文章编号: 1000-0550(2006) 02-0300-09

川东北飞仙关组高含 H₂ S气藏特征 与 TSR 对烃类的消耗作用

朱光有¹ 张水昌¹ 梁英波¹ 马永生² 周国源³ 戴金星¹ (1.中国石油勘探开发研究院 北京 100083 2 中国石油化工股份有限公司南方勘探开发分公司 昆明 650200 3 中国石油四川石油管理局川东钻探公司地质服务公司化验室 重庆 400021)

摘 要 四川盆地川东北地区飞仙关组近年来发现了罗家寨、渡口河、铁山坡、普光等多个大、中型气田,它们均以高 含硫化氢(H₂S在气体组分中占 10% ~ 17%,平均为 14%)为最显著特征。深入研究后发现,虽然这些大型鲕滩气藏 储量规模较大,单井产量高;但是这些气藏充满度普遍偏低(在 25% ~ 91%之间),压力系数不高(大部分小于 1 2)。 从成藏条件来看,该区鲕粒溶蚀孔隙发育,有效储层厚度大,二叠系龙潭组、志留系龙马溪组优质烃源岩十分发育,油 气源充沛,而且由断层构成的疏导体系发育,泥岩及膏质岩类组成的盖层封盖性良好,因此气藏的低充满度现象,可能 是圈闭中发生过大量烃类的损耗或消耗。由于川东北飞仙关组 H₂S是烃类和硫酸盐在储层中发生热化学反应(TSR) 形成的,气藏中硫化氢含量与压力系数、地层水矿化度、烃类含量等都存在反相关关系,因此飞仙关组高含硫化氢气藏 压力系数小、充满度低,很可能是烃类被 TSR大量消耗和储集空间增容所致。

关键词 硫化氢 地层压力 地层水 充满度 硫酸盐热化学还原反应(TSR) 下三叠统飞仙关组 第一作者简介 朱光有 男 1975年出生 博士 高级工程师 石油地质学与地球化学 中图分类号 P593 文献标识码 A

1 引言

四川盆地川东地区北部(简称川东北)下三叠统 飞仙关组是继石炭系气藏之后的又一重大发现,目前 已在开江一梁平陆棚东侧发现了罗家寨、普光、铁山 坡、渡口河等多个大、中型气田,这些鲕滩气藏的可采 储量已超过千亿方^[1]。最新在七里北构造完钻的七 里北 1井, 完井测试日产气量达 80万立方米, 预测天 然气储量为 420 多亿立方米 (据中国石油网),显示 出开江一梁平陆棚东侧良好的勘探前景。但是研究 发现,这些高含硫化氢气藏压力系数不高,没有出现 高压或超高压现象: 充满度也普遍偏低, 气藏都有底 水或边水^[2~4],部分井为水井,因此一些学者认为 导致此现象分别是由于鲕滩储层的分布和气源充注 不充分所致。研究表明该区气源充足、储层孔渗性良 好,盖层封闭性好,陆棚区又为异常高压区,因此不应 该出现气藏充满度低、压力系数小的现象。由于以往 的工作主要集中在储层的预测和硫化氢成因等方面,

对于气藏这种欠充满状态关注较少。本文试图通过 对川东北地区地层水、地层压力以及硫化氢的形成和 分布等方面的研究,为进一步认识川东北高含硫化氢 气藏的成藏过程和硫化氢的形成机理,特别是对深入 揭示 TSR反应体系等提供有益的启示。

2 飞仙关组气藏的地质特征

川东北飞仙关组发现的高含硫化氢气田主要分 布在陆棚东侧,属于岩性一构造复合圈闭气藏。其中 川东北飞仙关组飞₁~飞₃段发育鲕粒灰岩,后经白云 化与溶蚀作用后形成的残余鲕粒(砂屑)云岩类构成 了飞仙关组主力储层^[5~10],平均孔隙度在 9.0% 左 右,最高可达 27.0%,平均渗透率值为 60×10⁻³ μm²,显示出具有高孔渗的优质储层特征。飞仙关组 飞₄段及其上覆的嘉陵江组和雷口坡组发育的致密泥 灰岩、泥质云岩、膏质云岩、膏岩等,厚度大,区域上分 布稳定,构成了鲕滩储层的良好盖层。虽然飞仙关组 自身生烃条件差,但发育在开江 —梁平陆棚相区内的

收稿日期: 2005-01-11;收修改稿日期: 2005-04-13

中国石油天然气股份公司科技项目 (中国高含硫化氢天然气田资源分布与开发战略: 040502 - 10 - 01) 和国家重点基础研究发展规划项目 (2001CB209100)资助。

王一刚,杨雨,文应初,等.四川盆地东北部地区长兴组-飞仙关组气藏成藏条件研究及勘探目标评价.2000.

