文章编号:1000-0550(2005)01-0162-08

油藏储层中不同赋存状态烃类地球化学特征: 链烷烃 ——以鄂尔多斯盆地三叠系延长组为例

史基安¹ 赵 欣^{1,2} 王金鹏^{1,2} 王 琪^{1,2} 卢龙飞^{1,2} 王 雷^{1,2} 王有孝¹ 1(中国科学院兰州地质研究所气体地球化学重点实验室 兰州 730000) 2(中国科学院研究生院 北京 100039)

摘 要通过对鄂尔多斯盆地西峰油田三叠系延长组六个油砂样品中游离烃、封闭烃、碳酸盐胶结物烃、束缚烃和石 英颗粒包裹体烃的分步分离和抽提,并对每类烃的不同馏分进行 GC-MS分析。根据所分析样品的成岩作用序列,结 合样品的结构特征,表明这一方法是可行的。通过对不同赋存状态链烷烃的研究表明,研究区正构烷烃峰型为单峰 型,碳数分布广,具较弱的奇碳优势。烃类的母质类型显示为 — 型干酪根,形成于开阔水体条件下还原的淡水湖 相环境。Pr/Ph比值、CPI值,在不同赋存状态烃中差异比较明显,大体上从游离烃、封闭烃、胶结物烃、束缚烃到包裹 体烃有减小的趋势。结合其族组分特征,反映了油气演化的阶段性及其成藏期次和油藏微观的不均一性。 关键词 油藏储集层 不同赋存状态烃 链烷烃 分步抽提 延长组 第一作者简介 史基安 男 1958年出生 研究员(博士生导师) 储层沉积学与储层地球化学 中图分类号 P618 130.2⁺¹ 文献标识码 A

1 引言

油气藏的形成是一个从生油岩成烃、疏导层运移 及聚集成藏的动态过程。中途测试 (DSTs)或开采出 的原油,为油藏储层中可流动的油气组分,反映了成 藏油气演化的"最终"产物。生油岩中形成的烃类进 入储集层后的石油侵位,参与其成岩演化,进入封闭 型孔隙中的油气自孔隙封闭后就保持相对稳定,它记 录了油气较早期的信息。而在同一孔隙内部.油气的 分布也比较复杂,油相与矿物颗粒之间,由于界面张 力的相互作用,被吸附在颗粒表面的极性分子、非极 性或弱极性的油气组分也相对稳定。这种吸附在颗 粒表面的束缚态油气组分¹¹¹,是早期进入储层的烃 类。成岩作用过程中储层胶结物中的孔隙及碎屑颗 粒裂缝和次生加大边的油气包裹体中,也可保存有这 种产物 ,同时也记录了成藏条件 (温度、压力、流体成 分和相态)。而开放孔隙的油气,可以与外来组分混 合和变化。通过对有机包裹体地球化学特征^[2,3],含 油储集岩中油气包裹体与现今原油^[4],油气包裹体、 束缚态油气和现今储层的原油^[1,5,6,7],包裹体、中途 测试油^[8],包裹体、中途测试的油和油砂抽提物^[9], 油气包裹体、油砂抽提物和原油^[10],这些储层成岩作 用不同演化阶段捕获的烃类流体"化石 地球化学特 征的研究,有助于揭示油区的油气来源、演化及其成 藏过程。本文在对储层油砂中不同赋存状态的游离 烃、封闭烃、胶结物烃、束缚烃和包裹体烃分步抽提实 验方法介绍的基础上,探讨了链烷烃的地球化学特 征。

2 研究区地质背景

鄂尔多斯盆地位于华北地块的西缘,是一个古生 代地台及台缘坳陷与中新生带台内坳陷叠合的克拉 通盆地,是我国重要的含油气盆地,三叠系延长组是 重要的石油储集层和产层之一^[11]。盆地西部是深坳 陷斜坡区,在西倾斜坡的背景上形成了沉降生烃、隆 起运聚、上倾遮挡的成藏地质条件^[12]。西南部的物 源来自秦岭、祁连山褶皱带及盆地西缘陆架的变质岩 和早古生带沉积岩。它们在盆地中形成明显的由河 流沉积、三角洲沉积、半深湖沉积所组成的环状相带, 使延长组经历了由湖泊产生、发展乃至消亡的完整过 程^[13]。研究区西峰油田三叠系延长组长 7~8段储 集砂岩是在上述背景下沉积的具近物源,搬运距离较

