文章编号:1000-0550(2005)01-0122-08

东海内陆架泥区沉积物的环境敏感粒度组分

肖尚斌^{1,2} 李安春

1(中国科学院海洋研究所 山东青岛 266071)2(中国科学院南海海洋研究所 广州 510301)

摘 要 对东海内陆架泥质沉积区的 DD2孔和悬浮体进行了陆源物质提取,应用激光粒度仪做了粒度分析,并分析 了 DD2孔粒度参数的垂向分布序列。通过计算粒级 —标准偏差的变化获得了 DD2孔沉积物中对沉积环境变化较为 敏感的粒度组分,约 19和 130µm是 DD2孔所属区域对沉积环境敏感的粒级,分别对应于东海沿岸流和风暴流沉积动 力过程。敏感粒度组分含量随深度变化的分析表明,该孔上段的沉积作用主要受控于沿岸流,沉积环境相对稳定;而 下段沉积环境变化大,是风暴流和沿岸流的混合作用沉积的结果。

关键词 粒度组分 陆源物质 东海内陆架

第一作者简介 肖尚斌 男 1970年出生 博士 海洋地质 中图分类号 P736 2 文献表识码 A

1 引言

一直以来,黄土的粒度和磁化率被分别作为冬、 夏季风的替代指标运用到东亚季风的演化研究 中^[1~2],在大尺度研究中取得众多举世瞩目的重大研 究成果。近年来,冰芯、泥炭、孢粉、树木年轮、湖泊沉 积物和洞穴碳酸盐沉积(主要指滴石)等^[3~10],被逐 步用作研究东亚古季风和古气候的高分辨率替代指 标。安芷生指出,进行东亚古季风研究首先应加强东 亚季风的高分辨率替代性序列的调查,且要将东亚的 大陆、海洋、大气和冰系统作为一个完整的东亚季风 环境系统进行整体研究^[11]。目前,海洋古环境研究 随着取样技术和测年手段的改进取得了长足进步,已 可达到百年等级的分辨率^[12],但是和陆地的代用指 标相比,分辨率仍然是很低的。

作为海洋沉积作用研究的基础,东海陆架表层沉 积物的粒度分布及形成的沉积动力机制早已得到了 中外科学家的深入研究^[13~18],其基本格局是在砂质 沉积区的背景上分布着两大块呈斑块状发育的泥质 沉积区^[13~14,17],即远岸济州岛西南泥质沉积区和近 岸闽浙沿岸泥质沉积区(图 1)。前者的物源主要来 自老黄河^[19~22];而后者,即所谓的"东海内陆架泥质 沉积物",主要为源自长江的悬浮体由冬季沿岸流输 送而沉积的^[21~24],这与该海区悬浮体和水团的分布 一致^[16,25~26],其中东海沿岸流路径的一个重要特点 是随季节而变化,即在夏季因东南季风盛行流向北, 而在冬季由于偏北风盛行而向南运移^[14]。研究表 明,泥质区是东海末次冰消期高海面以来的堆积中 心^[13,15,17,27],是东海陆架的"物质汇"^[28];砂质沉积区 这一时期的堆积厚度几乎为零^[13,15,17,27]。

现代的长江三角洲在大约 8 ka之前就开始初具 规模^[29],而其河道的形成和河口充填作用早在冰后 期的海侵过程中就已经开始^[30]。历史上长江约 4.8

×10⁸ t/a巨大量的沉积物输送^[31],导致了沉积物在 长江口及其周围特别是南侧快速的堆积。如闽浙沿 岸泥质沉积区北部 Dc2孔近 12 ka沉积厚度约 1 520 cm^[14],平均沉积速率约为 126 67 cm/ka;中部 PC - 7 孔近 7.7 ka沉积厚度约 550cm^[32],平均沉积速率约 为 71.43 cm/ka。高的沉积速率为年代际乃至几年 尺度的东亚季风研究提供了可能。

由于强盛的东亚冬季风驱使的闽浙冬季沿岸流 具有更快的流速,导致沉积物的粒度将相应地变粗; 反之亦然。本文旨在获取内陆架泥质沉积区陆源物 质中对沉积环境变化较为敏感的粒度组分,特别是找 出对应于闽浙沿岸流的敏感粒度组分,结合测年资 料,建立反演全新世中晚期东亚冬季风演化的高分辨 率替代指标。

