文章编号:1000-0550(2005)03-0514-09

长江口沉积物²¹⁰ Pb分布及沉积环境解释

段凌云¹ 王张华² 李茂田¹ 潘建明³ 陈中原² Yishiki Saito⁴ Yutaka kana⁵ 1(华东师范大学地理系 上海 200062) 2 (华东师范大学河口海岸国家重点实验室 上海 200062)

3 (国家海洋局第二海洋研究所 杭州 310012) 4 (MRE, Geological Survey of Japan, A IST, Central 7, Higashi 1-1-1, Tsukuba, Ibaraki 306-8567, Japan) 5 (RCDME, Geological Survey of Japan, A IST, Central 7, Higashi 1-1-1, Tsukuba, Ibaraki 306-8567, Japan)

摘 要 在长江河口潮滩、分流河道和水下三角洲共获得 18个柱样,进行沉积学分析和²¹⁰ Pb测定,并对其中 6根柱 样进行¹³⁷ Cs测定。经研究发现,长江口外在水深 25~30m,122 30 N,31 00 E附近存在一个泥质沉积中心,沉积速率 达 2 0~6 3 cm/yc。另外,在潮滩和涨潮槽也获得较高沉积速率,其中南汇和横沙岛潮滩沉积速率(1.03~1.94 cm/ yr)高于崇明东滩(0.51~0.76 cm/yr),涨潮槽沉积速率也达 0.86 cm/yc。此外,在石洞口、南汇、九段沙潮滩和三角洲 前缘有部分柱样未获沉积速率,推测为沉积环境不稳定或沉积速率过快所致。

关键词 沉积速率 ²¹⁰ Pb 长江口

第一作者简介 段凌云 女 1980年出生 硕士研究生 自然地理学 中图分类号 P512 2 文献标识码 A

1 引言

²¹⁰ Pb是百年尺度内测年的极好核元素,它常被 用于沉积过程较稳定且沉积环境较封闭的连续沉积 中。此方法最早见于南极冰雪年龄的测定,后被广泛 地应用于湖泊、海湾及河口数十年沉积过程的研 究^[1~3]。一些学者还通过检测人工核素¹³⁷ Cs的峰值 来检验²¹⁰ Pb法测得的结果,发现²¹⁰ Pb法测定沉积速 率数据比较可靠^[4~5]。

长江平均每年向河口地区输送约 4.86亿吨泥 沙,巨量的流域来沙在河口不同地区堆积,为三角洲 的发育及向海推进提供了丰富的资源。在土地资源 紧缺的长江三角洲地区,揭示三角洲的沉积规律并预 测其建造趋势具有十分重要的现实意义。

前人已经用多种方法对长江口的沉积速率进行 测量计算,其中包括放射性元素测量法(主要是²¹⁰ Pb)^[6,7]、历史海图叠加法及利用古海岸线标志推 算^[8]等。但由于长江三角洲水动力复杂,部分地区 沉积环境相对不稳定,堆积速率大,百年尺度沉积速 率的测定仍存在许多问题^[9~10]。另外,由于²¹⁰ Pb方 法的实验过程及数据处理不统一也造成各家测定结 果不一致,又限制了²¹⁰ Pb的应用^[11]。本文试图通过 对长江口 18个钻孔的²¹⁰ Pb含量测定,对比不同沉积 亚相中²¹⁰ Pb的分布特征,揭示长江三角洲近百年来的沉积规律,并探讨²¹⁰ Pb在三角洲沉积速率计算的应用前景。

2 研究方法

本研究在长江三角洲共获取柱状样和沉积剖面 18个,范围从潮滩、长江南支、向东至约 123 E,水深 约 55m处 (图 1)。1995年和 1998年分别在长江口 南岸的石洞口 (光滩)、崇明东滩 (藨草带)和九段沙 (藨草带)采集 3个柱状样 (C1、C5和 C10),长约 48 ~62 cm,采集部位主要在高、中潮滩。2000年在长 江口外水深 10~55 m处采集柱状样 6个 (Y4~Y9), 长约 200~400 cm:同年在南汇高潮滩采集柱状样 1 个 (C8),长约 600 cm。2001年在崇明东滩湿地 92 大堤内侧开挖沉积剖面一个 (C4),长约 135 cm,并在 98大堤外侧高潮滩上用箱式采样器采得箱式柱状岩 心一个 (C6),长约 85 cm;在上海宝山白龙港高、低潮 滩取柱状样 2个 (C2和 C3),各长约 20 cm。2003 年,又分别在横沙岛和南汇朝阳农场高潮滩采集柱状 样 2个 (C7和 C9), 各长约 100 cm。 另外, 还收集前 人于 2001年在长江南支涨潮槽南小泓 (长兴岛南岸 涨潮槽)和新桥水道取得的柱状样 2个 (C11 和 C12)、长分别为 104 cm和 56 cm。

