文章编号:1000-0550(2004)01-0001-05

锶同位素地层学在奥陶系海相地层定年中的应用 - 以塔里木盆地塔中 12 并为例

黄思静 石 和 张 萌 武文慧 沈立成

(油气藏地质及开发工程国家重点实验室 成都理工大学地球科学学院 成都 610059)

摘要 根据锶同位素地层学的基本原理,从国际上已有的锶同位素演化曲线建立了奥陶系⁸⁷ Sr/⁸⁶ Sr 比值-年龄数据 库。利用塔里木盆地塔中 12 井海相碳酸盐的锶同位素分析结果,确定了该井中、上奥陶统和中、下奥陶统的界线,两个 界线分别位于井深 5 120 m(⁸⁷ Sr/⁸⁶ Sr 0.708 8,年龄为 465 Ma)和4880 m处(⁸⁷ Sr/⁸⁶ Sr 0.708 2,年龄为455 Ma), 中、上奥陶统的界线为本文首次确定,中、下奥陶统的界线与前人利用牙形石资料确定的界线一致。塔中 12 井的锶同位 素演化曲线说明,尽管构造运动造成的盆地抬升和近地表的大气水作用影响了上奥陶统顶部碳酸盐的锶同位素组成,但 塔中 12 井奥陶系与上覆地层的关系基本上是连续的,奥陶系顶界的井深在 4 650 m 附近(⁸⁷ Sr/⁸⁶ Sr 0.707 9,年龄为 435 Ma)。

关键词 锶同位素地层学 海相地层定年 塔里木盆地 奥陶系 第一作者简介 黄思静 男 1949 年出生 教授 博士生导师 沉积学 中图分类号 P597 文献标识码 A

1 引言

由于锶在海水中的残留时间(10⁶a)大大长于海 水的混合时间(10³a),因而任一时代全球范围内海 相锶元素在同位素组成上是均一的^[1],从而导致地质 历史中海水的⁸⁷ Sr/⁸⁶ Sr 比值是时间的函数,这是锶同 位素地层学的基本原理^[2]。就现代而论,按⁸⁷ Sr/⁸⁶ Sr 比值所能测定的精度(±0.00002),现代全球范围内海 水和海洋贝壳的⁸⁷ Sr/⁸⁶ Sr 比值是一致的^[3~5]。

当海相同生矿物(如生物或非生物成因的碳酸盐 沉积组分、海水碳酸盐胶结物、磷灰石、重晶石等)形成 的时候,它们从海水中获取锶,其间的分馏可忽略^[6], 因而保存了其形成时的⁸⁷Sr/⁸⁶Sr 比值,我们便可以通 过未知年代地层中未遭受成岩蚀变的海相同生矿物 的⁸⁷Sr/⁸⁶Sr 比值,利用已建立的地质历史中海水 ⁸⁷Sr/⁸⁶Sr 曲线或锶同位素数据库,推断未知地层的可 能年代。从这一角度来说,锶同位素地层学可成为海 相地层定年的方法之一,为解决缺乏可供全球对比化 石带的沉积岩的定年问题开辟了一个新的途径。

到目前为止,国外已有很多利用海相碳酸盐(也包括硫酸盐和磷酸盐等)的锶同位素组成成功确定海相 地层年龄的实例^[7~11],而国内大多数有关研究还主要 停留在海相碳酸盐锶同位素组成及演化的控制因素 上,如研究海平面变化、造山事件和风化侵蚀速率等地 质事件与锶同位素组成的关系^[12~16]。在利用锶同位 素地层学原理确定海相地层年龄方面,国内还处于萌 牙阶段,已有人作了有益的尝试,如杨杰东等^[17]利用 锶(也包括碳)同位素界定了苏皖北部上前寒武系的时 代,黄思静等^[15,16]利用锶同位素确定了龙门山泥盆系 剖面中一些关键层位的年龄,包括 Frasnian/ Famennian 阶界线、以及泥盆/石炭系界线,并建议了重庆秀山 寒武系剖面下、中寒武统和中、上寒武统界线。