中国科学院海洋研究所创新基金 (L61022811)资助 收稿日期: 2004-02-13;收修改稿日期: 2004-10-09

2 材料与方法

研究所用的重力柱状样,为中国科学院海洋研究 所的"金星二号 科学调查船 2002年 5月 11日在东 海内陆架闽浙沿岸泥质沉积区获取,长 2 98 m,站号 DD2,该孔远离河口(122 37. 92 E, 29 34. 92 N),水 深 43. 5m (图 1)。在室内对该岩芯进行了详细描述 和 2 cm间隔的采样。悬浮体采样用 2 500 ml的塑料 采水器采取,经微孔滤膜(直径 47 mm,孔径 0. 45 µm)过滤并洗盐,即得到悬浮体样品。所有样品先用

= 30%的双氧水、再用浓度为 3N的盐酸处理。处 理后的样品在国家海洋局第一海洋研究所用英国 Malvem 2000型激光粒度仪进行粒度测量,测量范围 为 0.02~2000μm,粒级分辨率为 0.01Φ,重复测量 的相对误差 <3%。年代测试选取混合种底栖有孔虫 作为材料,在美国 Woods Hole海洋研究所 AMS年代 测试中心测试,年龄原始测年数据利用 CAL B4.3软 件^[33]进行日历年龄校正,结果见表 1。

3 DD2孔粒度分析结果

3.1 岩性特征

整个岩芯以灰色、深灰色粘土质粉砂、粉砂质砂 为主,局部夹薄层细砂、砂质粉砂(图1)。以212 cm 为界分为上下二层。

上层:0~212 cm,粘土质粉砂,夹1层粉砂质砂; 一般粉砂的含量为75%、粘土为25%左右。罕见贝

Fig 1 Sediment distribution in the shelf of the East China Sea (Revised from Q in Yunshan, 1987) and samples ' sites station

表 1 DD2孔及悬浮体站位数据 Table 1 Data on the station for collecting the

suspended sediments in Core DD2

站号	坐标	水深 /悬浮体深度 /m	取样时间
DE3	122 30 4666 'E, 30 20 0901 N	19/10(DE3/D7) 19底层 (DE3/D6)	2003年 9月 28日
573	122 20 'E, 30 45 N	12/10	2004年 3月 1日
DD2	122 37. 92 'E, 29 34. 92 N	43. 5	2002年 5月 11日

表 2 DD2孔 AM S¹⁴C年代数据 (aBP) Table 2 AM S¹⁴C dating of Core DD2(aBP)

深度 /cm	测试材料	¹⁴ C年龄 /aBP	日历年龄 /aBP
46 ~ 52	混合种底栖有孔虫	640 ±40	282
$106 \thicksim 112$	混合种底栖有孔虫	1420 ±30	951
$202 \thicksim 204$	混合种底栖有孔虫	2150 ±150	1726
230 ~ 232	混合种底栖有孔虫	6100 ±55	6512
254 ~ 256	混合种底栖有孔虫	6020 ±60	64243

图 2 DD2孔岩性与年代地层图

平均粒径实线和点划线分别为全粒级和 <45 µm粒级平均 Fig 2 Lithology and chronology of Core DD2 real and dash-dotted lines in mean size column are from samples of the whole and <45 µm, respectively

壳碎片,仅在 203 cm 处为 5 mm 厚的粉砂质砂层,含 大量小的碎介壳,为风暴沉积的产物。另外,63 cm 处有一水平潜穴。 下层: 212~298 cm,岩性变化大,以砂质粉砂为 主,夹 2层薄层粉砂质砂,分选为一般至差。根据岩 性的变化可分为 4段。

(1) 212~228 cm为粘土质粉砂,由下而上粉砂 含量逐渐减少,泥质组分逐渐增多。

(2) 228 ~ 248 cm 砂质粉砂夹一薄层粉砂质砂 (240 ~ 242 cm)层, 234 ~ 244 cm 富含贝壳, 贝壳有完整 和破碎者,有磨圆,但分选差;该层之上为浅灰黄色粉 砂质泥,该层之下则为灰色细砂和粉砂,并含少量贝 壳,含水量少。248 cm 处为一水平潜穴, 直径 2 cm。