杨雨,魏小微,马波,等.四川盆地东北部飞仙关组鲕滩储层分布规律研究及勘探目标选择.2002.

长兴组和飞仙关组底部的泥质碳酸盐岩,以及下伏的 志留系、上二叠统龙潭组泥质岩类,有机碳含量都比 较高,厚度大,演化程度较高,具备形成大中型气田的 潜力,因此该区气源十分充沛^[11,12]。陆棚相区和陆 棚西侧开阔台地相区飞仙关组由于不发育膏质岩类, 因此天然气中几乎不含硫化氢^[12]。由于飞仙关组鲕 滩储层是在大面积致密鲕粒灰岩背景下发育的储渗 体,陆棚区属干深水部位,缺少暴露和淋滤过程,鲕粒 灰岩的白云石化和溶蚀作用较弱,因此储层孔渗性较 差,以裂缝性储层为主。陆棚西侧飞仙关组鲕粒灰岩 发育程度不及陆棚东侧,且白云化作用和溶蚀作用也 都没有陆棚东侧强,所以其孔渗性比陆棚东侧要差得 多, 气藏的储量规模也较小。目前这些气藏埋深在 3 500~4 500 m, 部分埋深在 5 000~5 800 m 左右, 储 层的孔渗性均较好。因此有利的成烃、成储和成藏条 件,是该区形成大中型气藏的主要因素。

3 鲕滩气藏的充满度

川东北飞仙关组鲕滩气藏以构造一岩性组成的 复合圈闭类型为主,虽然圈闭范围较大,但充满度低, 仅有 25% ~ 91% [3],不少井产水或气水同层。其中 在陆棚东侧飞仙关组高含硫化氢区块测试产水井和 解释有水层存在的井近 20 口.其中产水井有渡 5井、 罗家 8井、紫 1井、朱家 1井和坡 1井下部储层等井, 特别是渡 5和罗家 8井等、优质鲕粒储层厚约 70 m、 孔隙也十分发育,却无气或微气,产水;而最新完钻的 七里北 1井、渡 6井、罗家 10井等,储层较好,但在低 部位均产水,符合高气低水的气水分异规律;由于圈 闭高度远大于储层厚度,而鲕滩圈闭内的储层分布具 有较好的连续性,因此气水界面的分布完全受构造控 制,属于以构造控制的边水气藏。而川东北高含硫 化氢大中型气藏普遍存在边水.表明这些气藏充满度 都不高。如渡口河气田,虽然渡 5井储层没有渡 2 井、渡 3井和渡 4井发育,但依然有 40 m的储层孔隙 度大于 6%, 部分在 10% 左右, 是较好的储集层, 但是 该井位于低部位一气水界面以下,因此产水。

这些鲕滩气藏都分布在多套优质烃源岩的生烃 强度中心附近,充足的气源是形成这些大中型气藏的 必要条件。该区除了发育有川东各区都有的志留系、 下二叠统、上二叠统龙潭组等多套优质烃源岩,特别 是该区发育志留系龙马溪组和上二叠统龙潭组的泥 质岩构成的优质源岩,厚度大,可能起到主力烃源的 作用(精细的气源对比将另文论述),另外,还在陆棚