国家重点基础研究发展规划项目 (2002CB412505)资助. 收稿日期: 2004-10-26;收修改稿日期: 2005-03-17

图 1 研究区地理位置及柱状样分布

Fig 1 Geographical location of the study area and the distribution of vibrocores

对柱样均进行了室内解剖,观察沉积物特征并作 描述,同时取样进行²¹⁰ Pb分析,取样间隔 0.5~7 cm, 共计取样 237个 (表 1)。

表 1 本研究中样品采集情况

Table 1	V ibrocores and	specimen o	f the	nresent stu	dv
	v Drocores and	specmen 0	I UIC	present su	uv

双角时间	计比约旦	柱样深度	取样间隔	分析样品数	数据来源	
木乐凹凹	作生作于调告	/cm	/am	个		
1995 - 1998	C1, C5, C10	$48 \sim 60$	1~2	33	本研究	
	Y4 ~ Y9	200 ~ 400	5	108	本研究	
2000	C8,	600	2~3		本研究	
	C11	56	7	8	王永红,2003	
	C12	104	6	13	王永红,2003	
2001	C4	135	5	8	本研究	
	C6	85	5	7	本研究	
	C2, C3	20	0.5~4	18	本研究	
2003	C7, C9	105 ~ 150	2~5	35	本研究	

称取 10 g左右的湿样,在 105 ℃高温下烘干。 取 2~5g干沉积物研磨、过 100目孔筛去除植物根 茎,入管腊封,放置 3星期。然后使用 OR TEC高纯锗 井型探头 (GWL-120210-S)进行放射性同位素测量, 每样品测量时间一般为 1~3天,以 46.5 keV (²¹⁰ Pb) 能量处的峰计算总²¹⁰ Pb比活度,以 351.92 keV (²¹⁴ Pb,²²⁶ Ra的子体)能量处的峰计算本底²¹⁰ Pb比活度, 其差值即为过剩²¹⁰ Pb (²¹⁰ Pb_{ex})的比活度。

Y4~Y9的样品处理及放射性同位素分析在日本地质调查院完成,包括²¹⁰Pb和¹³⁷Cs的放射性测试。 C1~C12的样品处理及放射性同位素分析在华东师范大学河口海岸重点实验室完成,仅进行²¹⁰Pb的放射性测试。本文中均利用 CIC (Constant Initial Concentration)模式计算柱状样的沉积速率^[3~5~11]。对于 各钻孔均选择过剩²¹⁰Pb比活度与深度的对数相关性 较好的段落来计算沉积速率。

另外还从其中 16个柱样中取样 265个进行粒度 分析,分析仪器为美国 Beckman Coulter公司生产的 LS13 320型激光粒度仪^[12]。

3 研究结果

3.1 岩性观测和粒度分析结果

在高潮滩采集的 7个柱状样,其中大部分表层物

质为泥质粉砂,厚 15~165 cm不等 (见表 2),并见大量的植物根茎,平均粒径为 14.7~17.0 µm,粘土含量为 22.7%~29.8%,粉砂含量为 67.7%~76.6%,砂含量仅为 0.8%-2.6%;另外,C6和 C7两柱状样还钻遇下伏粉砂层,平均粒径达 24.8~44.1 µm;C1和 C4两柱样由粉砂和砂质粉砂组成,平均粒径为 24.3~48.0 µm。中潮滩上的 2个柱状样沉积物主要为粉砂,占 70%左右,另外粘土含量为 12.9%~16.2%,砂含量为 9.1%~18.0%。

涨潮槽中的两个柱样显示为砂泥互层,粘土含量约 23%,粉砂含量约 62%,砂含量约 15%。

三角洲前缘的 Y4孔显示主要由粉砂和粉砂质 砂组成,平均粒径达 31.0~63.4 m,砂的含量为 12.2%~37.7%,粉砂为 47.8%~68.5%,粘土为 13.1%~19.6%。

前三角洲 5个柱状样大多由粉砂质泥和泥质粉 砂组成,垂向变化很小,平均粒径为 9.6~12.9(m,粘 土含量达 30.5% ~33.9%,粉砂含量为 65.7% ~ 68.5%,砂含量仅为 0.2% ~1.0%。