中国科学院知识创新重要方向项目(批准号: KZCX3 - SW - 128)、国家自然科学基金(批准号: 40272065)、气体地球化学重点实验室基金(SJJ - 03, 02, 04)资助。

收稿日期:2004-07-17;收修改稿日期:2004-11-10

短,堆积速度相对较快的特点。其经历的主要成岩序 列为:早期粘土膜形成、机械压实、石英次生加大、方 解石沉淀、有机流体注入、长石颗粒溶解、自生高岭石 形成、方解石溶解、石油侵位、铁方解石白云石充 填^[14]。

本研究区普遍缺失长 1油层组,有些甚至缺失长 1至长 4+5油层组。

图 1 鄂尔多斯盆地单元划分及研究区地理位置

Fig 1 Sketch map showing tectonic units and location of the study area in Ordos Basin

3 样品和实验

实验用的六个油砂样品采自鄂尔多斯盆地西峰 油田的延长组长 7.长 8段的岩心。

油砂中不同赋存状态烃类的分离实验流程: 对 经过预处理的岩样,选取粉碎至 0.5~1.5cm的颗粒 样品,用二氯甲烷—甲醇(体积比 93 7)溶剂索氏抽 提获得储层开放孔隙系统的烃(简称游离烃); 经 过上述处理后的岩样,用尽量温和的手工方式分离成 单矿物颗粒(用显微镜随时观察,以控制分离程度), 然后用二氯甲烷—甲醇(体积比 93 7)溶剂索氏抽 提得到封闭空间烃组分(简称封闭烃); 对步骤 处理后的单矿物样品用 6%的盐酸溶液处理,处理后 的溶液用溶剂萃取,得到方解石胶结物释放的烃(简 称胶结物烃); 酸处理后的砂样用蒸馏水冲洗至中 性,干燥后,用二氯甲烷—甲醇(体积比 93 7)溶剂 索氏抽提得到单矿物表面粘附或滞留的烃组分(简 称束缚烃); 用新配制的重铬酸钾—浓硫酸溶液和 双氧水处理经过 步骤后的砂粒后,用二氯甲烷一甲 醇(体积比 93 7)溶剂索氏抽提至表面无烃类。然 后将砂粒在二氯甲烷一甲醇(体积比 10 1)溶剂中 磨细并用索氏抽提得到单矿物颗粒的包裹体烃组分 (简称包裹体烃)。处理样品所用试剂均重蒸 2次, 玻璃仪器均用洗液洗涤。上述样品的分离方法参阅 了 Maowen Li等^[15],包裹体的分离参阅了 Abid G Bhullar等^[9], Changchun Pan等^[7],本实验对分离出 的不同赋存状态的烃类,除胶结物烃和包裹体烃外, 均用正己烷沉淀沥青质,用柱色谱(硅胶一氧化铝; 体积比 4 1)分离得到饱和烃、芳烃、氯仿、甲醇馏 分,然后将各馏分进行仪器分析,获得了比较满意的 效果。

实验条件:气相色谱 — 质谱联用仪 (GC—MS)由 美国安捷伦科技公司 (Agilent)制造。为 HP6890N型 气相色谱与 HP5973型 (四极矩质谱仪)质谱联用仪。 色谱条件: HP—5弹性石英毛细管柱 (30m x0.25 mm x0.25µm),柱箱始温 80 ,恒温 2min后以 4 min⁻¹程序升温至 290 ,恒温 30 min,气化室温度为 280 ,载气为高纯度的氦气。质谱条件:离子源为 EI,离子源温度 230 ,电离能为 70eV, GC与 MS接 口温度为 280 。使用美国 N IST02谱库。

