地质因素对源岩评价结果的影响 及其相对贡献量大小模拟

庞雄奇¹ 陈章明² Ian Lerche³

1(石油大学 北京 102200) 2(大庆石油学院 黑龙江安达 151400) 3(University of South Carolina SC 29208 USA)

提 要 源岩评价是油气资源评价的基础。目前,基于源岩排烃过程模拟结果可对源岩品质、属性和有效性进行 综合定量评价。本文采用盆地模拟技术和不确定性分析方法对影响源岩评价的十三种地质因素的作用大小及其 相对贡献量进行评价,同时探讨各种地质因素作用下源岩品质评价指数,属性评价指数和有效性评价指数的变 化情况及分布概率。

关键词 盆地模拟 源岩评价 排烃 不确定性分析 第一作者简介 庞雄奇 男 39岁 博士 教授 盆地模拟

1 前言

源岩评价是油气资源评价的基础,长期以来受 到油气地质工作者的重视。随着盆地模拟技术的发 展,源岩评价已从过去单纯依靠一些地化指标发展 到依靠生烃量、排烃量等综合性指标;已从过去单一 评价源岩自身的品质和属性发展到现在既评价源岩 的品质和属性,同时也评价源岩与储盖条件等的组 合关系及其有效性。在有效性的评价中主要考虑了 源岩的排烃相态,围岩(储层)滞留烃量以及区域性 盖层形成前的源岩排失烃量等因素的作用和影响。

影响源岩生烃量、残留烃量、排烃量和排烃相态 的一切地质因素均影响源岩的品质、属性和有效性。 探讨各主要地质因素对源岩综合定量评价结果的影 响及其相对贡献量大小,对于科学地评价源岩、计算 资源量和指导油气田勘探都具有重要意义。本文在 开展这一工作时主要采用了盆地模拟技术和不确定 性分析方法。

2 源岩综合定量评价理论模型

源岩综合定量评价是在源岩层地史、热史和生 留排烃史数值模拟研究的基础上进行的,与这些研 究有关的地质模型、数学模型及模拟软件的建立已 在有关文献中^(1~4)给予了详细讨论,这里仅给出与

收稿日期:1996-10-08 收修改稿日期:1997-03-11

源岩综合定量评价有关的计算模型。

2.1 生烃量计算

每平方米源岩上生成的烃量(Q_p)取决于源岩 层厚度(H),源岩层内非源岩厚度百分含量 (KNS),有机母质丰度(近似用岩石总有机碳含量 C%表示),源岩层密度(P_r)和干酪根油气发生率 (R_r)。R_r随干酪根类型指数(KTI)和母质转化程度 (R_a)的不同而改变,不同母质处于不同阶段的R,计 算采用物质平衡优化模拟计算法⁽³⁾。各地质因素对 生烃量的影响通过下列模型表达:

 $Q_{\rho} = H \cdot P_{r} \cdot C\% \cdot (1 - KNS) \cdot R_{r}(KTI, R_{a})$ (1)

2.2 源岩残留烃饱和量计算

源岩残留烃量包括四部分:吸附烃量、水溶烃 量、油溶气量及孔隙中被毛管力封闭的游离烃量。 2.2.1 液态烃残留饱和量计算

依据实际地区排烃源岩实测的残留烃量"A"和 "S₁"统计分析后建立计算模型并作轻烃补偿校 正⁽³⁾,式(2)为每平方米源岩内残留液态烃饱和量 (Q_{rma})计算公式:

 $Q_{rmo} = (H(1 - KNS) + H \cdot KNS \cdot KK_s)(\Delta \varphi + \varphi)$ $\cdot P_a \cdot S_{rmo}(C\%, R_o, \varphi)$ (2)

式中, $\Delta \varphi$ 为源岩欠压实剩余孔隙度,与源岩厚度 (H)、埋深(Z)和异常压实系数(K_{ρ})有关, φ 为正常 压实条件下的源岩孔隙度,与埋深和压实因子(CC) 有关; P。为油密度; KK,为源岩层内非生烃岩残烃 量与生烃岩残烃量之比率; Srmo为源岩内孔隙中残留 油饱和度,数值大小取决于源岩成熟度(R。),油密度 (P。),孔隙度(φ)和有机母质丰度(C%)⁽⁴⁾。 2.2.2 源岩水溶残留气饱和量计算

