文章编号:1000-0550(1999)03-0355-06

下扬子地区上泥盆统五通组沉积构造 及其地球化学特征[®]

朱立华1 张传林1 仲健华2 邹成娟2 高南华2

1(南京大学地球科学系 南京 210093) 2(江苏石油勘探局物研院 南京 210046)

摘 要 总结了下扬子区晚泥盆世五通组典型的沉积构造,如风暴砾滩、冲洗交错层理、滩脊、三脊波痕、植物化 石及遗迹化石埋藏相特征等。全定量分析了泥岩类的主化学组成及微量元素,其主化学组成具有高 SiO₂ 含量。 高 K₂O/N a₂O 比值,低 M gO, Zr, Hf 组合特征显示近源沉积特征,与下伏下古生界有显著差别, B, Ga, Ba, Sr, Rb 等元素反映出滨海及海陆交互的沉积环境。综合分析沉积构造、沉积地球化学及区域地质特征,认为五通组形 成于弧后前陆盆地,其沉积过程是一个海侵过程,这一大地构造背景一直延续到早石炭世末。

关键词 五通组 下扬子区 弧后前陆盆地

第一作者简介 朱立华 男 1963 年出生 高级工程师 博士 石油勘探

中图分类号 P588.2 文献标识码 A

1 概述

下扬子板块与华南板块的拼合发生于志留纪 末,由此形成南方统一的大陆(图 1)。下扬子地区 自震旦纪以来,除了缺失早中泥盆世沉积建造外,各 期的 沉积 地层 均有 出露^[1]。晚泥 盆世 五通 组 (D_{3 w})作为分隔早、晚古生代承前启后的沉积建造, 对探讨下扬子区大地构造演化、油气盆地的形成与 发展具有重要的理论与实践意义^[2]。

对于五通组的沉积环境的认识,早期曾作为一 套陆相的石英砂岩建造(安徽省区测队,1989),八十 年代后期,随着下扬子地区油气盆地的研究不断深 入,吴贤涛^[9]等、张国栋^[13,14]、吕洪波^[5]、赵澄标^[15] 等相继对五通组的沉积环境做了进一步研究,但仍 然存在较大的分歧。

我们在大量的野外调查基础上,全面厘定了五 通组一些典型的沉积构造特征。首次系统地采集了 地球化学样品,对其部分常量元素及典型的微量元 素如 B、Ga等进行全定量分析,试图从地球化学角 度对下扬子区五通组的沉积环境做更进一步的深入 研究。

2 典型沉积构造特征

沉积构造是指沉积岩各个组成部分之间的空间

收稿日期: 1998-08-17 收修改稿日期: 1999-01-07

图 1 下扬子地区大地构造及沉积区划图 Fig. 1 Geotectonic map and sedimentary province of the Lower Yangtze Region

分布和排列方式,它对于研究沉积环境具有重要意 义,笔者在野外观察并记录了五通组的一系列典型 沉积构造特征,如风暴砾滩、冲洗交错层理、板状交 错层理、三脊波痕等。

2.1 风暴砾滩

在孔山东坡盘山公路边, 出露的地层是 D_{3 w} 的 底部。这一层内, 下部是数米厚的石英粗砂岩, 顶部

① 国家教委高校博士点基金资助(RFDP)

是 20 cm 厚的砾石层, 具反粒序特征。砾石层横向 连续, 无间断。砾石形态主要是盘状、圆状, 磨圆度 较好, 最大砾径 6 cm。砾滩中以盘状、扁平状砾石 形态占绝对优势, 这一特征是风暴浪高能磨蚀、分选 的产物。不少学者都把这种特殊的盘状、扁平状砾 石形态作为海滩环境^[4,5], 特别是作为风暴成因的 鉴定标志。砾滩中的砾形态和分选具有明显的分带 性。这种分带性在垂向层序中, 一般表现为向上变 粗的反粒序, 即从底部沙层带, 逐渐向上变为叠瓦构 造带, 大盘状砾石带。风暴砾滩的发育首先要有强 的水动力条件, 其中包括强沿岸流作用; 其次还要有 丰富的物源或适于组成砾滩的物质供应。因此我们 认为五通组的这层底砾岩是近源滨岸风暴沉积。