上述实验在中国科学院兰州地质研究所气体地 球化学重点实验室完成。

4 结果与讨论

4.1 样品的结构特征

实验所用样品采自鄂尔多斯盆地西峰油田三叠 系延长组长 7~长 8,岩性主要为石英砂岩。其粒度 的结构分布见图 2,各个样品的粒度平均值、标准差、 偏差、尖度等参数见表 1。石英砂岩颗粒的粒级为细 砂 —中砂,分选性为中等偏差,偏差正、负偏差值均 有,峰态为宽峰态。本次实验,研磨包裹体烃用的砂 样,其粒径为 0.097~0.3 mm 或 0.45 mm,因为它们 均经历了共同的成岩演化。

4.2 不同赋存状态烃的族组成特征

油砂中不同赋存状态烃类含量分析结果见图 3。 由于胶结物烃和包裹体烃的含量甚微,未进行族组分 分离。游离烃和束缚烃族组成分别见图 4,5。不同 赋存状态烃类的含量及组成具有以下特点:1)、烃类 的含量在不同赋存状态烃中分布差异明显,呈数量级 关系。其平均含量,游离烃为 7.3‰,胶结物烃为 1.25 ×10⁻⁵,而包裹体烃仅占 7.53 ×10⁻⁶。2)各类烃

Fig 2 Block diagrams of grain size distribution of the experimental samples

农 I 关强//11大/0日/中间的检疫多效												
		Table 1 The grain-size parameters of the experimental quartzose sandstone from Ordos basin										
	样品	深 度	层位	平均粒径		标 准 差			小市			
	编号	/m		/mm		/mm		调左	大反			
	Sc 1	2313. 1	₭ 81	0. 205	2. 286	0. 068	3. 878	0. 268	1. 776			
	Sc 2	1931. 5	长 71	0. 139	2.847	0. 028	5. 158	0. 223	2. 773			
	Sc 3	2006. 5	₭ 81	0. 158	2.662	0. 031	5. 011	- 0. 059	2. 373			
	Sc 4	2142. 5	₩ 72	0. 189	2.404	0. 057	4. 133	0. 659	2, 810			
	Sc 5	1556.8	长 71	0. 136	2.878	0. 024	5. 381	- 0. 400	2.473			

0.163

表 1 实验用石英砂岩样品的粒度参数

2.617

0.032

的族组分也有较大的差异。例如在游离烃中,饱和烃 的含量相对较高,平均值为 61.95%。而束缚烃中以 强极性甲醇馏分和沥青质组分的含量相对较高,平均 值分别为 43.93%和 41.18%;饱和烃和芳烃馏分含 量相对较低,平均值分别为 8 26%和 2 81%。这种 组成的变化与烃的赋存状态有关,游离烃主要为储层 连通孔隙中的油气,其饱和烃等轻质组分含量较高。 而束缚烃赋存于矿物颗粒表面,更富集非烃和沥青质 等这些重质组分。包裹体烃由于含量甚微,虽未进行 族组分分离,但从油气包裹体组分的正构烷烃的分布 图可以看出,也含有相当数量的轻组分。

1625. 0

长 81

4.3 不同赋存状态烃的链状烷烃组成特征

Sc 6

正构烷烃是生油岩和原油的主要化学组分,具有 多种成因和来源,其组成和碳数分布可能反映有机质 类型、沉积环境和热演化程度。样品 SC5不同赋存 状态正构烷烃 (m/z 85)质量色谱图见图 6。样品 SC1~SC6不同赋存状态烃的正构烷烃分布见图 7。 由图可见,其峰形为单峰型,碳数范围从 C₁₂~C₄₁,低

- 0. 271

2.143

4.966

图 3 储层油砂中不同赋存状态烃含量分布图

Fig 3 Hydrocarbon contents of oil sand extracts

Fig 4 Percentage of cluster in free oil from the reservoir

碳数 (< C_{21})和高碳数 (> C_{22})正构烷烃都有分布,主 峰碳分布见表 2。值得指出的是在包裹体烃中也检 测出 $C_{14} \sim C_{21}$ 低碳数的正构烷烃。正构烷烃的碳优 势指数 (CPI)小于 1. 2,具有较弱的奇碳优势。一般 认为,沉积物中 $C_{15} \sim C_{21}$ 正构烷烃来源于水生藻类, 且以 nC_{15} 或 nC_{17} 为主,没有明显的奇偶优势^[16]。来 源于高等植物蜡的正构烷烃为 $nC_{25} \sim nC_{33}$,主峰碳为 nC_{27} 、 nC_{29} 、 nC_{31} ,具有强烈的奇偶优势^[16]。另外,还 有一些长链正烷烃来源于细菌或细菌强烈改造的植 物蜡^[17]。在 $Pr/nC_{17} \sim Ph/nC_{18}$ 关系图上^[18](图 8), 也显示为 — 型干酪根母质,尤其是菌藻类在半深 湖—深湖环境对成烃的贡献。