相区发育以上二叠统长兴组为主的含泥碳酸盐潮坪 沉积^[1],由暗色泥页岩、泥质泥晶灰岩组成,有机质 含量丰富,演化程度也较高。生烃过程形成压差便可 使烃类近距离侧向运移,充注到飞仙关组台缘鲕粒滩 储层圈闭中。另外,陆棚东侧发育多条北东、北东东 向的轴向大断层,断距在数十米至上千米,倾角多大 干 60°. 切穿飞仙关组后向上多消失在嘉陵江组 中^[1],而且目前发现的这些大气田都与这些断层有 关,因此北东、北东东向的轴向逆断层很可能就是飞 仙关组主要的供烃通道。另外,储层中广泛分布的沥 青^[13],表明早期形成过古油藏,后随埋深增大,发生 原油裂解,从而形成了多个可采储量超过 300亿立方 米的大型气田^[8,14],特别是普光气田和罗家寨气田. 可采储量都超过 600亿立方米,为四川气区储量前 列。因此飞仙关组鲕滩储层充满度低显然不是烃源 供给不充分所造成的。从保存条件来看,盖层很好, 即不仅有飞仙关组飞四段直接盖层的膏盐岩系、石灰 岩及泥质岩,而且还有厚逾千米的嘉陵江组和雷口坡 组的膏岩、膏质岩类组成的区域性盖层,这些盖层都 未遭剥蚀, 也无通天断层的破坏, 保存条件极佳。因 此飞仙关组鲕滩储层充满度低与充注后烃类和储层 之间的相互作用可能有关。

4 地层水性质

川东北飞仙关组地层水组分中以 Na^+ 、 K^+ 、Cf、 SO₄²⁻ 等离子组成为主; 矿化度在 20~ 119 2g/L, 普遍 偏低。地层水以硫酸钠型 ($Na_2 SO_4$)为主, 其次是氯 化钙型, 还有少量属于碳酸钠型或碳酸氢钠型, 但分 布规律十分明显 (图 1)。陆棚东侧高含硫化氢区块 属于硫酸钠型地层水, 矿化度较低, 地层水中阴离子 SO₄²⁻ 含量很高, 一般在 10 000 mg/L 以上, 阳离子以 Na^+ 和 K^+ 占优; 另外地层水中溶解有较高浓度的硫 化氢, 一般在 3 000 mg/L 左右。高含硫化氢区块的 周围和陆棚及陆棚西侧为硫酸氢钠型或碳酸氢钠型 等过渡型地层水特征; 陆棚南侧普遍为氯化钙型水, 矿化度最高, 普遍大于 45g/L, 表明陆棚南区地层水 封闭性较好。

特别值得关注的是, 陆棚东侧的高含硫化氢气 藏, 地层水水型均属于硫酸钠型, 且矿化度较低, 多数 在 20~40g/I。按传统观点, NacSO4水型反映保存条 件差^[15], 表征了与地表连通的静水压力系统; 另外该 区流体的压力系数较低 (后面讲), 这一现象很容易 使人产生该区封闭条件差的结论。事实上, 该区硫化

图 1 飞仙关组地层水类型及陆棚东侧硫酸钠型地层水矿化度等值线图 (川东北飞仙关组地层水类型呈现出三个区带并有规律的分布:陆棚东侧为硫酸钠型,南部为氯化钙型,陆棚及其西侧属于碳酸 钠型或碳酸氢钠型。其中陆棚东侧高含硫化氢区块地层水矿化度较低,在 20~60g/L之间 (图 1),该区虚线为硫酸钠型地层水 矿化度等值线。图中间红线范围内为陆棚相。)

Fig 1 The formation water type and the isoline diagram showing the reservoir water salinity of sodium sulfate type in east side of continental shelf

ith in the Feixianguan Formation in the north eastern Sichuan basin, the types of formation water distribute regularly across three areas i e, the water in the east side of continental shelf belongs to sodium sulfate type, while that in the south being calcium chloride type, and that within and in the west side of continental shelf being sodium carbonate or sodium bicarbonate types

Among them, the reservoir water salinities of the area, which with high H₂S contents and distributes in the east side of continental shelf relatively lower and ranging from 20~60g/L. The broken lines of this area refer to the reservoir water salinity isoline of sodium sulfate type The scope bounded by red lines in the central diagram represents the facies of continental shelf)

氢含量为四川盆地之最,而众所周知硫化氢的保存比 烷烃气要求条件更苛刻,如果飞仙关组地层水后期遭 受地表水淡化,地表水带来的重金属离子(如 Fe Cu N; Ca Ph Zn等离子)将很快消耗掉 H₂S 生成金属 硫化物^[16],气藏中就不会见到如此之高的硫化氢含 量,因此认为气藏封闭性差显然与这一事实相悖。另 外,该区上覆嘉陵江组气藏为高矿化度的氯化钙型水 (矿化度平均为 110 g/L),该区下伏石炭系黄龙组为 低矿化度的氯化钙型水(矿化度平均为 30 g/L),也 反映了飞仙关组地层水的封闭性是良好的。而有趣 的是,地层水矿化度与硫化氢含量有密切关系(图 1