(3) 248~266 cm 为粉砂质砂, 263 cm 为一直径 1 cm 的水平潜穴。

(4) 266~298 cm为砂质粉砂夹一薄层粉砂质 砂 (292~294 cm)层。

可以看出,整个柱状样下层粗、上层细,从底部向 上粗粒组分逐渐减少、细粒组分增多,DD2孔岩性变 化说明下层沉积环境的水动力较强,而上层则较弱。

3.2 频率曲线特征

随着统计学引入地质学,粒度样本分布图(直方 图和累积曲线)以及粒度样本矩(平均粒径、标准偏 差、偏度和峰度等)等表征方法被应用于沉积物粒度 分析中。Visher^[34]将对数一概率坐标下的累积频率 点连成线段,将之解释为不同搬运方式下的沉积产 物;其他学者^[35-38]则对粒度样本矩的沉积学意义进 行了深入研究,给出了不同的沉积环境的样本矩散点 图。而 Klovan^[39]在 1966年就采用因子分析的方法 来研究不同沉积环境在粒度分布上的差别。

然而.,过去的沉积环境研究通常是基于沉积物全 样的粒度数据进行地,对于多种沉积动力条件或多物 源并存的沉积环境这些指标显然只是近似的替 代^[40~41]。由于陆源物质向海的输入方式受区域性潮 流与地形控制,且由于多种动力搬运作用的存在(如 颗粒的磨损、选择性搬运和不同来源物质的混合 等).造成在同一个沉积环境中沉积物的沉积层序和 粒度特征可能因地而异^[42],同时又使得沉积物的成 分和粒度组成复杂化。然而,由于具有重要的环境指 示意义 (如水流流速等)的粒度组分范围可能很 小[43~46],因此在利用粒度数据进行海洋沉积古环境 研究时,必须进行环境敏感组分的提取和子体粒度组 分分离,从复杂的粒度数据中分离出单一粒度组分的 特征 (如众数、分布范围、含量等),以研究沉积环境 的不同组分构成及各组分所指示的沉积学意义。这 也是定量古环境和古气候研究的发展要求,因为在陆 源物质主要由河流输入的海区,陆源物质的输入通量 可视为陆地干湿气候的有效指标^[47~48]。

下图为 DD2 孔两类典型的沉积物频率分布曲 线,频率分布图显示出两个明显的粒度众数。图中 2 和 248 cm 分别代表正常沉积和含风暴沉积的沉积 物,它们的频率分布曲线存在较大的差异,即不同深 度的沉积物其粒度组分含量构成存在差别,这表明了 沉积环境水动力条件或物源的混合。所以,分离出单 组分的含量和众数值是更深入研究相应的粒度组分 所对应的沉积动力过程的基础,从而进一步分析沉积 环境的动力特征。

图 3 DD2孔不同深度沉积物的粒度频率分布曲线 Fig 3 Volumic percent of each grain-size class of samples with different depth, Core DD2

依据沉积物所包含的粒度组分和分布范围来追 溯沉积物输运过程和沉积环境变化,已被较好地应用 于阿拉伯海、中国南海和冲绳海槽^[46~47,49]。

目前对沉积物粒度分布进行多组分分离的数学 方法包括以 Weibull分布为拟合函数^[41]、利用端元粒 度模型^[48,50~52]和粒级 —标准偏差变化^[46,53]来计算粒 度组分的个数和分布范围。曲政^[54]则采用了定步长 分布参数枚举法、非线性最小二乘法和可变误差多面 体最优化法 3种算法,开发出基于人工神经网络的专 家系统来进行"子体分离"。

图 4示出了本文采用粒级 —标准偏差的算法获 得 DD2孔全部 149个样品的陆源碎屑组分中每个粒 级组分的标准偏差随粒级组分的变化曲线。图中较 高标准偏差值,即 19和 130 μm,即是对沉积环境敏 感的粒级,2个粒度组分的分界线约在 45 μm。

4 讨论

前文已述,现代东海内陆架闽浙沿岸表层泥质沉 积物主要是长江输送的沉积物由冬季沿岸流输送而 沉积的,废黄河口的沉积物很少能到达^[17,25]。DD2

第 1期

孔上段沉积物与现代闽浙沿岸悬浮体的粒度频率分 布以及粒度参数的对比也表明了这一点(图 5和 6)。 图 5和 6显示出 DD2孔沉积物与现代闽浙沿岸悬浮 体之间在粒度频率曲线呈现出众数值变化很微弱 (11~15 μm)的单峰、近正态分布特点,二者的平均 粒径、分选(标准偏差)、尖度等基本一致,反映了相 当稳定的水动力条件与沉积环境。另外,如前文所 述,与 DD2相邻的 Dc2孔近 12 ka沉积厚度约 1 520 cm,平均沉积速率约为 126 67 cm/ka,且该层段所包 含的微体动物有孔虫组合和软体动物组合特征,均指 示为水深小于 50 m的近岸浅海环境,同目前基本一 致,并主要受沿岸流的控制^[14]。综合前文岩性描述 与测年可知,DD2孔上段沉积物显然主要是近 2 ka 来由东海冬季沿岸流以悬浮方式输送而至的沉积 产物。