3.2 沉积速率分布特征

²¹⁰ Pb测量显示,在潮滩上的 10个柱样中,位于 横沙岛和南汇朝阳农场的 C7和 C8两处的沉积速率 最大,横沙岛 C7孔 0~80 cm泥质粉砂和粉砂的沉积 速率为 1.03 cm/yr,朝阳农场 C8孔 22~163 cm泥质 粉砂的沉积速率为 1.94 cm/yr(表 2,图 2);位于崇明 东滩的 C4、C5和 C6三柱样的沉积速率相似,分别为 0.75 cm/yr(0~35 cm,粉砂)、0.76 cm/yr(1~55 cm, 粉砂)和 0.51 cm/yr(0~30 cm,泥质粉砂和粉砂);位 于白龙港排污口附近高、低潮滩的 C2和 C3孔表层 0 ~9 cm,获得的沉积速率分别为 0.23 cm/yr和 0.17 cm/yr,剩下的三个柱样 C1 (石洞口高潮滩)、C9 (朝 阳农场高潮滩)和 C10 (九段沙中潮滩)²¹⁰ Pb分布趋 势不明显,未能获得沉积速率。

涨潮槽的两个柱样 (C11和 C12)²¹⁰ Pb测量显示,新桥水道 C11孔中下部 (41~81cm)沉积速率为 0.86 cm/yr,南小泓 C12孔的上部 (0~22 cm)沉积速 率为 0.39 cm/yr,

三角洲前缘的 Y4孔沉积物中垂向²¹⁰ Pb分布变 幅大,未能获得沉积速率(表 2,图 3);同时,¹³⁷ Cs测 量显示其含量均低于检测线,也未获得沉积速率。

前三角洲 4个柱样 (Y5~Y8)²¹⁰ Pb测量显示, Y5 孔 0~85 cm 泥质沉积的速率为 2 0 cm /yr, Y6孔 25 ~125 cm 泥质沉积的速率为 2 2 cm /yr, Y7孔 0~285 cm 泥质沉积的速率增至 6.3 cm /yr, Y8孔 0~55 cm 泥质沉积的速率明显下降为 0.8 cm /yr(表 2,图 3)。 另外¹³⁷ Cs测量显示沉积速率分别为 2.8~2.9 cm / yr, 2.4~4.5 cm /yr, 4.3~6.6 cm /yr和 0~2.1 cm /yr (表 2,图 3),与²¹⁰ Pb测量结果基本一致。此外最外 海的 Y9,²¹⁰ Pb含量高低无序,¹³⁷ Cs值也远低于检测 线,均未获得沉积速率 (图 3)。

4 讨论与结论

从上述粒度分析和同位素测量结果显示,长江口 泥质沉积区主要位于潮滩和前三角洲,沉积速率最高 出现在前三角洲,尤其在水深 25~30 m,122 30 N, 31 00 E附近,沉积速率高达 6.3 cm/yg。前人对该区 的研究也显示了 5.1~5.4 cm/yr沉积速率^[6~7]。

据 Milliman等^[10]研究揭示,长江悬沙平均每年 4.86亿吨入河口后,约30%细颗粒物质在前三角洲 堆积。本文的沉积速率测量结果:从 Y5至 Y7沉积 速率明显增加(表 2,图 3),正是揭示了这一泥质沉 积中心。前人研究显示,122 30 E~123 00 E这一带 是长江冲淡水和陆架海水交汇的锋面所在,絮凝作用 强烈^[13],因此长江悬沙向东扩散很少越过该界限。 另外,从水下地形可以看到(图 1),长江水下三角洲 呈舌状向海伸展,其东北侧有一个较大的 V形古河 口^[14],西南侧也有一个较小的 V 形谷地,每年夏季月 份台湾暖流均可入侵这两个谷地,阻挡长江悬沙的继 续外扩,同时加强了泥沙的絮凝沉降[15]。从该沉积 中心向海,沉积速率又迅速降低,Y8孔仅为 0.8 cm/ yr,而 Y9未能获得沉积速率,其原因可推测为锋面外 缘,泥沙供应量急剧减少,因此堆积量极小。前人的 悬沙浓度等值线也显示在 122 00 E~123 00 E之间 水平梯度大,悬沙浓度向东迅速降低^[16]。

