
$ M^{2} \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.88-1.72	0.4415	29 7±1.4	22.0±1.7	6.2 ± 0.4	3.5±0.5
$ \frac{M}{m} = \frac{0-0.37}{m} \frac{0.1758}{0.1758} - \frac{-}{-} - \frac{-}{-}$			1.72-2.46	0.3902	21.9 ± 1.1	14.2 ± 1.4	6.0 ± 0.4	2.4 ± 0.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		底面	0-0.37	0.1758		-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.37-0.75	0.1822	49.5±1.7	41.8 ± 2.0	11.5±0.6	3.63±0.36
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.75-1.22	0.2285	24.0±1.1	16.3±1.4	7.08 ± 0.43	2.30 ± 0.34
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1.22-1.74	0.2316	20.6 ± 2.2	12.9 ± 2.5	9.27±1.2	1.39 ± 0.45
近面 2^{10} Pb 比度(dbm / g) 項面 00.17 0.1121 232±11 335.6±12 8.9 ± 0.52 37.6±0.15 項面 0.170.35 0.1232 39.9±3.3 151.1±8.1 8.5 ± 0.41 17.8±0.13 0.350.56 0.1443 33.6±2.4 64.6±5.4 5.9 ± 0.47 10.8±0.18 0.560.78 0.1529 36.9±2.4 41.8±3.2 5.9 ± 0.42 7.0 ± 0.14			1.74-2.20	0.2073	17.2±0.6	9.5±0.9	6.40 ± 0.32	1.48 ± 0.21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					²¹⁰ Pb 比质	E(dbm / g)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M ³	顶面	00.17	0.1121	232±11	335.6±12	8.9±0.52	37.6±0.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.17-0.35	0.1232	39.9±3.3	151.1 ± 8.1	8.5±0.41	17.8 ± 0.13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.35-0.56	0.1443	33.6±2.4	64.6±5.4	5.9±0.47	10.8 ± 0.18
			0.56-0.78	0.1529	36.9±2.4	41.8 ± 3.2	5.9 ± 0.42	7.0±0.14
$0.78 - 0.97 0.1258 35.4 \pm 2.5 28.8 \pm 2.4 6.3 \pm 0.41 4.6 \pm 0.15$			0.78-0.97	0.1258	35.4±2.5	28.8±2.4	6.3 ± 0.41	4.6±0.15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		底面	00.14	0.0370	45.8±3	34.9±2	8.21±0.52	4.3±0.16
0.14-0.33 0.0482 46.0±2.6 21.6±1.7 9.0±0.56 2.4±0.15			0.14-0.33	0.0482	46.0±2.6	21.6±1.7	9.0±0.56	2.4±0.15
$\frac{100}{100} 0.33 - 0.51 0.0469 31.7 \pm 2.8 15.0 \pm 0.9 8.3 \pm 0.42 1.8 \pm 0.11$			0.33-0.51	0.0469	31.7.± 2.8	15.0±0.9	8.3±0.42	1.8±0.11
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.51-0.68	0.0451	54.1±31	7.6±0.5	9.0±0.43	' 1.2±0.12
$0.68 - 0.87 0.0497 32.5 \pm 2.5 \qquad 6.5 \pm 0.5 \qquad 7.0 \pm 0.37 \qquad 1.0 \pm 0.17$			0.68-0.87	0.0497	32.5±2.5	6.5±0.5	7.0±0.37	1.0 ± 0.17

表 1 M_1 、 M_2 锰结核的测量结果

1	The measurement results of M	M and M

²²⁴Ra 对²²⁸Th 及²²⁸Th²²⁸Th 的校正因子分别为 0.055 和 0.011,另外对²²⁸Th 的计数要分别进 行衰变校正及天然²²⁸Th 的校正。钋源测量中,²⁰⁸Po 和²¹⁰Po 两峰一般不存在迭压现象,无 需进行校正。

三、测量结果及讨论

测量结果见表 1。表中的误差仅为测量中一个标准偏差。M₁的顶部,从 0.5mm 以下直至 1.7mm 深处,²³⁰Th 的放射性比度不再随深度而衰减,而是保持在大约 0.77dpm / g 左右。笔者认为这是由结核中²³⁰Th 的母体²³⁸U 所提供的本底值。其他几个结核似乎尚未达到本底值的深度,由此笔者把 0.77dpm / g 作为²³⁰Th 的本底值。从总的²³⁰Th 放射性比度中减去这一本底值,得出过剩的²³⁰Th 放射性比度。用²³⁰Th _(过剩)或²³⁰Th _(过剩) / ²³²Th 值对取样深度在半对数纸上作图,就得出了 lnA-Z 图(图 1、2)以及锰结核的生长速率(表 2)。