海相地层锶同位素定年要求大量代表海水锶同位 素数据的积累,并建立一个有代表性的全球锶同位素-年龄数据库,以供定年使用,这是一个非常重要的基础 研究,国外已在这方面作了卓有成效的工作^[18~20]。 我们试图利用锶同位素地层学的基本原理和已有的全 球奥陶系海水锶同位素曲线,通过塔里木盆地塔中12 井奥陶系海相碳酸盐⁸⁷ Sr/⁸⁶ Sr 比值确定一些关键深度 的年龄,以解决塔里木盆地地层学中一些悬而未决的 问题,如塔中12 井的中、上奥陶统的界线问题。

2 奥陶纪全球海水的锶同位素组成及

演化趋势

与其它时代相比,奥陶系海相碳酸盐的锶同位素 组成研究程度相对较低。公布数据较多的有 Qing

国家自然科学基金项目(批准号:40272059)和国家973项目(G1999043309)资助 收稿日期:2003-03-16

等^[21]报导的全世界不同地方 109 个奥陶系牙形石、腕 足类化石和海相胶结物的锶同位素组成,以及 Denison 等^[22]报导的全世界不同地方 100 个奥陶系海相碳酸 盐样品的锶同位素组成,但 Denison 等^[22]用于锶同位 素分析的样品中大部分为全岩样品,因而对海水的代 表性相对较差。

McArthur 等^[20]用最佳拟合方式(LOWESS 拟合) 对 509 Ma 以来海相地层的锶同位素数据进行了拟 合,获得了不同时代海水的锶同位素演化曲线,其奥陶 系部分如图 2a 所示,这是到目前为止,国际上最为完 整、对海水代表性最好的奥陶系锶同位素演化曲线,也 是奥陶系海相地层定年所必须的重要基础资料。我们 对 McArthur 等^[20]拟合曲线的中心部分进行数据化, 获得了奥陶纪全球海水的锶同位素-年龄数据库(表 1)及相应的演化趋势图(图 1b),以供塔里木盆地奥陶 纪海相地层的定年使用。

图 1 a:McArthur 等(2001)按LOWESS 拟合的 509 Ma 以来锶同位素曲线的奥陶系部分(在可信度 95 %的范围内);

b:奧陶纪海水锶同位素演化曲线(由 McArthur 等^[20]拟合曲线中心部分数据化的数据作出),上、中、下奥陶统的界线按 Remane 等^[23]的国际地层表的年龄值

Fig. 1 a: The Ordovician part of strontium isotope curve for the period $0 \sim 509$ Ma by LOWESS fit with 95 % confidence bounds (after McArthur *et al.* (2001);

b: The strontium isotope curve for Ordovician sea water, data from the digitized strontium isotope curve fitted by McArthur *et al.* (2001), the boundaries of middle-upper and middle-lower Ordovician are according to Remane *et al.* (2001)

就演化趋势和控制因素来说,国际上公布的奥陶 纪锶同位素数据和演化趋势都显示出海水⁸⁷ Sr/⁸⁶ Sr 比 值随时间单调下降的总趋势,下降的时间实际上是从 晚寒武世开始的^[22],并一直持续到大约 440Ma 左右 的晚奥陶世末(图 1a,b),其原因与晚寒武世 - 奥陶纪 的全球淹没事件,以及广阔陆表海和有关的沉积物对 放射性成因锶的封存作用有关^[22,24]。

3 塔里木盆地奥陶系海相碳酸盐的锶

同位素组成及演化趋势

江茂生等^[12]报导了塔里木盆地塔中 12 等井奥陶 系海相碳酸盐岩的锶同位素组成,这是国内公布的最 为系统的奥陶系碳酸盐锶同位素数据。虽然均为全岩 样品,但对海水的锶同位素组成仍具有较好的代表性, 并与全球海水的锶同位素在演化趋势有一定的可比性 (图 2),说明全球事件仍是塔里木盆地奥陶系海相碳 酸盐锶同位素组成最为重要的控制因素。塔里木盆地 锶同位素演化趋势总体上也表现为⁸⁷ Sr/⁸⁶ Sr 比值的单 调下降(图 2),这与奥陶纪全球海平面的持续上升有 关。早奥陶世部分样品⁸⁷Sr/⁸⁶Sr 比值的降低可能与成 岩阶段某些低⁸⁷Sr/⁸⁶Sr 比值流体的影响有关;晚奥陶 世末部分样品⁸⁷Sr/⁸⁶Sr 比值的升高则可能与盆地抬 升、近地表环境下大气水作用带来的壳源锶对海相碳 酸盐锶同位素组成的影响有关。