潮滩是长江口另外一个重要泥质沉积区,前人认 为大约 5%的长江悬沙在潮滩淤积^[10]。本文研究显 示以横沙岛和南汇潮滩堆积速率为最大,分别可达 1.03 cm/yr和 1.94 cm/yr,崇明东滩沉积速率明显低 于前两者,仅约为 0.5~0.8 cm/yr,长江南岸潮滩堆 积速率最低,仅为 0.2 cm/yr左右。我们推测这种分 布特征可归结于长江口的泥沙输移特征。前人研究 发现^[17],18世纪以前,长江泥沙主要经北支入海,但 自 20世纪 50年代末以来,长江泥沙基本经南支入 海,出口门后受苏北沿岸流以及柯氏力作用影响,主 要向东南、南输送^[17~18]。目前的长江口最大浑浊带 位于横沙以东、东南10m水深线以内地区(图1)。

表 2 长江河口地区沉积速率测量数据

Table 2 Data of the sed in entation rate in Yangtze estuary

+++×	豆埕	古担			粒度数据		沉积速率						
作生作于	木件	同任	孔深 / cm	沉积物岩性描述	各成分	百分含	量 /%	平均粒径	对应深度	DL 0103	t () 1273t		
· 师 亏	部1立	/m			粘土	粉砂	砂	$Mz/\mu m$	/ cm	PD - 2107Z	τ CS-13/μτ		
C1		~ 3	$0 \sim 28$	粉砂 ,夹有粉沙质泥和泥质粉砂 ;	14. 0	76.1	9.9	32.0			_		
	_	3	28~60	粉砂与砂质粉砂互层,粉砂含量相对多。	9.6	71.0	19.4	48.0					
C2		1. 5 ~ 2. 5	_	<u> </u>			_		0~9	0. 23	_		
			0~25	砂质粉砂;	15	57.5	27.5	47. 3					
C4		1. 5 ~ 2. 5	25~65	主要为粉砂和泥质粉砂,并有粉砂质砂;	18.3	65.9	15.8	34. 7	0~35	0. 75	—		
	-		65 ~ 135	主要为粉砂。	15. 0	82.4	2.6	24. 3					
C6	—	1. 5 ~ 2. 5	0~15	泥质粉砂;	22. 7	76.6	0.8	17. 0	0~30	0.51	_		
	局		15~81	粉砂,自上而下逐渐变粗。	14. 8	79.5	5.8	27. 5					
			0~27	更褐巴泥质粉砂,低部逐步回 青 灰巴过渡,	29.3	68.1	2.6	14. 7					
	潮			芦苇根糸较多;									
C7		1~1.5	27~50	青灰色粉砂和泥质粉砂互层,植物根系较多;	18.9	75.3	5.9	24.8	0~80	1. 03	_		
	滩		50 ~ 75	青灰色粉砂,中间夹一薄层砂质粉砂;	10. 2	74.6	15. 2	38.4					
	-		75~90	砂质粉砂。	12. 2	60.2	27.6	44.1		Ē			
			0~10	人类活动干扰;									
C8		2~2.5	10~165	灰褐色泥,块状层理,有大量的植物根茎和	29.8	67.7	2.6	—	22 ~163	1. 94	_		
	-		0 100	已腐烂的有机物、植物根茎往下逐渐变少。	20.6	60.0		16.0					
			0~100	火阀巴泥顶初砂,夹极薄初砂层,见植物根	28.6	68.9	2.5	16. 0					
C9		2~2.5		糸,局部黑色相灰色腐殖质富集;					_	_	_		
			100 ~ 125		24. 9	73.0	2.1	18.5					
C5	中	~0	0~61	比较均匀的材砂, 在 8和 54cm 夹有砂质材	14. 3	76.7	9.1	28.8	1~55	0.76	_		
	潮		0~14	<u>砂海层</u> 粉冰 冰质粉冰 泥质粉冰相间出现。	12.0	60 1	18 0	20.2					
C10	滩	~0	0~14		12.9	09. I	18.0	39. 2	_	_	_		
C2 4	氏油 湖	~0	14~48	王妾为初妙,夹泥顶初砂和砂顶初砂。	16. 2	/1. 8	12, 0	31. 2	0~0	0.17			
	心/扪/性		0~102						0~9	0.17			
C11	~	> - 5	0 102		23. 2	62.9	13. 9	—	$41 \thicksim 81$	0.86	—		
	. Л 		0 - 55										
	流		0~33										
C12	泂	> - 5	> - 5	> - 5		cm, 初砂层厚 2~5 cm, 24~40 cm 处积杠	22.5	61. 2	16.3	_	0 - 22	0. 39	_
	道			牧祖, 为砂质材砂, 往深约 20 cm 处见海层									
				(约 5 mm)生物碎屑。									
	三		0~15	黄褐色粉砂质砂,底部为一侵蚀面;	19.3	68.5	12.2	31. 0					
			15 ~ 38	灰色细砂;	13. 1	57.2	29.7	48.7					
Y4	用洲	- 7	38~58	黄褐色粉砂质砂;	19.6	61.3	19. 1	42.3	_	_	_		
	前線		58~172	灰色细砂,在 68 ㎝处见贝壳,底部云母富集;	14.5	47.8	37.7	63. 4					
	=31		172 ~ 220	暗灰色粉砂。	14.6	59.7	25.7	42.5					
Y5		- 15	0~200	浅灰、涂灰色粉砂质泥和泥质粉砂,中上部 	30. 5	68.5	1. 0	12.9	0~85	2.0	28~29		
			-	见大量层状有机物。									
Vć	前	- 10 7	$0 \sim 310$	浅灰、深灰色粉砂质泥和泥质粉砂,有机质	33 0	65 0	0.2	10.6	25~125	2.2	2 4 ~ 1 5		
	. =	- 17. /	0 510	自上而下逐渐增加。	55.9	0.5. 9	0. 2	10. 0	25 123	<u> </u>	4 4 4. J		
Y7	- 伯	- 26.8	0~385	浅灰、深灰色粉砂质泥和泥质粉砂。	33. 1	66.4	0.5	11. 4	0~285	6.3	4.3~6.6		
	, п ЭМ			浅灰、深灰色粉砂质泥和泥质粉砂,顶部 5									
Y8	7/11	- 29	$0 \sim 400$	cm见丰富的有机质,中上部有零星贝壳碎	33. 3	66.4	0.3	10. 4	0~55	0.8	0~2.1		
	_			片,底部 100 cm有大量的贝壳碎片。									
Y9		- 41. 6	0~360	灰色粉砂质泥和细砂互层。	33.8	65.7	0.5	9.6					