图 2),即硫化氢含量越高,地层水的矿化度也越低, 因此地层水矿化度可能与硫化氢的形成有关。

5 气藏压力特征

陆棚东侧气藏的地层压力系数不高,多数在107~119^[24],陆棚西侧属于轻超压一超压,地层压力 系数在122~1.45,陆棚相区压力系数较高,绝大部 分大于1.5,主要分布在17~19,属于异常高压(图 3)。

虽然从川东北全区来看,异常高压区均为裂缝性 储层(如陆棚区的沙罐坪、高峰场等飞仙关组气藏),

图 2 川东北飞仙关组硫化氢含量等值线图

Fig 2 The isoline diagram showing the H₂S contents within the Feixianguan Formation in the northeastern Sichuan basin

图 3 川东北飞仙关组地层压力系数等值线图

Fig 3 The isoline diagram showing the formation pressure coefficients within the Feixianguan Formation in the northeastern Sichuan basin

岩性以泥粉晶灰岩为主,是陆棚两侧鲕滩储层的有效 源岩,且分布在陆棚区;陆棚东西两侧虽然都发育有 鲕滩孔隙型储层,但压力系数存在一定差异,即陆棚 西侧压力系数较东侧高。研究表明陆棚东侧溶孔鲕 粒云岩储层厚大较西侧大,孔渗性也比西侧好,因此 这可能与陆棚两侧鲕粒滩储层发育程度有一定关 系^[2],即地层压力系数与良好的鲕滩储层及较大的 地下储集空间呈对应关系,储层性质的不同及空间展 布可能是造成飞仙关组地层压力分布差异的一个原 因。但是进一步观察陆棚东侧气藏便会发现:硫化氢 含量越高的地方,地层的压力系数越低(图 2 图 3), 二者具有良好的相关关系(图 4)。由此看来,造成飞 仙关组地层压力系数分布悬殊的主控因素不仅仅是 储层的发育状况,与硫化氢含量高低的相关性表明, 二者间必然存在一定的成因联系。

6 成因探讨

从上述分析来看,川东北飞仙关组陆棚东侧气藏 充满度低显然不是成藏条件不充分所致,而地层水矿 化度、地层压力系数等与硫化氢含量的相关关系表 明,这些气藏的"三低"现象(较低的充满度、较低的 地层水矿化度、较低的地层压力)都与硫化氢的形成 过程有一定联系。研究表明,川东北飞仙关组陆棚东 侧鲕滩储层中发育了薄层膏质岩类,且储层在侏罗纪 中期至白垩纪末期经历过较高的温度(120~ 180°C),以及充足的烃源等,使该区具备发生硫酸盐 热化学反应(TSR)的条件^[17],并有大量证据表明该 区硫化氢属于TSR成因^[18~22];而气藏中如此之高的 硫化氢含量也只有TSR成因才能达到^[23~26],这是由 于硫化氢对微生物的毒性^[27]和岩石中含硫化合物的 数量^[28-29]决定了生物成因(BSR)和含硫化合物热裂 解(TDS)形成的硫化氢浓度一般不会超过*3%*),因 此,川东北飞仙关组陆棚东侧鲕滩储层中的硫化氢是 TSR形成的。而TSR的本质是一个消耗烃类的过 程,所以气藏充满度低和地层压力系数小都可能与 TSR 对烃类的消耗有关。

通常情况下,人们用简单的方程式(1)来表示 TSR,或用相对规范的通式(2)来表示:

$$CH_4 + CaSO_4 - CaCO_3 + H_2S + H_2O$$
 (1)
烃类 + CaSO_4 - CaCO_3 + H_2S + H_2O ±CO_2 ±S (2)

然而实际上, TSR 远比上面方程要复杂得多, 不 仅是其反应中间产物硫磺 (S)和 CO₂的问题, 而且反 应中还涉及到各种烃类参与的反应, 可能发生的反应 有^[30-32]:

$$2CaSO_4 + C_2H_6 - 2CaCO_3 + H_2S + S + 2H_2O$$
(3)
$$3CaSO_4 + C_3H_8 - 3CaCO_3 + H_2S + 2S + 3H_2O$$
(4)