每平方米源岩内水溶气量(Q_{rws})取决于源岩的 孔 隙度(φ)、含水饱和度($1-S_{rms}$)、源岩厚度(H)及 水 的溶气饱和度 q_w , q_w 又与水的温度(T)、压力 (P)、矿化度(X_k)、气组份(X)等因素有关。它们之 间的表达式为:

 $Q_{rwg} = H(\Delta \varphi + \varphi) \cdot (1 - S_{rmg}) \cdot q_w(T, P, X_k, X)$ (3)

2.2.3 源岩油溶残留气饱和量计算

源岩内油溶残留气饱和量与源岩内孔隙度(φ+ Δφ)、孔隙内含油饱和度(S_{rmo})、源岩厚度(H)、油的 溶气饱和度(q_o)等因素有关。q_o的数值大小又取决 于油的温度(T)、压力(P)、油密度(P_o)及气组分 (X)等因素。每平方米源岩内油溶气量的大小可表 示为:

 $Q_{roq} = H(\Delta \varphi + \varphi) \cdot S_{rmo} \cdot q_o(T, P, p_o, X)$ (4) 2.2.4 源岩吸附残留气饱和量计算

源岩的吸附残留气量与源岩的温度(T)、压力 (P)、密度(p_r)、厚度(H)、有机质丰度(C%)、转化 程度(R_a)、湿度(Wet)及气组分(i)等一系列地质因 素有关。每平方米源岩内吸附残留气量(Q_{rbg})与上 列因素的关系模型为:

$$Q_{rbg} = H \cdot p_r \cdot \frac{K_O \cdot K_R}{K_W} \cdot K_i \cdot \frac{a_i \cdot b_i}{1 + b_i \cdot P}$$
(5)
$$\cdot exp[-KK_*(T-20)]$$

式中, K_o 、 K_R 、 K_W 、和 KK_ρ 、 a_i 、 b_i 、 K_i 分别指与源岩中C%、 R_o 、Wet、P和组分i特性有关的常数因子^(3,4)。

2.2.5 源岩残留气临界饱和量计算

每平方米源岩残留气临界饱和量(Q_{rq}))等于水 溶残留气饱和量、油溶残留气饱和量和吸附残留气 饱和量之和。表达式为:

$$Q_{rg} = Q_{rwg} + Q_{rog} + Q_{rbg} \tag{6}$$

2.3 源岩排烃量计算

每平方米源岩排烃量(Q_e)等于每平方米源岩生 烃量(Q_e)与残留烃饱和量(Q_{rm})之差,表达式为:

式中,Qm是源岩残留烃临界饱和量,表征源岩 自身残留烃能力;i代表不同的烃组分。

2.4 各种相态形式的排烃量计算

2.4.1 水溶相排烃量计算

水溶相排烃量(Q_{ew})与源岩层厚度(H)、排出水 量(V_W)与烃在水中的溶解度(q_w)有关。烃在水中的 溶解度是水的温度(T)、压力(P)和矿化度(X_k)的函 数,一般说来随T,P 增大而增大,随X_k增大而减 小。此外,q_w 还与烃组分性质(*i*)有关。计算模型为:

$$Q_{ew} = H \cdot \int_0^* \frac{\mathrm{d}V_w}{\mathrm{d}z} \cdot q_w(T, P, Xk, i) \cdot \mathrm{d}z$$

2.4.2 扩散相排烃量计算

扩散相排烃量(Q_{ed})与源岩层厚度(H)、烃浓度 梯度($\frac{\Delta HC}{\Delta Z}$)和烃扩散系数(D)及扩散时间 t等有 关。扩散系数(D)是温度(T)、压力(P)、介质孔隙度 (φ)、烃组分性质(主要是碳数 n)等变量的函数。计 算模型为:

$$Q_{ed} = 2 \cdot \int_{0}^{t} D(T, P, \varphi, n) \cdot \frac{\Delta HC}{\Delta Z} \cdot \frac{1}{H} \cdot dt$$

2.4.3 油溶相排气量计算

油溶相排气量($Q_{a,o}$)与源岩层厚度(H)、排油量 (V_{o})及烃气在油中的溶解度(q_{o})有关。烃气在油中 的溶解度(q_{o})与温度(T)、压力(P)、油密度(p_{o})及烃 组分(i)等因素有关。计算模型为:

$$Q_{xo} = H \cdot \int_0^z \frac{\mathrm{d}V_o}{\mathrm{d}z} \cdot q_o(T, P, p_o, z) \cdot \mathrm{d}z$$