图 2 利用 Pb-210法测得的柱状样沉积速率 Fig 2 Sedimentation rates of the vibrocores determined by Pb-210 measurements

图 3 利用 CS-137和 Pb-210法测得的柱状样沉积速率 Fig 3 Sedimentation rates of the vibrocores determined by Cs-137 and Pb-210 measurements

最大浑浊带内悬沙浓度表层为 0.1~0.7 kg/m³,底层 达 1~8 kg/m^{3[19]}。而位于北部的崇明浅滩水体悬沙 浓度平均仅为 0.35 kg/m^{3[20]}。因此主要由涨潮流输 送泥沙的潮滩堆积也必然表现为南 (南汇、横沙)快 北 (崇明)缓的特征。本研究南汇 C9孔²¹⁰ Pb垂向分 布变化小,范围集中,可能也反映了该地人工促淤后 沉积速率迅速^[21]。此外,受柯氏力作用,长江落潮槽 南偏^[22~23],因此南岸往往受冲刷。本研究中白龙港 沉积速率仅为 0.2 cm/yr左右,而石洞口未能获得沉 积速率,正是反映了这种较强的水动力条件下,沉积 环境不稳定,堆积缓慢或扰动频繁。

此外长江口涨潮槽的堆积也较快,尤其在崇明南 岸的新桥水道,高达 0.86 cm/yg。新桥水道是扁担沙 和崇明岛之间的一条涨潮槽。受科氏力的作用,落潮 主泓南偏,涨潮主泓北偏,因此涨潮时带进的大量泥 沙被淤积在新桥水道。另外 C11孔上部为连续的灰 褐色淤泥沉积,但得到的²¹⁰ Pb分析数据不适合计算 沉积速率,推测可能是上部沉积速率过快的原因。

长江口拦门沙即最大浑浊带地区,沉积物颗粒 粗,主要为粉砂质砂和细砂;每年约有 40%的长江泥 沙堆积^[10],沉积速率快;且水动力较强,床沙和悬沙 频繁交换^[24]。本研究 Y4孔未获沉积速率,可能反映 上述因素导致²¹⁰ Pb分布规律不明显^[25]。

本研究 C10孔位于九段沙沙头,也未能获得沉 积速率。该孔沉积物粉砂、泥质粉砂、砂质粉砂相间 出现。反映了受落潮流优势控制^[26],沙头受到侵蚀, 沉积水动力较强,环境不稳定,因此难以利用²¹⁰ Pb法 测得此处的沉积速率。

致谢 在野外华东师范大学地理系韦桃源同学, 国家海洋局第二海洋研究所朱纯、薛斌同学付出艰苦 的劳动;华东师范大学河口海岸重点实验室张卫国老 师为本文提供柱状样,在此一并感谢!