 $nC aSO_4 + C_nH_{2n+2} - nC aCO_3 + H_2S + (n-1)S + nH_2O$ (5)

由于硫磺化学活性较强,很容易与烃类发生持续 反应,形成 CO₂

$$CH_4 + 4S + 2H_2O - CO_2 + 4H_2S$$
 (6)

$$C_2H_6 + 7S + 4H_2O - 2CO_2 + 7H_2S$$
 (7)

$$C_3H_8 + 10S + 6H_2O - 3CO_2 + 10H_2S$$
 (8)

 C_nH_{2n+2} + (3n + 1)S + 2nH₂O - nCO₂ + (3n + 1)H₂S (9)

通过方程式合并,可将中间产物硫磺(S)去掉, 并建立反应通式:

4C_nH_{2n+2}+(3n+1)CaSO₄—(3n+1)CaCO₃+ (3n+1)H₂S+(n-1)CO₂+(n+3)H₂O (10) 如果知道了是哪些烃类参与TSR发应,便可从 方程式(10)中求出生成一定体积硫化氢需要消耗的

304 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

烃类。而事实上,哪些烃类参以反应或起主要作用也 是十分难以确定。根据川东北、华北高含硫化氢天然 气气藏特征、勘探结果和作者的系统研究,发现甲烷 可能很难参与 TSR 反应, TSR 过程中消耗的烃类主 要是乙烷以上的重烃类^[33]。根据方程式 (10)可知, 每消耗 lmol的乙烷,可形成 7mol的 H₂S;消耗 lmol 的丙烷,可形成 10mol的 H₂S;消耗 lmol的丁烷,可 形成 13mol的 H₂S......

虽然准确计算川东北飞仙关组在形成硫化氢过 程中烃类的消耗量比较困难,但是可以粗略估算出其 消耗量。可以近似以每消耗 1体积的烃类,形成 3倍 体积的 H₂S来计算;天然气中 17% 的硫化氢至少需 要消耗 5.7% 的烃类。由于硫化氢保存下来的量仅 是其生成量的下限,在形成和聚集成藏的过程中要有 大量的硫化氢被消耗,地层水中的重金属离子也要消 耗掉大量的硫化氢,另外硫化氢在水中溶解量也很 大,换句话说也就是说硫化氢需要将储层中的重金属 离子耗掉形成稳定的金属硫化物、也需要在地层水中 溶解饱和后才能呈现出游离状态,因此硫化氢的消耗 量是很大的。综合各种因素来看,川东北飞仙关组高 含硫化氢气藏至少消耗了 10% 以上的烃类,所以气 藏充满度也至少降低了 10% 以上。

飞仙关组高含硫化氢气藏充满度降低、压力系数 减小除了 TSR 过程中烃类被大量消耗影响外, 还与 储集空间扩容有关。 TSR 的发生, 首先需要硫酸盐类 溶解提供 SO²⁻, 其次硫化氢对碳酸盐岩储层的具有 强烈的溶蚀改造作用, 促使大型孔洞的发育和优质储 层的形成, 这也是高含硫化氢天然气普遍发育优质储 层的原因 。因此膏质岩类的溶解和硫化氢对储层 的溶蚀作用使储集孔隙得到大幅度改善, 加上 TSR 对烃类的消耗和硫化氢聚集过程中的损耗 (烃类损 耗的体积大于生成的非烃类体积), 从而导致地层压 力下降和气藏充满度降低。

而较低的地层水矿化度,可以从两个主要方面来 查找原因。由于飞仙关组储层是鲕粒灰岩在早期白 云化基础上而形成的,沉积早期云化程度对后期优质 储层的形成具有重要控制作用,也就是说,早期暴露 淋滤溶蚀越强,后期储层性质相对也会越好。鲕粒灰 岩沉积后受海平面升降而频繁遭受暴露淋滤和溶蚀 等作用,孔隙水在表生期就受到大气降水的稀释,含 盐量降低,在后期成岩过程中一直未能浓缩。其次从 TSR反应方程式(10)可以看出,TSR 过程中能够生 成大量水,它们势必会对地层水产生稀释作用,因此 这两方面的综合作用,导致目前飞仙关组储层中的地 层水矿化度较低。