2.4.4 游离相排烃量计算

游离相排烃量(Q_{es})与源岩总排烃量(Q_c)及上 列水溶相排烃量(_{ew})、扩散相排烃量(Q_{ed})、油溶相 排烃量Q_{ee}有关。影响Q_e、Q_{ew}、Q_{ed}、Q_{en}的所有因素均 影响游离相排烃量计算。计算模型为:

$Q_{es} = Q_e - Q_{ew} - Q_{eo} - Q_{ed}$

2.5 源岩综合定量评价

源岩综合定量评价主要包括源岩品质评价、源 岩属性评价和源岩有效性评价三部分内容。

2.5.1 源岩品质评价

源岩品质用源岩的相对排烃量百分数表示,记 为 SRIQ,计算模型为:

$$SRIQ(i) = \frac{Q_e(i)}{Q_{em}(i)} \times 100$$

式中Q_e、Q_{em}分别表示每立方米源岩及地质条件下可 能出现的最优源岩的排烃量,本文的Q_{em}采用大庆 油田主力烃源岩青一段模拟结果。*i*代表油、气等不 同的烃组分,对油和气而言,品质评价指数记为 *SRIQ_e*和*SRIQ_e*。

2.5.2 源岩属性评价

源岩属性系指源岩排油和排气量的相对大小, 用符号 SRIN 表示,计算模型为:

$$SRIN(i) = \frac{SRIQ(i)}{\Sigma SRIQ(i)} \times 100$$

式中*i* 代表不同的烃组分,对油和气两种组分而言, *SRIN* 分别记为*SRIN*。和*SRIN*_s,关系为:*SRIN*_s= 100-*SRIN*_s。

2.5.3 源岩有效性评价

源岩的有效性系指源盖组分内每立方米源岩生 排出的烃量在扣除了盖层形成前的排失烃量(Q_h,)、 源盖组合内储层滞留烃量(Q_n)并加上油水溶解释 放烃量(Q_n)后还能够以游离态向二次运移提供的 有效烃量(Q_m),计算模型为:

$$Q_{mr} = HN \cdot (Q_{r} \cdot K_{rs} - Q'_{r}K'_{rs}) + HN$$
$$\cdot (Q_{rw}K_{rw} - Q'_{r}K'_{rw})K'_{rw} + HN(Q_{r}K_{rw})K'_{rw} + HN(Q_{r}K_{rw})K'_{rw} + HN(Q_{r}K_{rw})K'_{rw} - Q'_{r}K'_{rw})K'_{rw} - HS \cdot Q_{rs}SRIE$$
$$= Q_{mr}/(H \cdot Q_{rm})$$

式中,HN、HS 分别表示纯源岩厚度和源盖组 合内储层厚度,其HN 又等于源岩层厚度(H)与(1 -KNS)之乘积,KNS 为源岩层内非生烃岩夹层含 量。Q,Kew,Kew,Kew,分别为源岩当前时刻的累积排 出烃量、水溶相、油溶相和游离相排出烃相对量; Q',K'ew,K'ew和K'ew分别表示源岩层在盖层形成前 的累积排出烃量、油溶相、水溶相和游离相相对排烃 量。Q,为单位体积储层滞留烃量,主要考虑水溶(> 85%)⁽⁴⁾。Qem为我国陆相盆地最优源岩排烃量。K'ew 和K'ew分别为水溶相和油溶相排出到储层的烃量因 温压降低后释放烃量所占比率。SRIE 指源岩有效 性评价指数。

从上列计算模型中不难看出,影响源岩生烃量 和残留烃量计算的一切地质因素均影响源岩排烃量 计算。这些因素细分起来很多,但归根起来主要有十 三个。它们是:源岩沉积(埋藏)速率(SR),地温梯度 (GT),地层压力(P,与埋深和水密度有关),正常压 实因子(CC),水密度(P_w),源岩厚度(H),源岩层内 非源岩厚度百分数(KNS),源岩层上储层厚度 (HS),源岩内有机母质丰度(C%),干酪根类型指 数(*KTI*),源岩埋深(*ZM*),源岩层异常压实系数 (K_ρ),油密度(p_o)和水矿化度(X_k)。除此以外的其 它地质因素或与这些因素相关联,或能够用这十三 个地质变量表达。例如源岩的转化程度(R_o)在模拟 计算中通过研究各沉积时期的古地温梯度和埋藏史 来获得,源岩层的孔隙度是通过其正常压实因子、欠 压实因子、埋深及源岩厚度等参数的模拟计算获 得^[3]。