图 5 DD2孔沉积物与现代闽浙沿岸 悬浮体的粒度频率分布对比

Fig 5 Grain-size frequency distribution comparison between core DD2 sediment and suspended sediments of Fujian and Zhejiang coast

图 6 DD2孔沉积物与现代闽浙沿岸悬浮体的粒度参数对比

Fig 6 Comparison of grain-size parameters between core DD2 sediment and modern alongshore suspended sediments of Fujian and Zhejiang coast

在下段,248 cm 处与下伏为侵蚀 — 充填接触关 系,向上见变形层理和介壳层,介壳破碎、无磨圆和分 选、部分腹面向上,呈现典型的风暴沉积特征。另外, 该孔上段沉积速率基本稳定,为近 1800 a 来的沉积 (图 2),平均沉积速率约为 127.78 cm/ka,与 Dc2孔 沉积速率基本一致:而下段岩性发生了突变,泥质沉 积区与该孔相邻的 Dc2孔同深度段所反映的沉积环 境明显不一致,且出现了年龄的反序(表 1),显然为 事件沉积所致。DD2孔岩心中这 2种不同类型的沉 积作用在本区也表现为完全不同的粒度组分特征 图 2)。范德江等^[55]的研究表明,长江、黄河入海沉 积物中均匀悬浮载荷分别为 <18 µm, <22 µm之沉 积物,东海陆架北部均匀悬浮载荷为 <20µm之沉积 物。因此,与该孔对应的沉积动力过程可能是,细粒 组分 (<45µm)可能是东海冬季沿岸流携带的悬浮体 沉降的结果,而 >45µm的粗粒组分则起因于风暴, 为风暴流携带的沉积物。

聚类分析的结果也印证了上面的分析。采用 Q 型快速聚类 (Quick Cluster)方法对 DD2孔进行分析, 判别出该孔沉积物由 2种典型的粒度分布组成 (图 7),其中 212 cm之上属于第一类,之下则属于第二 类。第一类表现为粒度分布众数值为 15 μm的"单 峰 近正态分布,代表了基本为细粒组分的东海沿岸 流沉积层的粒度分布特征;第二类为众数值分别为 11和 130 μm的"双峰 分布,呈正偏态,体现为细粒 组分和粗粒组分的混合,反映了风暴流和沿岸流的共 同作用。

图 7 DD2孔由聚类分析方法获得的 2个典型组分的粒度分布 Fig 7 Distribution curves of 2 grain-size populations based on cluster analysis, Core DD2

图 8显示出 DD2孔细粒(<45 µm)和粗粒(> 45 µm)组分的含量随深度的变化。可以看出,2个粒 度组分含量及变化在整个岩心中呈现出以 212 cm为 界线上、下层明显不同的特点,下层沉积环境变化较 大,而上层沉积环境相对稳定。212 cm以上细粒组 分含量均在 80%以上(203~203.5 cm除外),而 202 m以上细粒组分含量更在 90%以上,且粗细两个组 分的含量变化很小,反映了沉积物沉积时稳定的沉积 动力条件,即上段与现今的沉积环境基本一致,为主 要受沿岸流控制的内陆架沉积环境。因此,上段可应 用于进行高分辨率的古环境与古气候重建研究。212 m以下的下段之沉积,则很可能是由于风暴流频繁 地扰动并混合于沿岸流而造成。

图 8 DD2孔粗、细粒组分含量的垂向变化

5 结论

东海内陆架闽浙沿岸泥质沉积物主要是长江输

送的沉积物由冬季沿岸流以悬移方式输送而沉积的; 约 19和 130 µm是该区域对沉积环境敏感的粒级,分 别对应于东海沿岸流和风暴流沉积动力过程。DD2 孔沉积物由 2种典型的粒度分布组成,212 cm之上 属于第一类,大多表现为粒度分布众数值约为 15 µm 左右的近正态分布,基本为东海沿岸流以悬移方式输 送而沉积,沉积环境相对稳定;212 cm之下的第二类 呈现众数值分别约为 11和 130 µm左右的"双峰 分 布,是风暴流和沿岸流共同沉积的结果。受风暴动力 条件变化以及水深等的影响,本文所提出对风暴沉积 敏感粒度组分 (即约 130 µm),可能在不同的沉积地 点会有所不同。