2.2 冲洗交错层理

交错层理在五通组砂岩中最为常见。在孔山的 D3w 中部的一组交错层总厚度 0.5 m,层面产状 0 么86°,两个方向的层理面产状分别为 348 么70°,185 么79°,交错纹层的形状为楔状或板状,平直且延伸 较长,纹理厚度 1~2 cm。通过赤平投影恢复层面 为水平状态,得到两组斜层理面产状,分别为 213 么20°,20 么16°,倾向刚好相反,为典型的冲洗交错 层理或叫海滩加积层理,是平坦海滩或沿岸砂坝向 海倾斜坡面上的沉积物由于波浪的向岸与离岸往复 冲洗作用而成,它常被误认为水平层理。所以,该处 的沉积环境是潮坪。据此推断此处当时古岸线是 220°(脊线走向)方向延伸。

2.3 板状交错层理

在 D₃ w 中部发育渐近的板状交错层理, 层组厚 度 1 m, 这些板状交错层理是由于沙坡迁移而形成 的(图 2)。它的层组规模变化较大, 但厚度小于 1 m 的常见。板状层组的前积层不是渐近的就是面状 的, 平面图形上, 板状层组的前积层是直的或微微地 朝下游方向前凸或后凹^[4]。

2.4 滩脊

发育于五通组中部(锡惠公园),两个脊线之间 的距离一般为5m左右,脊线平直,波面光滑,在靠 近上面脊处有许多石英质砾石,砾石直径1~2cm, 个别达5cm,磨圆度中等。该脊的上面岩层中有清 晰的斜层理。滩脊是高潮带与低潮带的分界,涨潮 时,海水带着砂等物质在靠近上面的脊处沉积,落潮 时海水携带的沉积物在靠近下面的脊处沉积,这样 就形成了一高一低两条脊。由于海水的反复淘洗, 便形成了由高纯度石英砂组成的波面。特大潮时,

图 2 因沙波迁移而形成的板状交错层理形式(模式图)

Fig. 2 Tabular cross—bedding formed by sand ripple migration

海水越过了滩脊,滩脊以上的交错层理便是这时候 形成的。滩脊是典型的潮坪沉积构造,根据滩脊和 斜层理的方向可推测出,无锡的西北方向古时存在 着低缓的陆地,此陆地可能是低缓的滨海岛屿。

2.5 三脊波痕

据吕洪波报导^[5],在无锡小轮自行车厂附近采 石厂的五通组坡面上,发现三脊波痕,波高达 10~ 20 cm 以上,波长达 0.5~2 m 以上。三脊波痕的砂 体表面上有灰白色的泥砾,泥砾直径 2~30 cm 不 等。磨圆度较差,具有同生变形。三脊波痕是近源 风暴沉积的重要识别标志。

2.6 植物化石及遗迹化石

亚鳞木化石在五通组的中上部地层中很常见, 在三脊波痕的砂体表面也有所见,长的有2米多。 在潮坪环境中,砂岩体表面类似亚鳞木的植物化石 也是常见的^{〔16〕}。三脊波痕上的亚鳞木可能生长于 滨岸沼泽区,被风暴流带到此处而沉积于三脊波痕 上。此处亚鳞木并不能作为当地陆相沉积的标志。 离三脊波痕不远处的砂体表面见亚鳞木化石。

据夏邦栋等研究^[11],在五通组发现以 *Cochilichnus* sp; *Bifungites* sp; *Phycodes* cf. *Circinatum Richter*; *Palacophycus* sp; *Lockeia* sp; *Chondrites* sp; *Chondrites* Type C *Osgood*; *Gordia* sp.等为代表的遗迹化石,这些遗迹化石大部分形成 于滨海或海湾环境,尤其是 *Cochilichnus*, *Locceia*; *Chondrites* Type C 和 *Phycodes* 的面貌特征,显示了 典型的滨海沉积环境。

