广西第三系煤系地层油砂的地球化学特征

曾凡刚¹ 周世新² 王关玉¹ 李贤庆³ 霍永忠³ 蔡春芳³ ¹(北京大学地质系,北京 100871) ²(中国科学院兰州地质研究所,兰州 730000) ³(江汉石油学院测试中心,湖北荆沙 434102)

提 要 本文通过对广西百色盆地煤系地层油砂及下层褐煤中饱和烃、芳烃生物标志物鉴定及进行对比分析, 发现两者生物标志物分布特征极为相似。结合有机岩石学研究成果,作者认为油砂中的烃类大部分就是源于这 种褐煤。本文通过对百色盆地煤系地层油砂生物标志物进行研究,以对本地区煤系地层油气勘探提供更可靠的 科学依据。

关键词 百色盆地 油砂 煤成烃 分类号 P 618.11,P 593 第一作者简介 曾凡刚 男 29岁 博士后 有机地球化学

我国中新生代,特别是第三系某些主要陆相油 气田的形成,无论在时间或空间上部与重要的成煤 期或煤田密切相关。在一些陆相石油中还检出有含 量甚高的,由典型高等植物输入的倍半萜、二萜和 五环三萜⁽¹⁾。为了研究煤系地层产烃特征,作者选择 了百色盆地坤-5井第三系煤系地层中油砂样为研 究对象,将油砂与下伏褐煤中有机质进行对比研究, 以探讨煤系地层成烃潜力及其烃类的地球化学特 征。

将油砂用氯仿浸泡 24小时,萃取其中的原油, 然后除去溶剂。按照常规的原油分析流程进行族组 分定量及 GC,GC-MS分析。

1 油砂中饱和烃、芳烃色谱特征

气相色谱分析采用 LEVEL FOUR 5880 A HP 公司高分辨气相色谱仪。使用 SE-54弹性熔硅毛细 柱: 0. 25 mm× 30 m,进样器温度 270[°],饱和烃程 序升温为 70~ 300[°],4[°] /min 芳烃程序升温为 90 ~ 290[°], 3[°] /min

饱和烃分布如图 1,主峰碳为 nCa 整体呈"双峰"型面貌,"前峰"以倍半萜类, Pr Ph nCta nCa等为主,"后峰"以 nCa nCa。以及三萜类为主,这些特征表明了陆源高等植物对烃类的特殊贡献 Pr/Ph > 1表明成油的弱氧化一弱还原环境 正烷烃奇偶突出说明烃类尚处于低成熟阶段。

芳烃分布较为特殊 (图 2),前部分主要由芳香 倍半萜、萘和三芴等常规芳香烃组成,后部分则是以 6~7个峰为一群的几组化合物组成。这些化合物比 较特殊,将在 GC-M S中进行讨论

图 1 百色盆地煤系地层油砂中饱和烃色谱图 Fig. 1 Chromatogram of the aliphatic fraction of oil sands

2 油砂中饱和烃 芳烃色谱 质谱分析

色谱-质谱分析采用 TSQ4510仪,0.2× 50 mm,内涂 HP-1熔硅毛细管色谱柱。饱和烃程序升 温为 80 29℃,3℃/min 芳烃程序升温为 22℃ ~ 29℃,2℃/min 质谱条件:电子轰击离子源,离 子电流 350 mA,电子能量为 70 eV。

① 中国科学院地球化学研究所有机地球化学开放实验室资助项目 (项目名称:广西第三系煤成烃地球化学 项目编号 9004) 收稿日期: 1996- 06- 12

fraction of oil sands

mass-chvomatogram of sesquiterpanes

图 4 m/z 191三萜类质量色谱图 Fig. 4 m/z 191 Mass-chromatogram of triterpanes

2.1 饱和烃色谱 质谱分析

百色油砂饱和烃馏分主要由正构烷烃,类异戊 二烯,倍半萜,五环三萜组成。其中正构烷烃占绝对 优势,其次为倍半萜,类异戊二烯烃,而只检测到微 量的二萜,二倍半萜类。这与油砂下层的褐煤中检出 的结果是一致的^{〔2}。

2.1.1 无环类异戊二烯烃

百色盆地坤-5井油砂中类异戊二烯烃占有一

定丰度,除《 Co常规类异戊二烯烃外,还检测到 Cir ~ Cr异构与反异构烷烃(同一碳数的异构与反异构 烷烃成对出现,异构烷烃在前,反异构烷烃在后,且 都在同碳数正烷烃前馏出)和一系列 Cir~ C28中间 分支的支链烷烃,从目前文献来看,其来源于细菌蜡 质,较高丰度表明细菌活动强烈,对烃类贡献大。