参考文献 (References)

- 范德江,杨作升,郭志刚.中国陆架²¹⁰ Pb测年应用现状与思考.地 球科学进展,2000,15(3):297~302 [Fan Dejiang, Yang Zuosheng, Guo Zhigang Review of²¹⁰ Pb dating in the continental shelf of China Advance in Earth Sciences, 2000, 15(3):297~302]
- 2 夏小明,谢钦春,李炎,等.东海沿岸海底沉积物中的¹³⁷Cs²¹⁰ Pb 分布及其沉积环境解释.东海海洋,1999,17(1):20~27 [Xia Xiaoming, Xie Qinchun, Li Yan, *et al*¹³⁷Cs and ²¹⁰ Pb profiles of the seabed cores along the East China Sea coast and their implications to sedimentary environment Donghai Marine Science, 1999, 17(1): 20 ~27]

- 3 万国江. 现代沉积的²¹⁰ Pb计年. 第四纪研究, 1997, (3): 230 239 [Wan Guojiang²¹⁰ Pb dating for recent sedimentation Quatemary Sciences, 1997, (3): 230~239]
- 4 项亮.用 分析方法研究滇池现代沉积年代.核技术, 1997, 20 (2):100~104 [Xiang Liang Dating of recent Dianchi lake sediments by gamma ray analysis Nuclear Techniques, 1997, 20(2): 100~ 104]
- 5 叶崇开.¹³⁷Cs法和²¹⁰Pb法对比研究鄱阳湖近代沉积速率.沉积学报,1991,9(1):106~114 [Ye Chongkai Contrasting investigation by ¹³⁷Cs method and ²¹⁰Pb method for the present sedimentation rate of Poyang lake, Jiangxi Acta Sedimentologica Sinica, 1991, 9(1):106~114]
- 6 Demaster D J, Mckee B A, Nittouer C A, et al Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea Continental Shelf Research, 1985, 4(1/2): 143 ~158
- 7 刘国贤,杨松林,周义华.用²¹⁰ Pb法测定长江口沉积速率.海洋地 质与第四纪地质,1984,4(1):113~116 [Liu Guoxian, Yang Songlin, Zhou Yihua Sedimentation rates in the Changjiang estuary determined with ²¹⁰ Pb method Marine Geology and Quatemary Geology, 1984, 4(1): 113~116]
- 8 李从先,王平,范代读,等.潮汐沉积率与沉积间断.海洋地质与第 四纪地质,1999,19(2):11~18 [Li Congxian, Wang Ping, Fan Daidu, et al Sedimentation rate and sedimentary break in tidal deposits Marine Geology and Quatemary Geology, 1999, 19(2):11~18]
- 9 董永发,丁文鋆.长江河口沉积物粒度特征与水动力的关系.见:陈 吉余,沈焕庭,恽才兴,等.长江河口动力过程和地貌演变.上海: 上海科学技术出版社,1988.314~322 [Dong Yongfa, DingWenjun Relationship between the grain size characteristics and hydrodynamics of sedimentation in the Changjiang estuary. In: Chen Jiyu, Shen Huanting, Yu Caixing, *et al* Processes of Dynamics and Geomorphology of the Changjiang Estuary. Shanghai: Shanghai Scientific and Technical Publishers, 1988.314~322]
- M illiman John D, Shen Huanting, Yang Zuosheng, et al Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf Continental Shelf Research, 1985, 4 (1/2): 37~45
- 11 夏小明,杨辉,李炎,等.长江口—杭州湾毗连海区的沉积速率. 沉积学报,2004,22(1):130~135[Xia Xiaoming, Yang Hui, Li Yan, *et al* Modem sedimentation rates in the contiguous sea area of Changjiang estuary and Hangzhou Bay. Acta Sedimentologica Sinica, 2004, 22(1):130~135]
- 12 刘清玉,戴雪荣,何小勤.崇明东滩环境探讨.海洋地质动态, 2003,19(12):1~4[Liu Qingyu, Dai Xuerong, He Xiaoqin The sedimentary environment of the east tidal flat of the Chongming Island Marine Geology Letters, 2003, 19(12):1~4]
- 13 潘定安,胡方西,周月琴,等.长江河口夏季的盐淡水混合.见:陈 吉余,沈焕庭,恽才兴,等.长江河口动力过程和地貌演变.上海: 上海科学技术出版社,1988.151~165[Pan Ding'an, Hu Fangxi, Zhou Yueqin, *et al* Mixing of salt water with fresh water on the Changjiang estuary in summer In: Chen Jiyu, Shen Huanting, Yu