姥鲛烷 (Pr)和植烷 (Ph)主要是由可进行光合作 用生物中叶绿素的植基侧链生成。在沉积物缺氧条 件下植基侧链断裂而形成植醇,植醇被还原为二氢植 醇,然后再被还原成植烷。在弱氧化—弱还原介质条 件下,植醇被氧化为植酸,植酸脱羧为姥鲛烯,然后还 原为姥鲛烷^[16,19]。除叶绿素外,古细菌类脂物 (来自 甲烷生成菌或嗜盐菌)可能也是 Pr和 Ph的母源,维 生素 E还是 Pr的母源^[20]。盐湖强还原环境的植烷 来源可能与古细菌生源有关^[21~23]。因此, Pr/Ph是 一项常用于确定沉积环境氧化还原性的有效地化指 标,低的 Pr/Ph值指示有机质形成还原环境,反之则 指示氧化环境^[24]。开阔水体条件下沉积的烃源岩所 生成的石油,其 Pr/ nC_{17} 之比小于 0.5^[20]。实验样品 的 Pr/Ph小于 1,在 0.14~0.93之间(除 Sc3 - 1为 1.04)。但 Pr/ nC_{17} 和 Ph/ nC_{18} ,前者介于 0.17~0.48 之间,后者介于 0.19~0.64之间,这表明注入该油层 的原油来自相似类型的烃源岩,成烃母质形成于开阔 水体条件下还原的淡水湖相环境。

热成熟度也可改变 Pr/Ph比值,石油的 Pr/Ph比 值会随成熟度增加而升高^[20]。从 Pr/Ph可以看出, 游离烃的成熟度较高,而封闭烃、胶结物烃、束缚烃到 包裹体经,其 Pr/Ph有减小的趋势(图 9),包裹体烃 成熟度最低。游离烃为砂岩开放孔隙中的油气组分, 代表了现今储层的原油,表明在成藏过程中不断有成 熟度相对较高的原油注入,早期的特征逐渐被后来者 所掩盖。封闭烃为封闭空间残余的油气组分,它与游 离烃相比,吸附较早期的油气,其成熟度比游离烃低。 而胶结物烃则是存在于碳酸盐胶结物晶间孔和次生 加大边的油气,其 Pr/Ph比封闭烃低,反映成熟度比 后者低,但也不排除由于后期方解石溶蚀孔隙捕获烃 类的可能性,而使胶结物烃复杂化。束缚烃主要为更 早期的油气,它存在矿物颗粒表面,油气一旦注入砂 岩,其中的沥青质和胶质等大分子被颗粒表面优先吸 附,而它又吸附一些弱极性或非极性分子,它被后期 碳酸盐胶结物所封闭,很难与外界油气交换,保存了 早期油气的特征,具有更低的成熟度。包裹体烃则存 在于石英颗粒的裂缝或次生加大边中,其 Pr/Ph介于 0.35~0.62之间。包裹体捕获的烃类为早期注入的 油气组分,其成熟度最低。图 7中每个不同赋存状态 烃个体中主峰碳的差异,尤其在封闭烃和束缚烃中比 较明显,反映了每个样品热演化和赋存状态的差异 性。表 2中 CPI值,游离烃、封闭烃、胶结物烃、束缚 **烃和包裹体烃的平均值分别为:1.06.1.10.1.20** 1.12和 1.23.亦反映了上述不同赋存状态烃成熟演 化的趋势。