我们在孔山五通组中部的厚层石英砂岩层面上 首次发现几个圆形凹坑,坑的边界清晰,坑底平滑, 一侧深,一侧浅,且深的一边有锐角的边,整体形态 有些象马蹄形,直径约6 cm。在该处见到这样的坑 至少5个,它们之间的前后距离约为 25 cm。这些 圆坑和 Weimer 所价绍的潮坪上恐龙的足迹非常相

表1 五通组泥岩主化学成分、微量元素全定量分析及有关参数表

Table 1 Geochemical composition, trace elements and related parameters

of the mudstone from Wutong Formation

分析 元素	地区	孔山	孔山	孔山	无锡	无锡	苏 州	杭 州	建德	巢湖	巢 湖	巢 湖	巢湖	宁 国	长兴	长兴
	序号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	样品号	90942	90954	90956	90910	90918	D2	D17	D27-1	D27-2	D29	D33	D34	D46	D52	D54
Ba×	10^{-6}	330	374	222	535	248	301	178	332	298	451	309	122	582	438	294
Ga×	10 ⁻⁶	24.9	31.2	20.3	38.2	20. 2	31.2	22.8	28.6	16.3	41.3	21.6	7.6	22.0	27.4	24.9
Sr×	10^{-6}	258.9	519.5	27.2	108.4	26.0	65.1	57.0	110.1	123.1	54.9	73.4	26.4	76.8	65.5	33.9
Cu×	10 ⁻⁶	13.2	20.9	3.8	4.1	4.2	21.2	13.1	40.4	3.6	18.4	10.6	10.9	26.2	23.5	27.1
Ni×	10 ⁻⁶	12.1	23.8	0.6	6.5	5.0	20.4	10.3	12.9	7.4	17.0	15.8	4.9	33.4	16.5	14.6
Rb×	10 ⁻⁶	104.8	115.3	46.4	179.3	73.7	53.5	66.6	113.0	62.2	156.4	89.9	12.6	167.4	169.3	186.0
B×	10^{-6}	72.2	76.3	73.9	175.0	95.1	66.3	72.5	70.3	55.0	199.0	112.3	92.6	96.1	78.2	152.5
v×	10^{-6}	115.3	139.7	88.2	156.1	68.4	185.8	114.7	133.1	97.0	161.5	101.4	38.1	145.0	100. 9	109.4
$C r \times 10^{-6}$		113.5	144.4	101.5	16.4	47.0	221.3	219.5	91.6	58.4	3.5	78.4	101.8	50.0	70.6	23.4
Zr×	10-6	201.3	202.6	224.5	271.3	269.5	283.5	312.5	231.9	298.6	261.3	256.3	251.6	242.5	289.7	313.2
Hf×	10 ⁻⁶	5.1	6.0	5.8	7.1	8.2	6.9	8.4	6.6	6.8	6.9	6.8	7.0	7.8	8.3	8.9
Rb/ K	$ imes 10^3$	5.2	6.0	4.8	5.5	5.5	5.4	4.4	4.8	5.4	3.8	5.3	6.4	4.3	5.5	4.4
Ba⁄	Ga	2.9	2.4	3.6	4.6	4.7	2.1	3.2	2.5	3.4	4.8	5.2	12.2	4.4	2.9	6.1
R	2	- 0. 098	-0.19	-0.013	0.141	0.082	-0.230	-0.061	- 0. 0168	-0.030	0.817	0.134	0. 281	0.056	-0.112	0. 256
TiO	2%	0.94	0.88	0.82	1.28	0.74	1.17	0.97	1.22	0. 99	1.75	1.13	0.52	0. 92	0.94	1.10
SiO	2%	69.12	70.23	75.14	68.37	71.35	67.61	69.88	71.63	72.39	76.37	74.38	68.49	66.37	71.33	72.42
Fe	%	1.86	3.63	1.15	0.91	0.87	5.23	5.85	8.37	3.33	1.81	3.05	1.27	4.01	2. 29	1.97
Mn	$D_2^{0/0}$	0.006	0.010	0.005	0.006	0.005	0.008	0.013	0.005	0.006	0.011	0.034	0.006	0. 118	0.007	0.009
Ca	0%	0.14	0.18	0.15	0.13	0.15	0.24	0.19	0.23	0.15	0.11	0.21	0. 18	0.14	0.14	0.11
K ₂ (0%	2.43	2.31	1.61	3.97	1.62	1.20	1.83	2.84	1.39	5.02	2.05	2.4	4.63	3.76	5.04
Na ₂	0%	0.31	0.22	0.15	0.41	0.40	0.14	0.20	0.16	0.24	0.47	0.19	0. 17	0.48	0.32	0.48
Mg	0%	0.40	0.50	0.15	0.39	0.18	0.15	0.16	0.25	0.24	0.55	0.43	0.08	0.81	0.47	0.24