4 塔里木盆地奥陶系海相地层定年的

尝试及有关界线的讨论

全球奥陶纪海水的锶同位素演化具有单调下降的 总体趋势,曲线的多数部分斜率较陡(图1、图2),因而 是利用锶同位素地层学原理确定地层年龄较为理想的 时间段。我们对 McArthur 等^[20]拟合的奥陶纪锶同位 素演化曲线中心值数据化,获得的奥陶纪⁸⁷Sr/⁸⁶Sr 比值-年龄数据库(表1),利用该数据库和江茂生等^[12]报导了 塔里木盆地塔中12 井奥陶系海相碳酸盐的锶同位素组 成,我们尝试确定了该井奥陶纪一些关键深度点的年 龄,对一些尚未确定的地层界线提出了建议。 Table 1

o fitted by McArthur et al. (2001)

表1	对 McArthur 等 ^{[20}] 拟合的奥陶纪锶同位素演化曲线数据化获得的奥陶纪锶同位素-年龄数据库

~f 87 Sr/

		01 01/	Si age from the ugitized strontium isotope cut of fitted by MeArthur et al.				
年龄/ Ma	⁸⁷ Sr/ ⁸⁶ Sr	年龄/ Ma	⁸⁷ Sr/ ⁸⁶ Sr	年龄/ Ma	⁸⁷ Sr/ ⁸⁶ Sr	年龄/ Ma	⁸⁷ Sr/ ⁸⁶ Sr
435.1	0.707 938	453.0	0.708 079	461.6	0.708 642	479.4	0.708 945
435.7	0.707 919	453.4	0.708 097	462.0	0.708 665	480.3	0.708 953
436.4	0.707 905	453.7	0.708 114	462.4	0.708 686	481.2	0.708 957
437.1	0.707 891	454.1	0.708 132	462.8	0.708 708	482.1	0.708 964
438.0	0.707 875	454.4	0.708 151	463.1	0.708 729	483.1	0.708 968
438.7	0.707 863	454.7	0.708 171	463.5	0.708 749	484.0	0.708 971
439.6	0.707 857	455.1	0.708 197	463.9	0.708 769	484.9	0.708 976
440.4	0.707 855	455.5	0.708 216	464.3	0.708 789	486.0	0.708 983
441.5	0.707 854	455.8	0.708 241	464.9	0.708 808	487.0	0.708 992
442.7	0.707 858	456.3	0.708 266	465.4	0.708 827	487.8	0.709 002
443.5	0.707 863	456.6	0.708 286	466.1	0.708 847	488.5	0.709 016
444.3	0.707 869	457.0	0.708 311	466.7	0.708 863	489.3	0.709 031
445.2	0.707 879	457.2	0.708 329	467.3	0.708 879	490.1	0.709 044
446.1	0.707 888	457.5	0.708 347	468.1	0.708 891	490.8	0.709 055
446.8	0.707 897	457.9	0.708 368	468.6	0.708 900	491.4	0.709 067
447.4	0.707 906	458.1	0.708 390	469.2	0.708 907	492.1	0.709 080
448.0	0.707 919	458.4	0.708 412	470.0	0.708 910	492.8	0.709 093
448.7	0.707 933	458.7	0.708 435	470.9	0.708 910	493.7	0.709 103
449.3	0.707 946	459.0	0.708 457	471.8	0.708 910	494.4	0.709 114
450.0	0.707 961	459.3	0.708 480	472.6	0.708 911	495.1	0.709 121
450.6	0.707 976	459.6	0.708 500	473.6	0.708 910	495.9	0.709 126
451.1	0.707 990	459.8	0.708 523	474.8	0.708 909	496.8	0.709 130
451.7	0.708 011	460.2	0.708 547	475.9	0.708 907	497.6	0.709 133
452.0	0.708 030	460.5	0.708 569	476.8	0.708 910	498.4	0.709 136
452.4	0.708 046	460.9	0.708 596	477.6	0.708 927	499.3	0.709 136
452.8	0.708 065	461.2	0.708 617	478.5	0.708 936	500.1	0.709 132