2.1.2 倍半萜类

百色煤系地层油砂中共检测出 14个倍半萜类 化合物 (表 1,图 3)。而且其总体含量还很高 其中 α-雪松烯,卡达烯等多数化合物为典型高等植物输 入的标志

2.1.3 二萜类

仅检测到一个微量的 19-降松香 -8,11,13-三烯 化合物。

2.1.4 二倍半萜类

检测到脱 -A-羽扇烷及其异构体 笔者曾在该 油砂下层的褐煤中检测到微量的 19-降松香 -8, 11, 13-三烯和脱 -A-羽扇烷及其异构体^{〔2]}。

这一不谋而合的检测结果恰好说明了油砂与褐 煤良好的对应关系。

2.1.5 三萜类

油砂饱和烃馏分中,除正常藿烷系列外,还检测 到一个 C²⁹ 降新藿烷(C²⁹ Ts)化合物(图 4) 王铁冠 等^[7]在黄骅坳陷板桥凹陷下第三系陆相地层中也检 测到该化合物,认为它的形成与弱氧化一弱还原环 境有关。此外,还检测到一个奥利型三萜烯,这在油 砂下层的褐煤中也检测到。

如图 4所示, Tm> Ts,βα 莫烷系列的高丰度出 现等均表明油砂中烃类尚处于低成熟阶段。

图 5 m/z 217甾类质量色谱图

2.1.6 长侧链三环萜烷 四环萜烷

在油砂饱和烃馏分中检测到 C22-三环萜烷和 C24 四环萜烷 其它长侧链三环萜烷,四环萜烷丰度 均很低。它们的形成与细菌活动有关,可能是细菌活 动的产物 2.1.7 甾类

~ C29正常甾烷系列发育较全(图 5) 所提供的各种 型表明了油砂中烃类尚处于低成熟阶段。 信息也很丰富。 企业 烷略高于 企业 烷含量 ,表明高 2.1.8 烷基环己烷 ,烷基甲苯 二甲苯

等植物贡献较大,重排甾烷不发育是煤系地层的普 该油砂中甾类含量远不及藿烷系列含量,但 C27 遍特征;αα型高于β3型甾烷,且 20R远高于 20S构

表1;	油砂饱和烃馏分中生物标志物一览表(不包括无环链烷烃)
-----	----------------------------

Table 1	Biomarkers in	the aliphatic	hydrocarbon	fraction of	oil sands(excluding	acyclic	alkanes)
---------	---------------	---------------	-------------	-------------	------------	-----------	---------	----------

峰号	化合物名称	分子式	分子量	质谱基峰	褐煤*	鉴定依据	
倍半萜类							
1	α·雪松烯	C15 H24	204	119	Δ	文献〔3〕	
*	倍半萜烯	$C_{15}H_{\!\!24}$	204	161	Δ	质谱解释	
2	补身烷	$C_{15}H_{\!28}$	208	123		文献〔3〕	
3	γ-杜松烯	C15 H22	204	161		文献〔4〕	
4	花侧柏烯	$C_{15}H_{\!\!\!\!22}$	202	132		文献[4]	
5	去氢白菖烯的异构体	$C_{15}H_{\!22}$	202	159	Δ	质谱解释	
6	倍半萜烯	$C_{15}H_{\!20}$	200	157		质谱解释	
7	倍半萜烯	C15 H24	204	105		质谱解释	
8	倍半萜烯	$C_{15}H_{23}$	202	159	Δ	质谱解释	
9	倍半萜烯	$C_{15}H_{\!20}$	200	157		质谱解释	
10	升补身烷	$C_{15} H_{30}$	222	123		文献[3]	
11	5 6 7 8-四氢卡达烯	C15 H22	202	187	Δ	文献〔5〕	
12	倍半萜烯	C_{15} H ₂₀	200	185		质谱解释	
13	卡达烯	$C_{15} H_{18}$	198	183	Δ	文献[3]	
二 萜类							
*	19-降松香8,11,13-三烯	C19 H28	256	159		文献〔3〕	
二倍半萜类							
14	脱-A-羽扇烷	$C_{24} H_{42}$	330	123		文献[3]	
15	脱-A-羽扇烷的异构体	$C_{24} H_{42}$	330	109	Δ	质谱解释	
三 萜烷							
16	1&(H)-22, 29, 30三降新藿烷	C27 H46	370	191	Δ	文献〔3〕	
17	C30,8,14 断藿烷	C_{30} H ₅₄	414	123		文献[3]	
18	1‰(H)-22,29,30三降藿烷	C27 H46	370	191	Δ	文献〔3〕	
19	178(H)-22,29,30三降藿烷	$C_{27} H_{45}$	370	149		文献[3]	
20	17α(H),2β(H)-30 降藿烷	C29 Hz0	398	191	Δ	文献[3]	
21	18x(H) 降新藿烷	C29 H50	398	191		文献〔7〕	
22	奥利型三萜烯	C30 H50	410	218	Δ	质谱解释	
23	178(H),21α(H)-30降莫烷	C29 H50	398	191	Δ	文献[3]	
24	17a(H),2β(H)-藿烷	$C_{30}H_{\!$	412	191	Δ	文献[3]	
25	1戊(H),2㎏(H)- 莫烷	$C_{29}H_{52}$	412	191	Δ	文献[3]	
长侧链三环萜烷四环萜烷							
	C2三环萜烷	$C_{21}H_{38}$	290	191		文献〔6〕	
	C₂四环萜烷	C24 H40	328	191		文献[3]	
C14~ C3烷基环己烷系列 文献〔3〕							
Cl4~ C2烷基甲苯 (基峰 m/z105, 106). 二甲苯 (基峰 m/z 119, 120)系列 文献 [7]							
C27~ C2 低类 文献[3]							