①^{样品由南京大学现代分析中心测试② R= 4407.5B- 16700Ga} 象。我们认为,这些圆坑是两栖类在滨岸沉积物上 留下的足迹。这也说明了该处是滨岸环境。

3 沉积地球化学特征

笔者选择了苏、浙、皖地区 15 个泥岩和泥质粉 砂岩标本做了部分主化学成分及 B 等 11 个微量元 素的全定量分析,样品分布位置见图 1,分析结果见 表 1。

3.1 B元素

海水及河水中碎屑物质及自生粘土物质是吸附 硼的主要物质。吸附作用的强弱与溶液硼的浓度、 盐度、温度、时间、粘土物质的表面积有关。河水中 的硼的含量较低,只有海水的 1/400。因硼与伊利 石有较强的亲和力,而海洋中的泥质物质又是以伊 利石、蒙脱石、绿泥石为主,所以,一般地海相沉积的 岩石中硼的含量要大于陆相的,海相一般大于100 $\times 10^{-6}$,陆相一般低于70 $\times 10^{-6}$ 。从表1看出,15 个样品中有10个介于70 $\times 10^{-6} \sim 100 \times 10^{-6}$ 之间, 只有2个样品低于70 $\times 10^{-6}$ 。有3个样品大于100 $\times 10^{-6}$,这些说明样品产地的沉积环境大多数为介 于海相与陆相之间的滨海环境,少部分为广海相,个 别为陆相。

3.2 Ga 元素

与硼相反,镓的含量一般富集在淡水泥质物中, 因此它们含量的比值可以指示古盐度。陆相环境 B/Ga值一般小于3.0~3.3,而正常海相大于4.5~ 5.0,介于它们之间的为过渡相。对15个样品做 B/ Ga比值分析(见表1),有7个样品显示过渡相特 征, 5 个显示陆相特征, 3 个显示广海特征。王益友 等人利用现代已知沉积环境样品作判别分析处 理^{$[7, 8]}, 得到海相判别值 <math>R_1 = 11.5172$, 陆相为 R_2 = -10.5019, 两组判别分界值 $R_0 = -1.1861$. 判别函数式为: R = 4407.55B - 16700 Ga, 将待判 别样品的两个变量的相应值代入判别函数求出 R, 如果样品的差别值 R 位于 R_0 的 R_1 一边, 则指定样 品为海相, 如果位于 R_2 一边则指定样品为陆相。 笔者对 15 个样品的 R 值的判别, 结果见表 1, 全部 样品的 R 值均位于 R_0 与 R_1 之间, 但都非常接近 R_0 , 明显地显示滨海相特征。</sup>

图 3 五通组 B—Ga 图解 Fig. 3 B—Ga diagram for pelite from Wutong Formation

根据 B、Ga 的值作出的含量点聚图 (图 3)可以 看出,7 个样落入海相区,8 个样落入陆相区,尤其是 大部分点在海陆分界线附近,充分说明海陆交互过 渡的 沉积特征。从现代近海沉积物的研究发 现^[7,8],滨海相的泥质沉积物中 B、Ga、Rb 元素含量 变化,同时受到陆源区源岩性质、海水盐度及海解作 用的影响,尤其是这些因素通过对粘土矿物晶体的 作用导致 B、Ga、Rb 在泥质沉积物中形成有规律的 含量分布。经对比研究,所采集的样品大部分与现 代滨岸沉积物相似,部分与近海沉积物相当。