4.1 中、下奥陶统的界线

按 Remane 等^[23]的国际地层表,中、下奥陶统界 线年龄为 465 Ma,对应的⁸⁷Sr/⁸⁶Sr 比值为 0.708 8(表 1、图 1),该数值落在塔里木盆地塔中 12 井奥陶系海 相碳酸盐的锶同位素演化曲线的井深 5 120 m 处(图 2),因而该深度为从锶同位素地层学的角度建议的中 下奥陶统界线。该界线与江茂生等^[12]利用牙形石资 料确定的塔中 12 井中、下奥陶统界线的深度一致。

4.2 中、上奥陶统的界线

前人没有用常规地层学方法确定出塔中 12 井的 中、上奥陶统界线的位置^[12]。按 Remane 等^[23]的国 际地层表,中、上奥陶统界线年龄为 455 Ma,对应的 ^{Sr/86}Sr比值为 0.708 2(表 1、图 1),该数值落在塔里木 盆地塔中 12 井奥陶系海相碳酸盐的锶同位素演化曲 线井深 4 880 m 处(图 2),因而该深度为从锶同位素地 层学的角度建议的中、上奥陶统界线。

4.3 奥陶系顶界和奥陶系地层完整情况

奥陶纪末,塔里木盆地发生了一次升降运动^[25], 盆地北部的柯坪地区与库鲁克塔格断隆南区,志留系

图 2 塔里木盆地塔中 12 井奥陶系海相碳酸盐的锶同位素 演化曲线及相应解释(下奥陶统 3 个⁸⁷ Sr/⁸⁶ Sr 比值小于 0.707 6的样品没有显示在图中)(锶同位素数据据江茂生 等^[12])

Fig. 2 Ordovician strontium isotope curve for the Well Tazhong No. 12 in Tarim basin (3 samples with isotope ratios less than 0.707 6 are not shown) (Strontium isotope data are from Jiang, *et al*, 2002)

分别以假整合或低角度不整合超覆于中、上奥陶统的 不同层位之上,但沉积间断时间,或奥陶系顶部地层的 完整程度也是奥陶系地层学研究中的难点之一。

按 Remane 等^[23]的国际地层表,奥陶系顶界线 年龄为 435 Ma,对应的⁸⁷Sr/⁸⁶Sr 比值为 0.707 9(表 1、 图 1),塔里木盆地塔中 12 井奥陶系海相碳酸盐的锶 同位素曲线在该数值附近是连续的,没有间断(图 2), Sr/⁸⁶Sr比值 0.707 9 对应的井深在 4 650 m 附近,因 而该深度为从锶同位素地层学的角度建议的奥陶系顶 界。

尽管构造运动造成的盆地抬升和近地表大气水作 用影响了部分上奥陶统碳酸盐样品锶同位素比值(主 要是上奥陶统顶部样品,使其⁸⁷ Sr/⁸⁶ Sr 比值升高),但 塔中 12 井的奥陶系是基本完整的,与上覆地层的关系 是连续的。

5 结论

1)利用锶同位素地层学的基本原理确定海相地层 的年龄是完全可行的,但必须要有大量的代表海水的 锶同位素数据积累,并建立相应的⁸⁷ Sr/⁸⁶ Sr-年龄数据 库;

2)在锶同位素演化曲线随时间单调上升或下降的 时间段,尤其是当曲线斜率较陡时,定年效果相对较 好;

3)利用国际上已有的锶同位素演化曲线建立的奥 陶系⁸⁷ Sr/⁸⁶ Sr 比值-年龄数据库和塔里木盆地塔中 12 井海相碳酸盐的锶同位素分析结果,确定了该井中、上 奥陶统和中、下奥陶统的界线,两个界线分别位于井深 5 120 m(⁸⁷ Sr/⁸⁶ Sr 0.708 8,年龄为465 Ma)和4 880 m处(⁸⁷ Sr/⁸⁶ Sr 0.708 2,年龄为455 Ma),中、 上奥陶统的界线为本文首次确定,中、下奥陶统的界线 与前人利用牙形石资料确定的界线一致;

4) 塔中 12 井的锶同位素演化曲线说明,尽管构造运动造成的盆地抬升和近地表大气水作用影响了上奥陶统顶部碳酸盐的锶同位素组成,但塔中 12 井奥陶系与上覆地层的关系是基本连续的,奥陶系顶界的井深在 4 650 m 附近(⁸⁷ Sr/⁸⁶ Sr 0.707 9,年龄为435 Ma)。