3 地质因素相对贡献量大小评价与源 岩评价指数模拟结果概率分布

3.1 地质因素相对贡献量大小评价模型

各地质因素对源岩生留排烃量的贡献大小是由 前面描述的各种计算模型、地质参数取值及其在实 际地质条件下的变化幅度或范围所决定的。一般说 来,每一确定的地质参数在实际地质条件下的变化 范围是有限的,例如松辽盆地北部的古热流自侏罗 系沉积以来变化在1.5*HFU*到2.2*HFU*范围内;青 山口组和嫩江组源岩的有机母质丰度主要变化在 0.5%~5%之间,有机母质类型间于 II 类到 I 类,凡 此种种。在统计确定了某一研究区上列十三种地质 因素的变化范围(即可能最小值(X_{mix})和可能最大 值(X_{max})以及最大可能值(X_{ρ})的情况下,各因素对 源岩生留排烃量的相对贡献大小可通过盆地模拟的 方法求出。

每一地质因素对源岩排烃的作用通过比较这一 因素分别取其可能最大值、最大可能值和可能最小 值的情况下获得的三种模拟结果来认识,模拟计算 时其它十二种地质因素的值保持不变(取各自的最 大可能值)。如果某一地质参量的增大导致排烃量模 拟结果增加,则说明这一地质因素对源岩排烃看利, 否则不利。某一地质参量在极大限度地变化的情况 下(从可能最小值到可能最大值)能够造成的模拟结 果变化幅度(Max*R*,-Min*R*,)反映了这一参数的作 用大小,它的相对贡献大小(*R*,)可以表达为:

$$R_{i} = \frac{|\operatorname{Max} R_{e}^{i} - \operatorname{Min} R_{e}^{i}|}{\Sigma |\operatorname{Max} R_{e}^{i} - \operatorname{Min} R_{e}^{i}|} \times 100 \quad i = 1, 2 \cdots 13$$
(8)

3.2 源岩排烃模拟结果概率分布

Max*R*, Min*R*, 分别表示在地质参量 *i* 取可能最 大值和可能最小值时获得的排烃模拟结果。*R*, 越大 表明 *i* 对源岩排烃的贡献越大,*R*, 小于或等于 100。 地质参数在它们的可能最大值和可能最小值之 间变化,它们在这一范围内不同点的分布概率是不 相同的。完全依据实际资料统计确定这些参数的分 布频率常常遇到困难,但依据实际资料确定出某一 研究区这十三种参数的可能最大值、可能最小值和 最大可能值是可能的。在这种情况下,可应用 *Simp*son 的三角规则估算出这十三种地质参量的分布,诸 如平均值(*E*₁(*x*))、方差(*S*²)、概率中值(*X*_{1/2})等。 地质参数的变化和不确定性导致了最终排烃模 拟结果(*R*)的变化和不稳定。在这种情况下,如果作 某些假设和近似,我们就能应用多函数概率分析技 术确定出源岩排烃最终模拟结果的分布参数,如平 均值(*E*₁(*R*))、方差(*S*²)以及在任一给定的概率条 件下的函数值(如中频值 *R*_{1/2},最大频率值 *R*_m等)。 计算各地质因素相对贡献量大小及确定各地质因素

图 1 地质因素对源岩品质评价指数模拟结果的影响及其相对贡献量大小 a. 相对贡献量大小;b. 源岩品质评价指数分布与概率 Fig. 1 Effects and relative contributions of geological factors to the

simulated result of the source rock quality evaluation index

表 1	我国陆相地质条件	下十三种主要地质参量的变化范围及最大可能值

Table 1	Variation ra	ange and poss	ibly maximun	values of	the	thirteen	ma jor	geological
---------	--------------	---------------	--------------	-----------	-----	----------	--------	------------