3.3 Zr、Hf 元素

利用赋存于重矿物的高场强元素如 Zr、Hf 等可 以反映沉积盆地内物源运移方向。Zr、Hf 元素赋存 的重矿物具有近水域沉积特征,远水域区元素含量 迅速下降。从图 4 可看出,在下扬子区由南东向北 西方向,Zr、Hf 含量逐渐降低,这说明沉积物运移的 主要方向是由南东向北西的。另外,五通组与本区 的晚志留世及早二叠世的 Zr、Hf 组成明显不同,而 此区的早石炭世的 Zr、Hf 组成与五通组相似,因此, 晚志留世末及早石炭末均是沉积盆地性质发生变化

图 4 下扬子区上志 留统、晚泥盆统五通组 二叠系泥质岩 Zr一 Hf 图 解 1. 二叠系: 2. 上志留统: 3. 五通组

Fig. 4 Zr—Hf diagram for pelites from Upper Silurian, Lower Devonian (Wutong Fm.) and Permian

的时期(图4)。

3.4 Rb、Ba、Sr 元素

据 F.A 肯姆贝尔和 G.D 威廉姆斯的研究表 明^[6], Rb/K 比值随盐度而变化,一般正常的海相页 岩中 Rb/K 比值大于 0.006, 而微咸水的页岩中 Rb/ K 比值大于 0.004, 淡水沉积物中均为 0.004 以下。 对 15 个样品进行 Rb/K 比值分析(表 1)发现,有 12 个样品的 Rb/K 值介于 0.004~0.006 之间。有两 个在 0.006 以上,有一个在 0.004 以下。几乎都在 0.004~0.006 附近,偏离不大,所以这些样品处的 沉积环境绝大多数为海陆过渡相。

根据 Ba 和 Sr 的含量关系的古海水盐度特征与 Rb/K 所反应的古海水盐度特征有一定的差异,15 个样品中,除 2 号样落入半咸水区外,其余均位于咸 水区(图 5),这种差异可能是由于成岩作用导致 Rb、K、Ba、Sr 的不同程度的迁移所造成的。

3.5 主化学组分

利用砂岩、泥质岩的主化学成分,可以有效地判

图 6 下扬子区古生界、中生界泥 质岩 K₂O/Na₂O-SiO₂ 图解 (阴影部分为五通组分布区,其余时代泥岩 分布范围据徐守礼博士后研究报告) PM; 被动大陆边缘 ACM; 主动大陆边缘 Fig. 6 K₂O/Na₂O-SiO₂ diagram for pelites from paleozoic and Mesozoic in the Lower Yangtse region

断沉积盆地的构造环境^[3]。一般来说. 被动大陆边 缘有较高的 K₂O/N_{a2}O 比值, Fe₂O₃, M_gO 含量低特 征。五通组的 K₂O/N_{a2}O 值一般大小 10, M_gO 均 小于 1%, 显然属于被动大陆边界。Roser 根据 K₂O/N_{a2}O-SiO₂ 图解来判断岩石形成构造环境, 实质上这一图解是碎屑物源与构造环境的综合体 现。图 5给出五通组在 K₂O/N_{a2}O-SiO₂ 图解中的 分布范围, 同时也标出了 S₃, C₁, P₁-T, J, K 等时期 泥质岩及碎屑岩的分布范围, 从图上可以看出, 早石 炭世是晚泥盆世沉积环境的继续, 而与 S₃, P₁-T 及 J, K 形成明显差异, 尤其是 S₃ 与 D₃ 的差异, 应是构 造体制转换的记录。