参考文献(References)

- 1 McArthur J M, Burnett J, Hancock J M. Strontium isotopes at K/T boundary discussion. Nature , 1992, 355(6355): 28
- 2 Wickman F E. Isotope ratios: a clue to the age of certain marine sediments. Journal of Geology, 1948, 56: 61 ~ 66
- 3 McArthur J M. Recent trends in strontium isotope stratigraphy. Terra Nova, 1994, 6: 331 ~ 358
- 4 Dia AN, Cohen AS, O'Nion K, et al. Seawater Sr isotope variation

over the past 300 kyr and influence of global climate cycles. Nature , 1992 , 356(6372) : 786 ~ 788

- 5 Paytan A , Kastner M , Martin E E , et al . Marine barite as a monitor of seawater strontium isotope composition. Nature , 1993 , 366 (6454) : 445 ~ 449
- 6 Banner J L , Kaufman J. The isotopic record of ocean chemistry and diagenesis preserved in nonluminescent brachiopods from Mississippian carbonate rocks, Illinois and Missouri. Geological Society of America Bulletin, 1994, 106: 1074 ~ 1082
- 7 Hess J, Stott L, Bender M L K, et al. The Oligocene marine microfossil record: age assessments using strontium isotopes. Paleoceanography, 1989, 4: 655 ~ 679
- 8 Miller K G, Feigenson M D, Wright J D, et al. Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography, 1991, 6:33 ~ 52
- 9 McArthur J M, Kennedy W J, Chen M, et al. Strontium isotope stratigraphy for the Late Creataceous: direct numerical age calibration of the Sr-isotope curve for the U.S. Western interior Seaway. Palaeogeography Palaeoclimatology Palaeoecology, 1994,108:95 ~ 119
- 10 Dingle R V, McArthur J M, Vroon P. Oligocene and Pliocene interglacial events in the Antarctic Peninsula dated using strontium isotope stratigraphy. Journal of Geological Society of London, 1997, 154: 257 ~ 264
- 11 Denison R E, Kirkland D W, Evans R. Using strontium isotopes to determine the age and origin of gypsum and anhydrite beds. Journal -Geology, 1998, 106: 1~17
- 12 江茂生,朱井泉,陈代钊,等. 塔里木盆地奥陶纪碳酸盐岩的碳、锶 同位素特征及其对海平面变化的响应. 中国科学(D辑),2002,32 (1):36~42[Jiang Maosheng, Zhu Jingquan, Chen Daizhao, *et al*. Carbon and strontium isotope variations and responses to searlevel fluctuations in the Ordovician of the Tarim Basin. Science in China (Series D), 2002, 32(1):36~42]
- 13 黄思静. 上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究. 地质学报, 1997, 71 (1): 45 ~ 53 [Huang Sijing. Carbon and strontium isotopes of Late Paleozoic marine carbonates in the Upper Yangtze platform, Southwest China. Acta Geologica Sinica, 1997, 71(1): 45 ~ 53]
- 14 黄思静,石和,张萌,等. 上扬子石炭 二叠纪海相碳酸盐的锶同 位素演化与全球海平面变化. 沉积学报,2001,19(4):481~487
 [Huang Sijing, Shi He, Zhang Meng, *et al*. Strontium isotope evolution and global sear-Level changes of Carboniferous and Permian marine carbonate, Upper Yangtze Platform. Acta Sedimintologica Sinica, 2001, 19(4):481~487
- 15 黄思静,石和,毛晓冬,等.重庆秀山寒武系锶同位素演化曲线及 全球对比.地质论评,2002,48(5):509~516[Huang Sijing, Shi He, Mao Xiaodong, *et al*. Evolution of Sr isotopes of the Cambrian sections in XiuShan, Chongqing, and related global correlation. Geological Review, 2002,48(5):509~516]
- 16 黄思静,石和,张萌,等.龙门山泥盆纪锶同位素演化曲线的全球 对比及海相地层的定年.自然科学进展,2002,12(9):945~951
 [Huang Sijing, Shi He, Zhang Meng, et al. Global correlation of strontium isotope evolution curve of Devonian in Longmen mountain

and dating marine sediments. Progress in Natural Science , 2002, 12 21 (9): 945 ~ 951]