致谢 国家海洋局一所刘焱光博士、魏建伟博士 和李朝新硕士给予了粒度分析方面的帮助,特此致 谢。

参考文献 (References)

- An Z S, Liu T S, Lu Y C, et al The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China Quaternary International, 1990, 7-8: 91 ~ 95
- 2 An Z S, Kukla G, Porter S C, et al Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years Quaternary Research, 1991, 36: 29 ~ 36
- 3 施雅风,姚檀栋,杨保. 近 2000a古里雅冰芯 10a尺度的气候变化 及其与中国东部文献记录的比较.中国科学(D辑),1999,29(增刊 1):79~86[Shi Yafeng, Yao Tandong, Yang Bao. Records of Guliya Ice Core on 10 a scale and its comparison with records of documents about the East China Science in China (Series D), 1999,29(Supp1):79~86]
- 4 姚檀栋, Thompson L G, 施雅风,等. 古里雅冰芯中末次间冰期以 来气候变化记录研究. 中国科学(D辑), 1997, 27(5): 447~452 [Yao Tandong, Thompson L G, Shi Yafeng, *et al* Climate changing records of Guliya ke Core since the Last Interglacial Science in China (Series B), 1997, 27(5): 447~452]
- 5 洪业汤,姜洪波,等. 近 5 ka温度的金川泥炭¹⁸O记录.中国科学 (D辑),1997,27(6):525~530[Hong Yetang, Jiang Hongbo, *et al* ¹⁸O Records of temperature about 5 ka from Peat in Jinchuan Science in China (Series D),1997,27(6):525~530]
- 6 Feng X, Epstein S Climatic implications of an 8000-year hydrogen isotope time series from Bristlecone Pine trees Science, 1994, 265: 1079 ~1081
- 8 刘东生,刘嘉麒,吕厚远.玛珥湖高分辨率古环境研究的新进展.第 四纪研究,1998,(4):289~295 [Liu Tungsheng, Liu Jiaqi, Lü Houyuan Process in high-resolution plaeoenvironment research from MaarLake Quatemary Sciences, 1998,(4):289~295]
- 9 Chen J A, Wan G J, Tang D G, et al Recent climatic changes recorded by sediment grain sizes and isotopes in Erhai Lake. Progress in