总之,从川东北飞仙关组气藏的形成演化过程来 看,早期鲕粒灰岩的白云化和溶蚀阶段,发育在台地 边缘的鲕滩沉积物,随着海平面的升降而发生混合水 白云石化作用,经过同生期溶蚀作用和埋藏溶蚀作用 改造后形成的孔隙性储层是陆棚东侧的主力储集体, 平均孔隙度为 9%, 部分在 20% 以上, 因此白云岩化 是储层形成的基本条件; 鲕滩的暴露淋滤, 必然受到 大气降水的影响,孔隙中充填地层水的矿化度可能会 比海水含盐量 (32 13g/L)低,因此早期的成岩过程, 一方面为储层形成了良好的孔隙,同时保存了矿化度 较低的表生期地层水。中期经历了古油藏的形成阶 段,特别是储层中广泛分布的沥青为飞仙关组气藏由 古油藏裂解而来提供了佐证。中后期为古气藏和硫 化氢的形成阶段,这是飞仙关组气藏经历的最重要事 件,此时古油藏中的液态烃逐渐裂解成气,体积迅速 膨胀.压力增大.部分地层水被排除;同时随着埋深增 大和古地温升高,在气水或油水界面附近烃类和硫酸 盐类溶解后的 SO_4^2 发生了热化学反应 (TSR), 部分 烃类被消耗,特别是重烃类大量被消耗,形成硫化氢、 二氧化碳、水和次生方解石等^[34,35]。由于膏质岩类 的溶蚀和硫化氢对储层的溶蚀作用使储集孔隙进一 步得到改善,而烃类损耗的体积大于生成的非烃类体 积,从而导致地层压力下降。喜山运动使地层抬升, 并对古气藏进行了调整和定型,使每个气藏都具有独 立的气水界面和压力系统:同时由于地层温度降低和 重烃类被耗尽, TSR 也就基本停止。因此气藏曾经经 历过一个较高的古压力过程,后由于 TSR 的发生,消 耗了烃类,扩大了储集空间,从而导致气藏充满度降 低、压力系数变小;而飞仙关组鲕粒灰岩沉积后由于 海平面的升降而多次遭受暴露淋滤和溶蚀等作用,孔 隙水在表生期就受到大气淡水稀释,含盐量降低,并 且后期受到 TSR 反应生成水的稀释作用, 所以目前 飞仙关组储层中的地层水矿化度较低。

7 结论和结束语

川东北飞仙关组陆棚东侧已发现的罗家寨、渡口 河、普光、铁山坡等大中型气藏, 普遍具有较低的充满 度、较低的地层水矿化度、较低的地层压力和较高的

朱光有.四川盆地高含硫化氢天然气的形成与分布.中国 石油勘探开发研究院博士后出站报告.2005

硫化氢含量的特点,气藏的"三低一高"与硫化氢的 形成过程有关。

川东北飞仙关组硫化氢是 TSR 在储层中形成 的。烃类在同硫酸盐发生热化学反应的过程中,随着 石膏的溶蚀(SO₄²⁻参与反应)和烃类向非烃类转化, 储集空间增大和烃类损耗(烃类损耗量至少在 10% 以上),从从而导致气藏充满度降低和压力系数减 小。

鲕滩早期的暴露淋滤,使溶蚀孔隙中保存了较低 矿化度的硫酸钠型水,后期又受到 TSR 产水的进一 步稀释的影响,故地层水现今呈现出较低的矿化度。 因此硫酸钠型地层水、较低的矿化度、较低的地层压 力,不是气藏封闭性差或气源不充分原因造成的,而 与早期成储(鲕滩云化)和气藏后期的次生蚀变 (TSR)作用有关。

虽然目前人们还没有完全认识 TSR 的发生机 制, TSR 对地层水的稀释作用、对各种烃类的消耗作 用和对储层的改善作用等研究都刚刚起步或处于争 论之中, 需要有更多的研究实例去总结归纳和探讨发 现, 但本文提出的这些地质现象无疑为 TSR 的进一 步研究提供有益的启示。

致谢 本研究工作得到西南油气田分公司勘探 开发研究院王一刚教授、中国石化南方勘探开发分公 司、四川石油管理局川东钻探公司化验室等同志的帮助,在此深表感谢!