- 17 杨杰东,郑文武,王宗哲,等. Sr、C 同位素对苏皖北部上前寒武 系时代的界定. 地层学杂志, 2001,25(1):44~47[Yang Jiedong, Zheng Wenwu, Wang Zongzhe, *et al*. Age Determining of the upper Precambrian system of northern Jiangsur Anhui by using Sr and C isotopes. Journal of Stratigraphy, 2001, 25(1): 44~47]
- 18 Howarth R J , McArthur J M. Statistics for strontium isotope stratigraphy: a robust LOWESS fit to marine Sr-isotope curve for 0 to 206 Ma , with look-up table for derivation of numeric age. Journal Geology , 1997 , 105: 441 ~ 456
- 19 Veizer J, Ala D, Azmy K, et al. ⁸⁷Sr/⁸⁶Sr, ¹³C and ¹⁸O evolution of Phanerozoic seawater. Chemical Geology, 1999, 161:59~88
- 20 McArthur J M, Howarth R J, T R. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr Isotope Curve for 0-509 Ma and Accompanying Look-up Table for Deriving Numerical Age. Journal Geology, 2001, 109: 155 ~ 170

- Qing H, Barnes C R, Buhl D, Veizer J. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: Relationships to geological events and implications for coeval seawater. Geochimica et Cosmochimica Acta, 1998, 62(10): 1721 ~ 1733
- 22 Denison R E, Koepnick R B, Burke W H, et al. Construction of the Cambrian and Ordovician seawater ⁸⁷Sr/⁸⁶Sr curve. Chemical Geology, 1998, 152:325 ~ 340
- 23 Remane J , Faure-Muret A , Odin G S. International Stratigraphic Chart. Translated by Jin Yugan , Wang Xiangdong , Wang Yue. Journal of Stratigraphy , 2001 , 24(Suppl.): 321 ~ 340
- Hallam A. Phanerozoic sea level changes. Columbia University Press, 1992. 1 ~ 266
- 25 新疆油气区石油地质志编写组.中国石油地质志(卷十五) -新疆油气区(下册).北京:石油工业出版社,1995.153[Editorial Committee of Petroleum Geology of Xinjing Oil and Gas Field. Petroleum Geology of China (Vol. 15), Xinjing Oil and Gas Field (Lower Part). Beijing: Petroleum Industry Press, 1995.153]

Application of Strontium Isotope Stratigraphy to Dating Ordovician Marine Sediments

- - An case study from the well Tazhong 12 in Tarim basin

HUANG Si-jing SHI He ZHANG Meng WU Wen-hui SHEN Li-cheng (State Key Laboratory of Oil/ Gas Reservoir Geology and Exploitation, College of Geoscience, Chengdu University of Technology, Chengdu 610059)

Abstract According to the principle of strontium isotope stratigraphy (SIS), we establish the Ordovician database of 87 Sr/ 86 Sr ratio through the geological time from the digitized global marine strontium isotope curve. We have confirmed the boundaries of middle-upper and middle-lower Ordovician using the analytic data of strontium isotope of the Well Tazhong 12 in Tarim basin. The two boundaries are located at the depth of 5 120 m (87 Sr/ 86 Sr

0. 708 8, with the age of 465 Ma) and 4 880 m (87 Sr/ 86 Sr 0. 708 2, with the age of 455 Ma), respectively, of the Well Tazhong 12. The verification of middle-upper Ordovician boundary is just the first time for this well, and the location of the boundary of middle-lower Ordovician confirmed is consistent with the depth of middle-upper Ordovician boundary calibrated by conodont data. This variation of strontium isotope curve for the Well Tazhong 12 shows the following facts: despite the tectonic movement resulted in the rising of Tarim basin, leading to the leaching of meteoric water to the upper most part of Ordovician carbonate, and to the increase of 87 Sr/ 86 Sr of some samples, the relationship between Ordovician and its upper strata of the Well Tazhong 12 is transitionary. The top boundary for Ordovician is located at the depth of 4 650 m (87 Sr/ 86 Sr 0. 707 9, with the age of 435 Ma).

Key words strontium isotope stratigraphy, dating marine sediments, Tarim basin, Ordovician