Caixing, et al Processes of Dynamics and Geomorphology of the Changjiang Estuary. Shanghai: Shanghai Scientific and Technical Publishers, 1988. 151 ~ 165]

- 14 陈中原,周长振,杨文达,等.长江口外现代水下地貌与沉积.见: 严钦尚,徐世远,等.长江三角洲现代沉积研究.上海:华东师范大 学出版社,1987.238~245 [Chen Zhongyuan, Zhou Changzhen, YangWenda, et al Subaqueous topography and sediments off modem Changjiang estuary. In: Yan Qinshang, Xu Shiyuan Recent Yangtze Delta Deposits Shanghai: East China Normal University Press, 1987.238~245]
- 15 Beardsley R C, Lineburner R, Yu H, et al Discharge of the Changjiang (Yangtze River) into the East China Sea Continental Shelf Research, 1985, 4(1/2): 57~76
- 16 沈焕庭,潘定安.长江河口最大浑浊带.北京:海洋出版社,2001.
 29~30 [Shen Huanting, Pan Ding'an Turbidity Maximum in the Changjiang Estuary. Beijing: Ocean Press, 2001. 29~30]
- 17 陈吉余,朱慧芳,董永发,等.长江河口及其水下三角洲的发育.见:陈吉余,沈焕庭,恽才兴,等.长江河口动力过程和地貌演变. 上海:上海科学技术出版社,1988.48~62[Chen Jiyu, Zhu Huifang, Dong Yongfa, et al Development of the Changjiang estuary and its subaqueous delta In: Chen Jiyu, Shen Huanting, Yu Caixing, et al Processes of Dynamics and Geomorphology of the Changjiang Estuary. Shanghai: Shanghai Scientific and Technical Publishers, 1988. 48~62]
- 18 沈焕庭,李九发,朱慧芳,等.长江河口悬沙输移特性.见:陈吉余,沈焕庭,恽才兴,等.长江河口动力过程和地貌演变.上海:上海科学技术出版社,1988.205~215 [Shen Huanting, Li Jiufa, Zhu Huifang, et al Transport of the suspended sediments in the Changjian estuary. In: Chen Jiyu, Shen Huanting, Yu Caixing, et al Processes of Dynamics and Geomorphology of the Changjiang Estuary. Shanghai: Shanghai Scientific and Technical Publishers, 1988.205~215]
- 19 沈焕庭,潘定安.长江河口最大浑浊带.北京:海洋出版社,2001.
 50~51 [Shen Huanting, Pan Ding'an Turbidity Maximum in the Changjiang Estuary. Beijing: Ocean Press, 2001. 50~51]
- 20 杨世伦,赵庆英,丁平兴,等.上海岸滩动力泥沙条件的年周期变 化及其与滩均高程的统计显示.海洋科学,2002,26(2):37~41 [Yang Shilun, Zhao Qingying, Ding Pingxing, *et al* Annual changes in coastal dynamic and SSC processes as well as their statistic relation-

ships to intertidal bed - level, Shanghai coast Marine Sciences, 2002, 26(2): 37~41]