Natural Science, 2000, 10(1): 54 ~ 61

- 10 Tan M T, Liu J, Hou L, et al Cyclic rapid warming on centennialscale revealed by a 2650-year stalagmite record of warm season temperature. Geophysical Research Letters, 2003, 30 (12) : 1617 ~ 1620
- 11 安芷生,刘晓东.东亚季风气候的历史与变率.科学通报,2000,45
 (3): 238~249 [An Zhisheng and Liu Xiaodong History and variability of the East-Asian monsoon Chinese Science Bulletin, 2000,45
 (3): 238~249]
- 12 王律江, Samthein M. 南海北部陆坡近四万年的高分辨率古海洋 学记录. 第四纪研究, 1999, (1): 27 ~ 31 [Wang L üjiang and M Samthein High-resolution plaeoceanographic records during the last 400000 years from the northem slope of the South China Sea Quaternary Sciences, 1999, (1): 27 ~ 31]
- 13 秦蕴珊,郑铁民.东海大陆架沉积初分布特征的初步探讨.黄、东 海地质.中国科学院海洋研究所海洋地质研究室编.北京:科学出 版社,1982 31~51 [Qin Yunshan and Zheng Tiemin Preliminary Study on Sediments Distribution in the Inner Shelf of the East China Sea In: Department of the Marine Geology of Institute of Oceanology, Chinese Academy of Sciences, Geology of the Yellow Sea and the East China Sea Beijing: Science Press, 1982 31~51]
- 14 秦蕴珊,赵一阳,陈丽蓉,等. 东海地质. 北京:科学出版社, 1987 [Qin Yunshan, Zhao Yiyang, Chen Lirong, et al Geology of the East China Sea Beijing: Science Press, 1987]
- 15 金翔龙主编.东海海洋地质.北京:海洋出版社,1992 185~215
 [Jin Xianglong Marine Geology of the East China Sea Beijing Ocean Press, 1992 185~215]
- 16 郭志刚,杨作升,雷坤,等.东海陆架北部泥质区沉积动力过程的 季节性变化规律.青岛海洋大学学报,1999,29(3):507~513[Guo Zhigang, Yang Zuosheng, Lei Kun, et al Seasonal variation of the sedimentary dynamic processed for the mud area in the northem East China Sea Journal of Ocean University of Qingdao, 1999,29(3):507 ~513]
- 17 Millman J D, Qin Y S, Park Y A. Sediments and sedimentary processes in the Yellow and East China Seas In: Taira A, Masuda F, eds Sedimentary Facies in the Active Plate Margin Tokyo: Terra Scientific Publishing Company, 1989. 233 ~ 249
- 18 Saito Y, Yang Z S Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea In: Iseki K, Koike I, Tsunogai, et al, eds Proceedings of International Symposium on Global Fluxes of Carbon and its Related Substances in the Coastal-Ocean—A tmosphere System. Sapporo: Hokkaido University, 1994. 7 ~ 12
- 19 A lexander C R, DeMaster D J, Nitttouer C A. Sediment accumulation in a modem epicontinental-shelf setting: the Yellow Sea Marine Geology, 1991, 98: 51 ~ 72
- 20 Lee H J, Chough S K Sediment distribution, dispersal and budget in the Yellow Sea Marine Geology, 1989, 87: 195 ~ 205
- 21 郭志刚,杨作升,曲艳慧,等.东海陆架泥质区沉积地球化学比较研究.沉积学报,2000,18(2):284~289 [Guo Zhigang, Yang Zuosheng, Qu Yanhui, et al Study on comparison sedimentary geochemistry of mnd area on East China Sea continental shelf Acta Sedi-

mentologica Sinica, 2000, 18 (2) : 284 ~ 289]

- 22 范德江,孙效功,杨作升,等. 沉积物物源定量识别的非线性规划 模型—以东海陆架北部表层沉积物物源识别为例. 沉积学报, 2002, 20(1): 30~33 [Fan Dejiang, Sun Xiaogong, Yang Zuosheng, *et al* A mathematical model on the quantitative provenance dentification-Take the identification of the surface sediment sources from ECS as example. Acta Sedimentologica Sinica, 2002, 20(1): 30~ 33]
- 23 杨作升,郭志刚,王兆祥,等. 黄东海陆架悬浮体向其东部深海区 输送的宏观格局. 海洋学报, 1992, 14(2): 81~90 [Yang Zuosheng, Guo Zhigang, Wang Zhaoxiang, et al Suspended sediments on the Yellow and East China Sea Shelf and macro-pattern of their being transported to the Eastern Deeper Sea Acta Oceanologica Sinica, 1992, 14(2): 81~90]
- 24 孙效功,方明,黄伟.黄东海陆架区悬浮体输运的时空变化规律. 海洋与湖沼,2000,31(6):581~587 [Sun Xiaogong, Fang Min, Huang Wei Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea Shelf Oceanologia et Limnologia Sinica, 2000, 31(6):581~587]
- 25 苏育松,李风歧,马鹤来,等.东海北部底层冷水团的形成及其季 节性变化.青岛海洋大学学报,1989,19 (1):1 ~14 [Su Yusong, Li Fengqi, Ma Helai, *et al* Formation and seasonal changes of the northern bottom cold water in the East China Sea Oceanologia et Limnologia Sinica, 1989,19 (1):1 ~14]
- 26 胡敦欣,杨作升.东海海洋通量关键过程.北京:海洋出版社, 2001. 3~13[Hu Dunxin, Yang Zuosheng The Key Process of Marine Fluxes in East China Sea Beijing: Ocean Press, 2001. 3~13]
- 27 DeMasterD J, Mckee B A, Nittiouer C A, et al Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea Continental Shelf Research, 1985, 4: 143 ~ 158
- 28 Yang Z S, Saito Y, Guo Z G, et al Distalmud area as a material sink in the East China Sea In: Iseki K, Koike I, Tsunogai S, et al, eds Proceedings of International Symposium on Global Fluxes of Carbon and its Related Substances in the Coastal-Ocean-A tmosphere System. Sapporo: Hokkaido University, 1994. 1~6
- 29 Hori K, Saito Y, Zhao Q H, et al Evolution of the coastal depositional systems of the Changjiang (Yangtze) river in response to late Pleistocene-Holocene sea-level changes Journal Of Sedimentary Research, 2002, 72(6): 884 ~ 897
- 30 Li C X, Chen Q Q, Zhang J Q, et al Stratigraphy and paleoenviommental changes in the yangtze delta during late quatemary. Journal of A sian Earth Sciences, 2000, (18): 63 ~79
- 31 Milliman, JD, Meade, RH. World-wide delivery of river sediment to the oceans Journal of Geology, 1983, 91: 1~21
- 32 喻普之,李乃胜主编. 东海地壳热流. 北京:海洋出版社, 1992 7
 [Yu Puzhi and Li naisheng (Editor in Chief). The Crust Thermal Flux of the East China Sea Beijing: Ocean Press, 1992 7]
- 33 Stuiver M, Reimer P J, Bard E, et al NTCAL98 Radiocarbon age calibration 24, 000 ~ 0 cal aBP. Radiocarbon, 1998, 40: 1041 ~ 1083