皮具	亦具々称	竹旦	畄 心	变 化 范 围			计 用	
序号 受重名称		何五	平 位	可能最小值	最大可能值	可能最大值		
1	沉积埋藏速率	SR	m/Ma	20	40	60	与地层埋深和年龄有关	
2	地温梯度	GT	°C/100 m	1.5	3.5	6.5	与古热流和岩石热导率有关	
3	地层水密度	P_w	g/cm ³	1.0	1.05	1.20	与水矿化度有关	
4	正常压实因子	CC	m^{-1}	2.4×10 ⁻⁴	4.9×10 ⁻⁴	8.1×10 ⁻⁴	与岩性和区域地质条件有关	
5	源岩层厚度	H	m	0	500	1500	随沉积条件变	
6	非源岩含量	KNS	%	0	10	50	随沉积条件变	
7	源岩上覆储层厚	HS	m	0	500	3000	随区域地质条件变	
8	有机母质丰度	TOC	%	0. 2	2.5	5.0	随沉积条件与埋深变	
9	干酪根类型指数	KTI	~	0	50	100	随沉积条件变	
10	源岩层埋深	ZM	m	1500	3000	- 4500	随区域地质条件变	
11	异常压实因子	Kp	~ .	0	0.5	1.0	随岩性、层厚、埋深变	
12	油密度	Pa	g/cm ³	0.65	0. 80	0.95	随母质类型和生烃阶段变	
13	水矿化度	Xk	g/l	1.0	10. 0	100.0	随区域地质条件变	

indices under terrestrial environments in China

变化条件下模拟结果概率分布的详细步聚和数学模型已在专门的书中作了论述^{(5~8]},限于篇幅,这里不再重复。

4 结果与讨论

本文应用上述方法计算了十三种地质因素对源 岩生烃量、残留烃量、排烃量、排烃相态和源岩评价 结果的影响及其相对贡献量大小,模拟研究了十三 种地质因素变化下的源岩生留排烃量及源岩评价结 果概率分布情况。计算时,以中国松辽盆地为区域地 质背景条件,我国陆相盆地十三种地质参量的可能 最大值、可能最小值和最大可能值选择结果如表1 所示。图1~3为成果实例。

影响源岩品质评价指数 SRIQ 的最主要因素有 TOC、KTI、ZM 和 SR、GT。对源岩的气性品质而 言,TOC,ZM,SR 和 GT 等因素作用最大,它们的相 对贡献量分别为 28%,21%,15%和 10%。SRIQ。随 GT,CC,TOC,KTI,ZM 和 p。的增大而增大,随其 它因素数值增大而减小。对源岩的油性品质而言, KTI,TOC,ZM,SR 和 CC 的作用最大,它们的相对 贡献量大小分别为 30%,29%,19%,7%和 6.5%。 除 p。外,上述对于 SRIQ。有利的因素均有利于 SRIQ。。在上列因素中,KTI 对源岩油性品质 SRIQ。 的影响远较气性品质大;而 SR 和 GT 的情况刚好

图 2 地质因素对源岩属性评价指数模拟结果的影响及其相对贡献量大小 a. 相对贡献量大小 b. 源岩属性评价指数分布与概率

simulated result of the source rock efficiency index

相反。详参图 1。

在十三种地质因素的影响下,我国陆相盆地泥 质烃源岩的气性品质评价指数 SRIQ。和油性品质 评价指数 SRIQ。的一般值为 46 和 44,它们在累积 概率为 16%~84%间的变化范围分别为 32~84 和 28~88。

4.2 地质因素对源岩属性评价(SR/N)的影响及 其相对贡献量大小

影响源岩属性评价指数(SRIN)的最主要因素 是 KTI, TOC, ZM, p_o , SR 和 GT。对气性指数 SRIN_g 而言,它们的相对贡献量分别为 35%,23%, 22%,6.5%,6%和 2.5%。SRIN_g 随 TOC 和 ZM 的 增大而增加,随 KTI 的增大而减小,详参图 2。由于 SRIN_g=100-SRIN_g,因此源岩的油性指数 SRIN_o 的情况正好与 SRIN_g 相反。

在十三种地质因素的变化范围内,我国陆相盆 地泥质烃源岩的属性评价指数 SRIN_g和 SRIN_o分 别为 46 和 26 左右,如果再将两者以相对量考虑,所 以应以勘探天然气为主。但另一方面,气的聚集系数 远较油的差,因此在判别一个地区的找油找气前景 时不能完全依据源岩的排烃属性,还必须考虑它们 的有效性。