Table 2 The glowth fates and turnover nequency of Mi , M and M									
结核名称	外 形 尺 寸 (mm)	经纬度	水深 (M)	上次翻滚 时间 (Yr)	<u>生</u>	²³⁰ Th		²³⁰ Th / ²³² Th	
					速	生长速率	线性回归	生长速率	线性回归
					部位 🌋	(mm / • myr)	相关系数	mm / myr	相关系数
M	扁园球	11 ° 26.32 ' N	5252	5.1 × 10 ⁴	顶面	1.11	0.972	1.02	0.974
141	$50 \times 35 \times 30$	171 ° 3.5 ′ W			底面	2.43	0.985	2.55	0.988
M	园球	11°28.30′N	5390	2.6 × 10 ⁵	顶面	2.28	0.985	2.98	0.990
141 2	$\varphi \sim 50$	172 ° 59.ó4W			底面	6.98	0.967	8.58	0.979
M ₃	椭园球	31° 10.82′ N	2776	2×10 ⁵	顶面	2.93	1	3.07	1
	50 × 35 × 32	122 ° 14.75 ′ W			底面	3.31	1	3.27	1

表 2 锰结核的生长速率和翻滚频率 Table 2 The growth rates and turnover frequency of M¹ M² and M³

从图中可见, 锰结核的顶、底两面, 无论²³⁰Th_(过剩)比度还是²³⁰Th(过剩) / ²³²Th 值的剖面线性拟合线都很好。从表 2 中可见用这两种方法求出的生长速率有很好的一致性(因 M₂ 底面样品在化学处理中丢失了表层样品,所得的生长速率仅供参考,在讨论时排除在外).

表 3 取自北太平洋的锰结核生长速率及翻滚频率

 Table. 3
 The growth rates and turnover frequency of manganese nodules reported by Huh C.A. and Ku T.L

	外形尺寸	上次翻身 时间(yr)	生长速率	生长速率 (mm/m.yr)			
结核名称	(cm) (长×宽×高)		部位 法	Be ¹⁰	²³⁰ Th	²³¹ Pa	
RAMA- 1	6×5×42	2×10 ⁵	Ţ		1.6	3.2	
BC	0~3~4.2		底		1.6	4.5	
RAMA- 20	5 4 3 4 2 2	1×10 ⁵	ĴØ.	1.2	2.1	2.6	
BC	JAJA 2.2		底	0.6	1.6	5.3	
K7905- 471	12 × 10 × 2.5	1.4 × 10 ⁵	顶	5.3	5.8	9.6	
С	12 ~ 10 ~ 2.5		底	4.7	4.0	7.5	

这些都证明用这两种方法获得的生长速率是可信的。这三个锰结核的生长速率和国外报道的 取自于北太平洋的锰结核的生长速度很接近(表 3)。

1、锰经核生长速率的可靠性

早在本世纪初,Joly•J用²²⁶Ra测定锰结核的生长速率,得出的结果在毫米/千年数量 级。这个数值似乎很容易被人们所接受,因此这个观念一直宠断了近半个世纪。直到 1958 年,Goldberg 对这个结果提出怀疑,认为²²⁶Ra 不是从海水中来而是由²³⁰Th 提供的。第二 年他们用²³⁰Th_(过剩)和²³¹Pa_(过剩)测定锰结核的生长速率,其结果在毫米/百万年数量级。 尔后不少科学家也对锰结核生长速率的问题进行了较为系统的研究,包括使用了不同的方 法,结果都证实生长速率确实在毫米/百万年的数量级。对于这样低的生长速率,不少学者 持怀疑态度,认为²³⁰Th 放射性比度从表层到结核深处的衰减并非由放射性衰变所致,而仅 仅是由于取样误差的结果。笔者可用短半衰期的²¹⁰Pb 来检验这种推论是否正确。若取样时 的确存在把表层的样品带到深处,那么²¹⁰Pb 的剖面也有一个衰减的趋势。M,顶面表层的 210Pb 比度为²³²dpm / g 而以下各层都在 30dpm / g 左右, 笔者认为这是本底值, ²¹⁰Pb 的分 布并不存在由表层向内部衰减的趋势,因此可排除230Th 的剖面仅仅由于取样误差所致的假 设。另外有的学者提出²³⁰Yh 的衰减并非放射性衰变所造成的,而是由于这种核素从表层向 深处扩散的结果。但这个假设又被²³¹Pb 的测量结果所推翻。钍和钋两种特性相近的核素, 其扩散的深度亦应相似,²³⁰Th 和²³¹Pb 的半衰期相差近一半(75000 年)和 34300 年),这 样,同一结核用²³⁰Th和²³¹Pb测出的生长速率亦应相差近一半。事实上众多的实验已证明用 这两种方法获得的生长速率基本一致。用近些年所发展起来的¹⁰Be 测年方法测定锰结核生 长速率也基本上符合²³⁰Th 和²³¹Pa 的结果, 而¹⁰Be (T1 / 2) = 2.5 百万年) 的半衰期比²³⁰Th 的大了几十倍。另外 M,顶面²¹⁰Pb 的分布表明无扩散现象存在。上述种种情况都表明所谓 的"扩散说"也是不正确的。笔者完全有理由相信用²³⁰Th、²³¹Pa 等放射性核素测得的锰结核 生长速率是可靠的。