综上所述,在砂岩成岩演化序列的基础上,依据 不同赋存状态烃的链烷烃的地化参数及成熟演化,结 合它们的族组分特征,反映出油气演化的阶段性及其 成藏期次和油藏微观的不均一性。

of Yanchang Formation in Ordos basin

	Table 2	Geochem ica	pa ram eter s	of oil sand	extracts in	different s	tate from th	e sandstone	e reservoir	•
样品是	碳数	主峰碳	Pr/	Pr/	Ph/	nC ₂₇ /	C ₂₁ . /	OEP	CPI	各注
1744 3	分布		Ph	<i>n</i> C ₁₇	nC_{18}	<i>n</i> C ₁₇	C _{22 +}	(C _{23 - 27})	(C_{26-30})	ш/⊥
sc1 - 1	C _{13 - 38}	C _{17 - 21}	0. 93	0. 27	0. 28	0. 70	0. 99	1. 05	1.06	游离烃
sc2 - 1	C _{13 - 36}	C _{20 - 22}	0.59	0.44	0. 63	1. 04	0.71	1.06	1. 05	
sc3 - 1	C _{12 - 37}	C _{19 - 21}	1. 04	0.40	0.38	0. 77	0. 98	1. 09	1. 09	
sc4 - 1	C _{14 - 36}	C _{20 - 22}	0.86	0. 31	0. 30	0.76	0.86	0.99	1. 03	
sc5 - 1	C _{13 - 37}	C _{20 - 22}	0. 68	0.39	0. 53	0.88	0.82	1. 01	1. 08	
sc6 - 1	C _{12 - 38}	C _{19 - 21}	0.88	0.33	0.34	0.79	0.95	0. 98	1. 05	
sc1 - 2	C _{15 - 38}	C _{18 - 23}	0. 37	0. 22	0. 29	0.58	0. 62	1. 05	1. 13	封闭烃
sc2 - 2	C _{14 - 38}	C _{27 - 30}	0. 55	0.48	0.64	2.11	0.41	1.06	1.11	
sc3 - 2	C _{15 - 37}	C _{27 - 30}	0.88	0. 19	0.19	2. 24	0. 31	1. 05	1.11	
sc4 - 2	C _{16 - 38}	C _{23 - 27}	0. 55	0.18	0. 21	2.85	0.34	1. 00	1. 12	
sc5 - 2	C _{15 - 39}	C _{19 - 24}	0. 62	0.26	0.33	0. 65	0.94	1. 05	1. 09	
sc6 - 2	C _{14 - 41}	C _{19 - 29}	0. 91	0. 25	0. 23	1. 21	0.49	1. 03	1. 05	
sc1 - 3	C _{14 - 35}	C _{22 - 27}	0. 45	0. 24	0.59	1. 85	0. 05	1. 01	1. 15	胶结物烃
sc2 - 3	C _{14 - 35}	C _{20 - 24}	0. 14	0.17	0.51	2. 23	0.56	1. 02	1. 18	
sc3 - 3	C _{14 - 34}	C _{20 - 25}	0. 28	0.12	0.45	2.75	0.50	1. 05	1. 21	
sc4 - 3	C _{16 - 35}	C _{21 - 27}	0. 26	0. 19	0.39	5.54	0.35	1. 05	1. 28	
sc5 - 3	C _{15 - 37}	C _{20 - 25}	0. 33	0. 19	0.46	1.89	0. 61	1. 08	1.17	
sc6 - 3	C _{16 - 31}	C _{20 - 24}	0. 37	0. 21	0.48	1. 65	0. 79	1. 03	1.19	
sc1 - 4	C _{14 - 37}	C _{23 - 27}	0. 64	0. 22	0. 26	3. 25	0.36	1. 03	1.17	束缚烃
sc2 - 4	C _{15 - 33}	C _{17 - 18}	0. 71	0. 27	0.36	0.07	4. 03	1. 12	1.16	
sc3 - 4	C _{14 - 36}	C _{25 - 29}	0. 95	0. 27	0. 27	1. 55	0.41	1. 03	1. 07	
sc4 - 4	C _{15 - 37}	C _{23 - 27}	0. 85	0. 31	0. 30	1. 25	0.55	1. 07	1. 13	
sc5 - 4	C _{15 - 37}	C _{18 - 21}	0. 43	0. 25	0.34	1. 08	0.75	1. 06	1.11	
Sc6 - 4	C _{15 - 35}	C _{17 - 20}	0.86	0. 27	0. 31	0.33	1. 34	1. 01	1. 05	
sc1 - 5	C _{14 - 37}	C ₂₁	0. 62	0. 24	0. 29	0.84	0.54	1. 08	1. 13	包裹体烃
sc2 - 5	C _{16 - 34}	C ₂₉	0.36	0.33	0.58	3. 00	0. 31	1.11	1. 53	
sc3 - 5	C _{16 - 34}	C _{20 - 21}	0.39	0.18	0. 27	1. 53	0.64	1. 03	1.17	
sc4 - 5	C _{16 - 34}	C _{20 - 23}	0.39	0. 21	0. 35	1. 67	0.56	1. 13	1. 21	
sc5 - 5	C _{16 - 36}	C ₂₀	0.35	0. 29	0.57	1. 12	0. 61	1. 09	1.14	
sc6 - 5	C _{16 - 32}	C ₂₀	0.46	0. 21	0.33	0.91	0. 73	1. 05	1. 21	