- 21 杨世伦,时钟,赵庆英.长江口潮沼植物对动力沉积过程的影响. 海洋学报,2001,23(4):75~80 [Yang Shilun, Shi Zhong, Zhao Qingying Influence of tidal mash vegetations on hydrodynamics and sedimentation in the Changjiang estuary. Acta Oceanologica Sinica, 2001,23(4):75~80]
- 22 陈吉余,恽才兴,徐海根,等.两千年来长江口发育的模式.见:陈 吉余,沈焕庭,恽才兴,等.长江河口动力过程和地貌演变.上海: 上海科学技术出版社,1988.31~37 [Chen Jiyu, Yu Caixing, Xu Haigen, *et al* The model of development of the Changjiang estuary during the last 2000 years In: Chen Jiyu, Shen Huanting, Yu Caixing, *et al* Processes of Dynamics and Geomorphology of the Changjiang Estuary. Shanghai: Shanghai Scientific and Technical Publishers, 1988.31~37]
- 23 刘高峰,沈焕庭,王永红,等.长江口涨、落潮槽底沙输移趋势探 讨.海洋通报,2003,22(4):1~7 [Liu Gaofeng, Shen Huangting, Wang Yonghong, *et al* Bottom sediment transport in the flood and ebb channels of the Changjiang estuary. Marine Science Bulletin, 2003, 22(4): 1~7]
- 24 沈焕庭,郭成涛,朱慧芳,等.长江河口最大混浊带的变化规律及 其成因探讨.见:陈吉余,沈焕庭,恽才兴等.长江河口动力过 程和地貌演变.上海:上海科学技术出版社,1988.216~228 [Shen Huanting, Guo Chengtao, Zhu Huifang, *et al* A discussion on the change and origin of turbidity maximum in the Changjiang estuary. In: Chen Jiyu Shen Huanting Yu Caixing, *et al* Processes of Dynamics and Geomorphology of the Changjiang Estuary. Shanghai: Shanghai Scientific and Technical Publishers, 1988.216~228]
- 25 Chen Zhongyuan, Saito Yoshiki, Kanai Yutaka, et al Low concentration of heavy metals in the Yangtze estuarine sediments, China: a diluting setting Estuarine Coastal and Shelf Science, 2004. 1 ~10
- 26 杨世伦,贺松林,谢文辉.长江口九段沙的形成演变及其南北槽发育的关系.海洋工程,1998,16(4):55~65 [Yang Shilun, He Songlin, Xie Wenhui The formation and evolution of the Jiuduansha tidal island as well as their relation to the development of the north and south passages in the Yangtze River estuary. The Ocean Engineering, 1998, 16(4): 55~65]

²¹⁰ Pb D istribution of the Changjiang Estuarine Sediment and the Implications to Sedimentary Environment

DUAN Ling-yun¹ WANG Zhang-hua² L IM ao-tian¹ PAN J ian-m ing³

CHEN Zhong-yuan² Yishiki SA ΠO^4 Yutaka KANA Î

1(Department of Geography, East China Normal University, Shanghai 200062)

2(State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062)

3(Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012)

4(MRE, Geological Survey of Japan, AIST, Central 7, Higashi 1-1-1, Tsukuba, Ibaraki 306-8567, Japan)

5(RCDM E, Geological Survey of Japan, A IST, Central 7, Higashi 1-1-1, Tsukuba, Ibaraki 306-8567, Japan)

Abstract Eighteen sediment vibrocores, $0.2 \sim 6 \text{ m}$ long, were collected from the Yangtze estuary in different sedimentary facies, including tidal flat, flood tidal channel, delta front, prodelta and delta-shelf transition zone, to examine the modern depositional characteristics in the study area Measurement of ²¹⁰ Pb was performed for all sediment vibrocores and ¹³⁷Cs applied for 6 of them. CIC (constant initial concentration) dating model was used to calculate the sedimentation rate using ²¹⁰ Pb data. The results obtained show the silty clay and clayey silt in the tidal flat and tidal channel, fine sand and silt in the delta front facies. Fine-grained sediment, mostly the clayey silt, consists of the prodelta facies, and clay-silt-sand constitutes the delta-shelf transition zone.

On the basis of relative continuous sediment record, our radiometric measurement demonstrates that the highest sedimentation rates (~2 0 to 6 0 cm/yr) were found in the prodelta facies, reflecting processes of the interface of estuarine mixed water and the seawater Lower sedimentation rate of 0. 81 cm/yr can be recognized form the prodelta margin, but the rate is hardly recorded in the delta-transition zone due to term inating modern sedimentation seaward. The higher sedimentation rates $(1.03 \sim 1.94 \text{ cm/yr})$ occur in the tidal flat of Hengsha Island and Nanhui, and lower ones $(0.51 \sim 0.76 \text{ cm/yr})$ in the Chongming Island, indicating the southeastward transport of the suspended sediment in the Changjiang estuary. The sedimentation rate in the flood tidal channel is about 0. 69 ~ 0. 86 cm/yr, showing the rapid deposition due to the discrete flood and ebb currents. The sedimentation rates proposed here is of significance to evaluate the sediment budget from the up stream in the past centennial time scale and in particular is to provide an analogue for after Damming study at Three-Gorges

Key words sedimentation rate, radiometric analysis of ²¹⁰ Pb, Yangtze estuary