油砂中检测到一系列以 m/z 82为基峰的 G₄~ Co烷基环己烷化合物 (图 6)和 C₄~ Co烷基甲苯, 烷基二甲苯化合物 (图 7)。其中,烷基甲苯、二甲苯 在油砂下层的褐煤中也普遍检测到^[2]。

图 6 m/z 82烷基环己烷系列质量色谱图 Fig. 6 m/z 82 Mass-chromatogram of alkylcyclohexenes

2.2 芳烃色谱-质谱分析

百色盆地坤-5井油砂中检测出的芳烃化合物 并不多,表 2为芳烃馏分中检测出的生物标志物(不 包括常规多环芳烃) 芳香倍半萜的含量高,其中卡 达烯,去氢白菖烯含量甚高,而芳香二萜类含量甚 微,只检测到微量的 A° B环 双芳-二萜类 四氢惹 烯、惹烯。这些化合物与油砂下层褐煤芳烃中检出的 结果一致,且都代表了针叶植物树脂输入的贡献^[2]。

芳烃馏分中三芴系列较为发育,其中氧芴系列 高于芴系列含量,而硫芴系列含量甚微 这一特征也 表明了成烃的弱氧化—弱还原环境

图 7 m/z 106, m/z 119烷基甲苯、二甲苯质量色谱图 Fig. 7 m/z 106, m/z 119 Mass-chromatograms of alkyltoluene and alkylzylene

芳烃馏分色谱图后部分为一系列以 m/z 94为 基峰的化合物,饶有趣味的是这些化合物 6个一簇 构成几簇峰群,质谱基峰 m/z 94一峰独秀,分子离 子峰非常小、经检测,它们是一系列具有分子离子峰 M^{*} 312, M^{*} 326, M^{*} 340, M^{*} 354, M^{*} 368, M^{*} 382, M^{*} 396, M^{*} 410的化合物,经与文献资料对比,作者 初步认为它们是一系列酮类化合物,并认为这些特

表 2 油砂芳烃馏分中检测出的生物标志物 (不包括常规多环芳烃)

Table 2 Biomarkers in the aromatic hydrocarbon fraction of oil sands(excluding conventional polycyclic armatics)

化合物名称	分子式	分子量	质诺基峰	褐煤*	鉴定依据
芳香倍半萜	$\mathrm{C_{15}H_{22}}$	202	202		质谱解释
去氢白菖烯	C15 H22	202	159	Δ	文献〔3〕
芳香倍半萜	C15 H20	200	159		质谱解释
卡达烯	C1 5 H18	198	183		文献〔5〕
芳香二萜类					
A° B环 双芳 二萜类	$C_{15}H_{16}$	196	196	Δ	谱解释
四氢惹烯	$C_{18} H_{22}$	238	223	Δ	文献〔5〕
惹烯	$C_{18}H_{16}$	234	234	Δ	文献〔5〕
多环芳烃					
荧蒽	$C_{16}H_{10}$	202	202	Δ	文献〔3〕
芘	$C_{16}H_{10}$	202	202	Δ	文献〔3〕
北	$C_{20}H_{12}$	252	252	Δ	文献〔3〕