表 2 储层油砂中不同赋存状态烃的地球化学参数

 $CPI = 2(C_{27} + C_{29}) / (C_{26} + 2C_{28} + C_{30})_{\circ}$

5 结论

通过对鄂尔多斯盆地西峰油田三叠系延长组不 同赋存状态烃的分步抽提和分析,结果表明,根据所 分析样品的成岩作用序列,结合样品的结构特征,这 一分离方法是可行的。通过对不同赋存状态烃链烷 烃的研究表明,研究区正构烷烃峰型为单峰型,碳数 分布广,较弱的奇碳优势,烃类的母质输入显示为

— 型干酪根母质,形成于开阔水体条件下的还原 的湖相淡水环境。Pr/Ph、CPI比值在不同赋存状态 烃中差异比较明显,包裹体捕获的烃类为早期注入的 成熟度较低的组分。束缚烃也属于早期的油气组分。 游离烃的 Pr/Ph比值最高,为油藏中连通孔隙的烃 类,而封闭烃为一些封闭空间的残余油气组分,它与 游离烃相比,吸附较早期的油气,其成熟度比游离烃 略低。上述特征可看出油气演化的阶段性及其成藏 期次和油藏微观的不均一性。

致谢 感谢中国科学院兰州地质研究所孟仟祥 研究员、房關 工程师在样品 GC - MS分析中给予的帮助。

参考文献 (References)

 潘长春,傅家谟,盛国英.塔里木库车坳陷含油、气储集岩连续抽提 和油、气包裹体分析. 科学通报, 2000, (45): 2750 ~ 2757 [Pan Changchun, Fu Jiamo, Sheng Guoying Sequential extraction and compositional analysis of oil-bearing fluid inclusions in reservoir rocks from Kuche Depression, Tarim Basin Chinese Science Bulletin, 2000, 45 (Suppl): 2750 ~ 2757]

图 9 研究区油砂中不同赋存状态烃 Pr/nC₁₇~Pr/Ph关系图

Fig 9 Relationship between the Pr/nC_{17} and Pr/Ph of oil sand extracts in different state from the sandstone reservoir

- 2 潘长春,周中毅,解启来.油气和含油气包裹体及其在油气地质地 球化学研究中的意义.沉积学报,1996,14(4):15~23[Pan Changchun, Zhou Zhongyi, Xie Qilai Hydrocarbon inclusions implications for petroleum geology and geochemistry Acta Sedimentologica Sinica, 1996,14(4):15~23]
- 3 罗小平,王海宏,李行军,等. 苏丹 M 盆地萨加隆起储层有机包裹体地球化学特征. 成都理工大学学报 (自然科学版) 2003, 30 (3): 273 ~ 279 [Luo Xiaoping, Wang Haihong, Li Xingjun, et al Geochemical characteristics of organic inclusions from the reservoirs in SaJia rise of M basin, Sudan Journal of Chungdu University of Technology (Science and Technology Edition), 2003, 30 (3): 273 ~ 279]
- 4 Kalsen D. A., Nedkvitne T, Larter S R, *et al* Hydrocarbon composition of authigenic inclusion: application to elucidatation of petroleum

reserveoir filling history Geochinica et Cosmochinica Acta, 1993, 57: 3641 ~ 3659