- 34 Visher G S Grain size distributions and depositional processes Journal of Sedimentary Petrology, 1969, 39 (3): 1074 ~ 1106
- Folk R L, Ward W C. Brazos river Bar. A study in the significance of grain-size parameters Journal of Sedimentary Petrology, 1957, (27): 3 ~26
- 36 Mason C C, Folk R L. Differentiation of beach, dune, and Aeolian flat environments' by size analysis, Mustang Island, Texas Journal of Sedimentary Petrology, 1958, 28: 211 ~ 226
- 37 Friedman G.M. Distribution between dune, beach, and river sands from the textural characteristics Journal of Sedimentary Petrology, 1961, 31: 514 ~519
- 38 Friedman G M. Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands Journal of Sedimentary Petrology, 1961, 31: 327 ~354
- 39 Klovan J E The use of factor analysis in determining depositional environments from grain-size distributions Journal of Sedimentary Petrology, 1966, 36: 115 ~125
- 40 孙东怀,安芷生,苏瑞侠,等. 古环境中沉积物粒度组分分离的数 学方法及其应用. 自然科学进展, 2001, 11 (3): 269 ~ 276 [Sun Donghuai, An Zhisheng, Su Ruixia, *et al* The mathematical method and it 's application of partitioning grain-size distribution from the sedimentary components in paleoenvironments Progress of Natural Sciences, 2001, 11 (3): 269 ~ 276]
- 41 Sun D, B beenendal J, Rea D K, et al Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components Sedimentary Geobgy, 2002, 152: 263 ~277
- 42 高抒, Collins M. 沉积物粒度趋势与海洋沉积物动力学. 中国科学 基金, 1998, 4: 241 ~ 246 [Gao Shu, Collins M. The grain-size trend of sediments and dynamics of marine sediments Funds of Chinese Sciences, 1998, 4: 241 ~ 246]
- 43 McCave IN, Manighetti B, Beveridge N A S Circulation in the glacial North Atlantic inferred from grain-size measurements Nature, 1995, 374: 149 ~51
- 44 McCave IN, Magnighetti B, Robinson S G Sortable silt and fine sediment size-composition slicing: parameters forpalaeocurrent speed and palaeoceanography. Palaeoceanography, 1995, 10: 593 ~610
- 45 Moerz T, Wolf-Welling T C W. Data Report Fine-fraction grain-size distribution data and their statistical treatment and relation to processes Site 1095 (ODP Leg 178, Western Antarctic Peninsula). In: Barker P F, Ramsay A T S, eds Proc. ODP, Sci Results, 2001, 178: 1 ~ 27
- 46 孙有斌,高抒,李军.边缘海陆源物质中环境敏感粒度组分的初步

分析.科学通报,2003,48(1):83~87 [Sun Youbin, Gao Shu, Li Jun Primary analysis on the sensitive grain-size of terrigenous sediment to environments in maginal sea Chinese Science Bulletin, 2003,48(1):83~87]