4.3 地质因素对源岩有效性评价(SR/E)的影响及 其相对贡献量大小

影响源岩有效性评价指数(SRIE)的最重要的 地质因素有 KTI,TOC,ZM,CC,H,KNS,HS,SR 和 GT 等。对源岩的油性有效性而言,有机母质丰度 (TOC)、有机母质类型(KTI)、埋深(ZM)是最重要 的因素,它们的相对贡献量大小分别为 26%,27% 和 12.5%。SRIE。随 TOC,KTI,ZM,GT,CC,H 的 增大而增大,随 SR,KNS,K,和 p_o 数值的增大而减 小。对源岩的气性有效性而言,TOC,ZM,H,HS, SR,CC 是最重要的影响因素,它们的相对贡献量大 小分别为 20%,15%,11%,11%,9%,8%。SRIE_g 随 TOC,KTI,ZM,GT,CC,H, p_o ,X_i的数值增大而 增大,而随 SR, p_w ,KNS,HS,K_p的数值增大而减 小。详参图 3。

在十三种地质因素的变化范围内,我国陆相泥 质烃源岩的有效性评价指数 SRIE。和 SRIE。分别 为 34 和 14,它们在累积概率为 16%~84%间的变 化范围分别为(22~70)和(5~40)。不难看出,对于 某一确定的源盖组合而言,源岩的气性有效性远较 油的差,差别在 2.5 倍左右。这也是气的运聚系数远 较油的少的原因之一。

参考文献

- Lerche I. Basin Analysis; Quantitative Methods. San Diego; Academic press, 1990. 1:562
- 2 Lerche I. Oil Exploration, Basin Analysis and Economics, San Diego, Academic Press, 1990. 570
- 4 庞雄奇著.排烃门限控油气理论与应用.北京:石油工业出版社, 1995.297
- 5 Lerche I. Oil Exploration, Basin Analysis and Economics, San Diego, Academic Press, 1992. 178
- 6 Lerche I. A probabilitic procedure to assess the uncertainty of fractal dimension from measurements. Pure Appl. Geophys, 1993, 140, $503\sim517$
- 7 Thomsen R O. Dynamical Models in Geology, Sensitivity Analysis and Scientific Risk. Energy Explor. Exploit, 1993, 11, 329~356
- 8 Thomsen R O, Lerche I. Relative Contributions to Uncertainties in Reserve Estimates. Marine and Petroleum Geol, 1996, B

Effects on and Relative Contributions of Geological Factors to Source Rock Evaluations

Pang Xiongqi¹ Chen Zhangming² Lerche Ian³

1 (University of Petroleum Beijing 102200) 2 (Daqing Petroleum Institute, Heilongjiang, Anda 151400) 3 (University of South Carolina, SC 29208, U. S. A)

Abstract

Source rock evaluation is the basis of oil and gas resource assessment. The quality, the nature (or attribution) and the efficiency of a source rock can be now evaluated by studying (Continued on page 69) 1996.41(22):2064~2066

Petroleum Accumulation and Distribution in the Jurassic System in Tarim Basin

Lu Xiuxiang

(University of Petroleum, Beijing 102200)

Abstract

The Jurassic System is one of the rare oil-bearing horizons with both marine and nonmarine petroleum sources discovered in Tarim Basin up to now. Abundant hydrocarbon source, high porosity and permeability, good muddy caprocks and various kinds of traps constitute beneficial conditions to form the Jurassic oil pools. There are 2 types of petroleum accumulation, i. e., Kuche-type and Tabei-type which were formed during Himalayan orogeny. Petroleum distribution could be divided into 5 zones including thrust-fold zone, foredeep zone, slope zone, tensional foreland uplift zone and drapping anticline zone. And petroleum occurrence was controlled by faults and unconformities which are the secondary migration of petrleum. As a target bed, the Jurassic systems distributed in the northern slope of the Tabei uplift, thrust-fold zone of the Kuche depression and the Yingjisu sag are the favourable ezploration area.

Key Words petroleum accumulation model of pool formation Jurassic Tarim Basin

(Continued from page 57)

hydrocarbon expulsion process of the source rock during its geohistory. This paper, applying the basin modeling and uncertainty analysis methods, studied the effect and the relative contribution of thirteen major geological factors to source rock evaluation, and discussed the probability distribution of the source rock quality evaluation index(SRIQ), source rock nature evaluation index(SRIN) and source rock efficiency evaluation index(SRIE) under the effects of these major geological factors.

Key Words source rock evaluation hydrocarbon expulsion basin modeling uncertainty analysis