- 5 潘长春,杨坚强.准噶尔盆地砂岩储集岩生物标记化合物特征及其 意义.地球科学,1997(5):82~90[Pan Changchun, Yang Jianqiang Characteristics of biomarker compounds in sandstone reservoir rocks in Junggar basin and its implications Geochimica, 1997, 26 (5):82~90]
- 6 潘长春,杨坚强.油气藏微观非均一性及其意义.沉积学报,1998 (4):98~104 [Pan Changchun, Yang Jianqiang Geochemical heterogeneities of hydrocarbon reservoirs in microscale and applications Acta Sedimentologica Sinica, 1998, 16 (4):98~104]
- 7 Changchun Pan, Jianqiang Yang, Jiaomo Fu, *et al* Molecular correlation of free oil and inclusion oil of reserveoir rocks in the Junggar Basin, China Organic Geochemistry, 2003, 34: 357 ~ 374
- 8 Simon C. George *et al* Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro sandstone, Papua New Guinea Organic Geochemistry, 1991, 26 (3/4): 115 ~ 173
- 9 Abid G Bhullar, Dag A Karlsen, et al Dating reservoir filling a case history from the north sea Marine and Petroleum Geology, 1999, 16: 581 ~ 603
- 10 冯建辉,谈玉明,罗小平,等. 东濮凹陷原油、油砂抽提物与油气 包裹体地球化学对比及其意义. 地球化学,2003,32(6):591~
 600[Feng Jianhui, Tan Yuming, Luo Xiaoping, et al Geochemical comparison and implications of oils, core extracts and oil-bearing fluid inclusions in reserveoirs of Dongpu depression Geochimica, 2003, 32 (6): 591~600]
- 11 杨俊杰,裴锡古.中国天然气地质学(卷四).北京:石油工业出版社,1996[Yang Junjie, Pei Xigu Geobgy of natural gas in China (Vol 4). Beijing: Petroleum Industry Press, 1996]
- 12 长庆油田石油地质志编写组. 中国石油地质志(卷十二,长庆油田). 北京:石油工业出版社, 1992 [Editorial Committee of Petroleum Geology of Changqing Oilfield Petroleum Geology of China: Changqing Oilfield Beijing: Petroleum Industry Press, 1992]
- 13 杨俊杰.鄂尔多斯盆地构造演化与油气分布规律.北京:石油工 业出版社,2000 [Yang Junjie Tectonic evolution and oil-gas reservoirs distribution in Ordos basin Beijing: Petroleum Industry Press, 2000]
- 14 史基安,王金鹏,毛明陆,等.鄂尔多斯盆地西峰油田三叠系延长 组长 6-8段储层砂岩成岩作用研究.沉积学报,2003,21(3):373 ~381 [Shi Ji 'an, Wang Jinpeng, Mao Minglu, et al Reservoir sandstone diagenesis of Member 6 to 8 in Yanchang Formation (Triassic), Xifeng oilfield, Ordos basin Acta Sedimentologica Sinica, 2003,21(3):373~381]
- 15 Maowen Li, Stephen R Larter, and Daniel Stoddart Liquid chromatographic separation schemes for pyrrole and pridine nitrogen aromatic heterocycle fractions from crude oils suitable for rapid characterization of geochemical Analysis Chemistry, 1992, 64: 1337 ~ 1344
- 16 黄第藩,李晋超.利用气相色谱资料探讨几种成油生源构成.石油与天然气地质,1982,3(3):251~259[Huang Difan and Li Jinchao. A study of the structures of biogenetic substance in disseminated hydrocarbons by gas chromatograms Oil & Gas Geology, 1982,3(3): 251~259]