2、锰结核的翻滚周期

锰结核的生长速率在毫米/百万年数量级,而大洋底部的沉积速率一般为毫米/千年数 量级,比前者大得多。为什么锰结核不会被沉积物所复盖?这是一个长期使科学家们困惑不 解的问题。Glasby从流体力学角度研究了底流对锰结核作用,提出底流作用使锰结核翻 滚。Piper 等提出由于火山活动产生的颤动使锰结核保留在海底表面。上述这些"滚动"学说 虽然尚未获得更为直接可靠的证据,但还是被大多数学者们所承认。从锰结核上放射性核素 的分布特征亦支持了"翻滚"学说。从²³⁰Th 的地球化学行为中可知锰结核只能从海水中接受 ²³⁰Th 核素。而被沉积物掩理的那部分就不含有²³⁰Th (过剩)。从表1中可见,锰结核的顶面 及底面都有²³⁰Th (过剩),这说明目前锰结核的底面在以前曾是顶面,接受了海水中的²³⁰Th 至于它从原先的顶面改成目前的底面所经过的时间 T 可用下述公式求得(假设海水中的 230Th 通量保持恒定)

$$T = \frac{1}{\lambda} ln \frac{A_{(\overline{D})}}{A_{(\overline{R})}}$$

式中 A ($_{(\overline{M})}$ A ($_{(\overline{K})}$ 分别代表锰结核页面和底面表层²³⁰Th 放射性比度 (dpm / g)。用该 方法求出的锰结核翻滚频率为 M₁: 2×10⁴ 年, M₃: 2.5×10⁵ 年 (表 2)。根据笔者测定的 数据及引用国外资料,一般说 2.5×10⁵ 年为锰结核的最长翻滚周期。而从锰结核中²¹⁰Pb 的 分布情况可了解翻滚的最短周期。M₃ 表层的²¹⁰Pb_(过剩) 放射性比度为 200dpm/g 左右, 而 底部就不存在²¹⁰Pb_(过剩)。²¹⁰Pb 可测年范围在 150 年左右,由此可知该结核起码在 150 年 前已经翻动了。综上所述,笔者认为锰结核的翻滚周在 150 < T < 2.5×10⁵ 年之间。这和国 外报道的资料基本相符(表 3)。

收稿日期

参考文献

- (1) Krishnaswami, S.1982. Earth Planet Sci. lett.N.59 P.312-320.
- (2) Ku, 1.1.et al. 1967. Earth Planet Sci. Lett N2 P.317-320.

(3) Huh, C.A. and Ku, T.L.1984. Geochim. Acta, 48.p.951-963

RESEARCH ON GROWTH RATES OF MANGANESE NODULES FROM NORTH PACIFIC

Qian jiangchu, Xu Zhenyu, Wang Xingfu

(Second Institute of Occanography, State Occanic Administration)

Abstract

Many research items on the manganese nodules from ocean bottom have been carried out, but the growth rates of manganese nodules as well as their movements on the ocean bottom still puzzles the scientrusts. Various methods have bee created to answer these question. The trustworthy and acceptable methods are $^{-230}$ Th excess, $^{-230}$ Th / $^{-232}$ Th; $^{-231}$ Pa; K / Ar and $^{-10}$ Bc.

Three manganese nodules have been analysed using ⁻²³⁰Th excess and ⁻²³⁰Th / ⁻²³²Th methods in order to detect their growth rates. The procedures are as follows: Successive layers of specimens from top side and bottom side are scraped; acid leaching; separation and purification of U and Th using Dowes1-8 resin; TTA extraction and α counting. The growth rates of three nodules using two different methods are agreeable, ranging 1-10mm / M.Yr.

The last turnover of the nodules can be evaluated from the different activities of $^{-230}$ Th at the surface of top and bottom sides. The results range from 5×10^4 to 2.5×10^5 years, thereat $^{-210}$ Pb profiles indicates that the turnover of the nodules didn' t take place in the last 150 years.