- 47 Wang L, Samthein M, Erlenkeuzer H, et al East A sian monsoon climate during the late-Pleistocene: High resolution sediment records from the South China Sea Marine Geology, 1999, 156: 245 ~284
- 48 Prins M A, Postma G, Weltje G J. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope Marine Geology, 2000, 169: 351 ~ 371
- 49 Rea D K, Hovan S A. Grain-size distribution and depositional processes of the mineal component of abyssal sediments: Lessons from the North Pacific Paleoceanography, 1995, 12: 251 ~258
- 50 Prins M A, Postma G, Cleveringaa J, et al Controls on terrigenous sediment supply to the Arabian Sea during the late Quatemary: the Indus Fan Marine Geology, 2000, 169: 327 ~ 349
- 51 Prins, M A, Weltje G J. End-member modeling of siliciclastic grainsize distributions: The late Quatemary record of eolian and fluvial sediment supply to the Arabian Sea and its paleoclimatic significance In: Harbaugh J, Watney L, Rankey G, Slingerland R, Goldstein R, Franseen E, eds Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations, SEPM (Society for Sedimentary Geology) Special Publication, 1999, 62: 91 ~111
- 52 Stuut J B W, Prins M A, Schneider R R, et al A 300-kyr record of aridity and wind strength in southwestem Africa: Inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic Marine Geology, 2002, 180: 221 ~ 233
- 53 Boulay S, Colin C, Trentesaux A, et al Mineralogy and sedimentology of Pleistocene sediments on the South China Sea (ODP Site 1144). Proceedings of the Ocean Drilling Program. Scientific Results, 2002, 184
- 54 曲政. 沉积物粒度数据表征方法的研究. 中国粉体技术, 2001, 7
 (4): 24~31 [Qu Zheng A study on characterization methods of grain-size data of sediment China Power Science and Technology, 2001, 7(4): 24~31]
- 55 范德江,杨作升,孙效功,等.东海陆架北部长江、黄河沉积物影响 范围的定量估算.青岛海洋大学学报,2002,32(5):748~756 [Fan Dejiang, Yang Zuosheng, Sun Xiaogong, et al Quantitative evaluation of sediment provenance on the North Area of the East China Sea Shelf. Journal of Ocean University of Qingdao, 2002, 32(5): 748~756]

A Study on Environmentally Sensitive Grain-size Population in Inner Shelf of the East China Sea

X AO Shang-bin^{1,2} L IAn-chun¹

1(Institute of Oceanology, Chinese Academy Sciences, Qingdao Shandong 266071) 2(South China Sea Institute of Oceanology, Guangzhou 510301)

Abstract Grain-size distribution of 149 sediment samples of Core DD2 and 3 suspended sediment samples, pretreated by removing the organic matter and carbonate, are measured by use of Malvem 2000. The sampling sites are located in the inner shelf of the East China Sea Vertical distribution of grain-size parameters of Core DD2 is studied Standard deviations are calculated for all 149 samples. Two peaks are observed in plot standard deviation values vs grain-size classes, at about 19 and 130 µm grain size, respectively. They are environmentally sensitive grain-size population. And about 19 µm is sensitive to coastal current of the East China Sea, the other is to storm current. Each of these size classes represents a population of grains with the highest variability through time. Vertical contents of sensitive grain-size population are carried out. It shows that the sedimentations of upper Core DD2 was controlled by coastal current and was in relatively stable environment. This result is supported by the comparison analysis between the modem suspended sediments and Core DD2. And lower part was controlled by combination of coastal and storm currents and was in unstable environment

Key words grain-size population, terrigenous matter, inner shelf of the East China Sea

第三届全国沉积学大会将在成都召开

酝酿已久的第三届全国沉积学大会将于 2005年 9月在成都市召开。这是中国沉积学界每 4年一次的盛 会。大会将围绕"沉积学与社会发展 这一主题,重点讨论沉积作用与油气资源勘探开发、与沉积体系有关的 矿产资源、全球环境变化与沉积作用、超大陆重建与大地构造沉积学、理论沉积学与新技术应用等与社会可持 续发展密切相关的理论与实际问题。会议形式多样,会后还将组织多条野外地质考察路线。

本次大会由中国地质学会沉积地质专业委员会、中国矿物岩石地球化学学会沉积学专业委员会发起,国土 资源部成都地质矿产研究所承办,由来自国家自然科学基金委员会、中国科学院、教育部、中国石化、中国石油 等部门的十余家学术研究、高等院校和企业单位参与组织。

有关会议内容和筹备详情请关注国土资源部成都地质矿产研究所网址: http://www.chengdu.cgs.gov.cn, 或向发起和承办单位索要有关会议资料。

> 中国地质学会沉积地质专业委员会 中国矿物岩石地球化学学会沉积专业委员会