- 17 Yen T F. Genesis and degradation of petroleum hydrocarbons in marine environments In: Church T N ed Marine chemistry in the Coastal Environment A. C. S Synposium Series 18, Washington 1975. 237
- 18 Shanmugam G Significance of Coniferous Rain forests and related organic matter in generating commercial quantities of oil, Gippsland basin, Australia AAPG, 1985, 69 (8): 1 241 ~1 254
- 19 张敏, 王东良, 朱翠山, 等. 冀中坳陷苏桥 —文安油气田混源油 定量识别模式研究 (一):原油成因分类及地球化学特征. 天然气 地球科学, 2004, 15(2): 115~119[Zhang Min, Wang Dongliang, Zhu Cuishan, *et al* Study on quantitative identification model of mixed oils from Suqiao-Wenan area in Jizhong depression Part I: Genetic types and geochemical characteristics of crude oils Natural Gas Geoscience, 2004, 15(2): 115~119]
- 20 姜乃煌等译. 生物标记化合物指南 —古代沉积物和石油中分子化石的解释. 北京:石油工业出版社, 1995. 85~107 [Kenneth E, Peters and Michael Moldowan J, eds Translated by Jiang Naihuang, et al The biomarker guilde: Interpreting molecular fossils in petroleum and ancient sediments Beijing: Petroleum Industry Press, 1995. 85~107]

- 21 傅家谟,盛国英,江继纲. 膏盐沉积盆地形成的未成熟石油.石油 与天然气地质,1985,6(2):150~158 [Fu Jiamo, Sheng Guoying and Jiang Jigang Immature oil originated from a saline deposition bearing basin Oil & Gas Geology, 1985,6(2):150~158]
- 22 赵全民,杨道庆,江继刚,等. 舞阳、襄城凹陷下第三系盐湖相有机 地球化学与沉积环境研究. 沉积学报, 2003, 21 (2): 334 ~ 339 [Zhao Quanmin, Yang Daoqing, Jiang Jigang, et al Study of Lower Tertiary organic geochemistry and their sedimentary environment in Wuyang and Xiangcheng saline sag, Henan, China Acta Sedimentobgica Sinica, 2003, 21 (2): 334 ~ 339]
- 23 胡建芳,彭平安,贾国东,等.三万年来南沙海区古环境重建:生物 标志物定量与单体碳同位素研究. 沉积学报, 2003, 21(2):211 ~ 218[Hu Jianfang, Peng Ping'an Jia Guodong, et al A biomarker and isotopic approach for the Paleoenvironmental reconstruction, NanSha area, South China sea since the last 30ka Acta Sedimentologica Sinica, 2003, 21(2):211~218]
- 24 妥进才. 塔里木盆地三叠系有利生烃环境. 天然气地球科学, 2003, 14(2): 120~125. [Tuo Jincai Triassic of Tarim Basin, A favourable environment for hydrocarbon generation Natural Gas Geoscience, 2003, 14(2): 120~125]

Geochem ical Characteristics of O il Sand Extracts in D ifferent State from Sandstone Reservoir: linear hydrocarbon

—A case study from Triassic Yanchang Formation in Ordos basin

SH I J i-an¹ ZHAO X in^{1,2} WANG J in-peng^{1, 2} WANG Q i^{1, 2} LU Long-fei^{1, 2} WANG Lei^{1, 2} WANG You-xiao¹ 1 (Key Laboratory of Geochem istry, Lanzhou Institute of Geology, Chinese Academy of Sciences, Lanzhou 730000) 2(Graduate school of Chinese Academy of Sciences, Beijing 100039)

Abstract Through the stepwise separation and extract on free hydrocarbon, sealed hydrocarbon, hydrocarbon in carbonate cement, bounded hydrocarbon and inclusion hydrocarbon within quartz grain on six oil sand samples from Yanchang Fm. (Triassic), Xifeng oilfield, Ordos basin, all these hydrocarbons have been analyzed by GCMS On the basis of diagenetic sequence, in combination with the feature of the analyzed samples, the results show that this method is practicable. And the study on linear alkane with different existence states shows the *n*-alkanes with single peak are dominant in the study area with wide range of carbon number and weaker odd-carbon preference. The parent material types of these hydrocarbons are type - kerogen deposited in the reducing fresh water lacustrine environment Obvious differences occur in Pr/Ph ratio and CPI value in these hydrocarbons, cement hydrocarbon to inclusion hydrocarbon, together with their group composition features, this phenomena can reflect the oil generation steps and filling periods of oil pool and microscale heterogeneity within oil pools

Key words reservoir, linear hydrocarbon, stepwise extraction, hydrocarbon in different state, Yanchang Formation