4 结论

通过以上的研究,可以认为:苏、浙、皖地区的晚 泥盆世五通组是以滨海相沉积为主,间有三角洲、沼 泽等一套陆缘沉积建造。

由于下扬子区震旦纪以来,仅缺失早、中泥盆世 沉积,五通组不整合于下伏下古生界之上。因此,五 通组对于下扬子地区是一个沉积盆地发展演化的转 折标志。

根据前人对下扬子地区晚震旦世至志留纪沉积 建造的研究成果^(10 11),我们认为下扬子地区在晚震 旦世至志留纪期间,为被动大陆边缘拉张(主要在下 扬子北部)和弧后拉张(主要在南部)两种深部地质 背景下的拉张盆地。在志留纪末,由于浙东南地体 与闽西北地体的碰撞作用达到高峰,造成下扬子地 区整体抬升,使得该区缺失早中泥盆世的沉积。下 扬子区自晚泥盆世开始,接受五通组沉积,其沉积构 造及沉积地球化学特征表明,五通组的沉积过程是 一个典型的海侵过程。由于浙东南地体与闽西北地 体(岛弧型地体)在志留纪末碰撞而产生冲断构造及 在下场子板块一侧接受沉积,形成典型的前陆弧后 盆地沉积建造,根据近年来石油钻井及区域资料编 制的五通组区域岩性特征分析,前陆盆地的沉积拗 陷中心在下扬子区南部浙西地区,中部泾县一常州 一带为前陆斜坡,铜陵一南陵及休宁一宁国为中央 隆起带。弧后前陆盆地沉积一直持续到早石炭世 末。

致谢:本文是在郭令智教授、秦顺亭教授指导下 完成,在此谨致谢忱。

参考文献

- 2 安徽省地矿局区测队,安徽地质志,泥盆系和石炭系分册[M].合肥:安徽科技出版社,1989.206
- 2 丁道桂,李萍,吕俊祥,下扬子区晚古生代含油气盆地原型[J].石 油实验地质,1987,9(3):272~281
- 3 方邺森,任磊夫. 沉积岩石学教程[M].北京:地质出版社, 1987. 337
- 4 科林森 J D, 汤普森 D B. 沉积构造(中译)[M]. 北京: 地质出版 社, 1988.164
- 5 吕洪波. 苏南五通组风暴沉积与三脊波痕[J]. 石油与天然气地 质. 1992, 13(3): 284~292
- 6 刘英俊. 元素地球化学[M], 北京: 科学出版社, 1984. 548
- 7 王益友, 郭文莹, 张国栋. 几种地化标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学报, 1979, 2: 52~61
- 8 王益友,吴萍.江浙海岸带沉积物的地球化学标志[J].同济大学 报,1983,4:80~87
- 9 吴贤涛, 胡斌, 王观忠. 苏南皖东五通群观山组的近岸风暴沉积与 潮道沉积[J]。石油实验地质, 1986, 8(4): 351~361
- 夏邦栋, 吕洪波. 一个已埋藏的造山带探讨[J]. 沉积学报, 1990, 8(2): 1~8
- 11 夏邦栋, 吕洪波. 苏浙皖地区沉积大地构造演化[J]. 地质学报, 1988, 4(3): 01~310
- 12 俞鸿年, 卢华复. 构造地质学原理[J]. 北京: 地质出版社, 1986. 345
- 13 张国栋,朱静昌,王益友.苏皖地区晚泥盆世五通组海侵及其沉积环境讨论[J],地质评论,1987,33(1);69~77
- 14 张国栋,王益友,朱静昌等.现代滨岸风暴沉积--以舟山普陀 岛骨尖岛为例[J].沉积学报,1987,1(2):17~28
- 15 赵澄标. 试论安徽巢县五通组沉积相[J]. 石油与天然气地质, 1988, 9:40~45
- 16 Weimer R J, Howard J D, Lindsay D R. Tidal Flats. In: Scholle P A, Spearing D, eds. Sandstons Depositional Environments[C]. A. A. P. G., Tulsa, Oklahoma, 1982. 191~246