殊的酮类可能具有陆源成因。

芳烃中还检测到较高丰度的 6, 10, 14三甲基 – 十五烷 -2-酮,在该油砂下层的褐煤中也检测到较高 丰度的该化合物 由于这一化合物在海相地层中从 未发现,而目前仅在煤系地层中发现。因此,作者初 步认为该化合物具有陆源成因

3 结 论

通过 GC, GC-MS分析发现, 百色盆地坤-5井 煤系地层油砂的生油母质具有典型的陆源高等植物 特征,油砂中原油来源于煤系地层,褐煤部分参与了 生油,因为:

(1)油砂中饱和烃馏分色谱图以 nC29为主峰, 而且碳数主要集中在以高等植物输入为特征的高碳 数部分。

(2) 同一钻孔中的油砂与煤中以针叶植物输入 为主的倍半萜含量丰富且分布极为相似;二萜类含 量均很低,且都检出具有松香烷骨架的典型高等植 物输入的化合物;二倍半萜含量也均较低,但都检测 有脱-A-羽扇烷及其异构体。

(3) C₂)甾烷略高于 C₂7甾烷含量,表明高等植物 对油砂的成烃贡献大

(4)同一钻孔中油砂与褐煤芳烃中均含有典型 陆生高等植物输入的标志物,特别是卡达烯含量高; 均含有较高丰度的 6,10,14三甲基-十五烷-2酮。

百色盆地第三系褐煤生油还可从有机岩石学观

察得到佐证。王铁冠等⁽¹⁾在广西第三系褐煤中发现 有丰富的壳质组,镜下观察树脂体有与之相连的渗 出沥青体,并认为与树脂体直接有关的渗出沥青体 和树脂类有机物来源的生物标志物同时并存是褐煤 中石油形成的证据。因此,在煤层上方不远处油砂中 的烃类,大部分就是源于这种褐煤 而且这种煤系地 层产出的烃类具有低成熟的特点,这可从正烷烃强 烈的奇偶优势和甾萜烷异构化参数以及奥利烯未转 化成 1%(H)-奥利烷得以说明。

参考文献

- [1] 王铁冠,包建平,侯读杰.生物标志物地球化学研究.武汉:中 国地质大学出版社.1990,79~112.
- [2] 曾凡刚,王铁冠,盛国英.广西三种褐煤的生物标志物组合物
 证.石油与天然气地质,1994,15(2):14 ~ 150.
- Philp R P. Fossil Fuel Biomarkers- Application and spectra. Elsevier, 1985, 82- 85.
- [4] Grantham, P J and Douglas, A G. Geochim. Cosmochim. Acat, 1980, 44 1801~ 1804.
- Simoneit, B R T and Mazurek, M. Atmospheric Environmen, 1982, 16 2138~ 2159.
- [6] Ekweozer, C N and Strausz, O P. Tvicyclic terpanes in the Athabasca oil sands their geochemistry In M Bjiroy et al. (Editors), Adr in org Geochemistry 1981, John Wiley andlsons, Chicnester, 746-768.
- [7] 王铁冠等.低熟油气形成机理与分布.北京:石油工业出版 社,1995,42~52.

Geochemical Characteristics of Oil-sand of the Tertiary Coal Measures in Guangxi

Zeng Fangang¹ Zhou Shixin¹ Wang Guanyu¹ Li Xianging³ Huo Yongzhong³ and Cai Chunfang³ 1 (Peking University Geology Department, Beijing 100871) 2 (Lanzhou Institute of Geology, Academia Sinica, Lanzhou 730000)

1 (Peking University Geology Department, Beijing 100871)2 (Lanzhou Institute of Geology, Academia Sinica, Lanzhou 730000)3 (Jianghan Petroleum Institute, Tianghom 434102)

Abstract

In this paper, the identification and comparative analysis on the biomarkers of the aliphatic and aromati fractions in oil-sands and umderlying brown coal of coal-measures strata of the Baise basin in Guangxi were studied, their biomarker distributive characteristics are extremely similar. Combimed with organic petrological study, it was beieved that hydrocarbons in oil-sands come mainly from the brown coal. The conclusion of this paper provided a more dependable scientific basis for oilexploration in this area.

Key Words Baise Basin oil-sand coal-generated hydrocarbon