参考文献(References)

- 1 王一刚,文应初,洪海涛,等. 川东北三叠系飞仙关组深层鲕滩气藏 勘探目标. 天然气工业, 2004; 24(12): 5~9 [W ang Yigang W en Yingchu, Hong Haitaa Exploration target of the deep oolitic beach gas reservoir of the Triassic system Feixianguan Formation in northeast part of sidu an bas in Natural Gas Industry, 2004; 24(12): 5~9]
- 2 江兴福, 左云安, 徐人芬, 等. 川东地区飞仙关组地层压力分布特征. 天然气勘探与开发, 2003, 26(2): 1~5[Jiang Xingfu, Zuo Yunan, Xu Renfen, et al. The distribution characteristics of the formation pressure within the Feixianguan Formation in the northeastern Sichuan basin Natural G as Exploration & Development, 2003, 26(2): 1~5]
- 3 汪泽成,赵文智,张林,吴世祥.四川盆地构造层序与天然气勘探. 北京:地质出版社,2002 27~94[Wang Zecheng Zhao Wenzh, Zhang lin, Wu Shixiang The Structural Sequence of the Sichuam Basin and the Natural Gas Exploration Beijing Petroleum Industry Press 2002 27~94]
- 4 华永川. 川东北飞仙关组鲕滩 气藏气水界 面预 测方法. 天然气工业, 2004; 24(8): 76~7[Hua Yongchuan Prediction method of gaswater interface for oo litic beach reservoir of Feix tanguan group in northeast Sichuan Natural Gas Industry, 2004; 24(8): 76~7]

- 5 王一刚,刘划一,文应初,等. 川东北飞仙关组鲕滩储层分布规律、勘探等方法与远景预测. 天然气工业, 2002, 22(增刊): 14~18 [Wang Yigang Liu Huayi Wen Yingchu et al. Distribution law, exploration method and prospectiveness prediction of the colitic beach reservoirs in Feixianguan Formation in northeast Sichuan basin Natural Gas Industry, 2002, 22(Supp): 14~18]
- 6 Zhao Wenzhi, Luo Ping, Chen Gengshen, Cao Hong, Zhang Baomin, Origin and reservoir rock characteristics of dobstones on the early Triassic Feixiangan Formation, NE Sidnu an Basin, China Significance for future gas exploration. Journal of Petroleum Geology, 2005, 28 (1): 83 ~ 100.
- 7 苏立萍, 罗平, 胡社荣, 等. 川东北罗家寨气田下三叠统飞仙关组鲕 粒滩成岩作用. 古地理学报, 2004, 6(2): 182~190[Su Liping Luo Ping Hu Sherong *et al.* Diagenesis of oolitic bank of the Feixianguan Formation of Low er Triassic in Luojiazhai Gas Field, north easterm Sichuan Province Journal of Palaeogeography, 2004, 6(2): 182~ 190]
- 8 杨雨,文应初. 川东北开江一梁平海槽发育对 T₁f 鲕粒岩分布的控制. 天然气工业. 2002, 22(增刊): 30~ 32[Yang Yu and Wen Yingchu Control of Kaijiang-liangping trough growing on T₁f oolite distribution in northeast Sichuan basin. Natural Gas Industry, 2002, 22 (Supp): 30~ 32]
- 9 张静, 王一刚. 四川宣汉河口地区飞仙关早期碳酸盐蒸发台地边缘 沉积特征. 天然气工业, 2003, 23 (2): 19~22[Zhang Jing and W ang Yigang Characteristics of carbonate evaporation tableand edge deposition in early Feixianguan epoch at Hekou region of Xuanhan in Sichuan. Natural Gas Industry 2003, 23 (2): 19~22]
- 10 魏国齐,陈更生,杨威,等. 川北下三叠统飞仙关组"槽台"沉积体系及演化. 沉积学报, 2004, 22(2): 254~260[WeiGuoqi Chen Gengshen, YangWei et al. Sedimentary system of platformal trough of Feixianguan formation of lowerTriassic in northern Sichuan Basin and its evolution Acta Sedimentologica Sinica, 2004, 22(2): 254~260]
- 11 杨家静,王一刚,王兰生,等.四川盆地东部长兴组一飞仙关组气 藏地球化学特征及气源探讨. 沉积学报, 2002, 20(2): 349~352 [Yang Jia jing Wang Yigang Wang Lansheng *et al.* The origin of natural gases and geochem istry characters of Changxing reef and Feixianguan oolitic beach gas reservoirs in eastern Sichuan basin Acta Sed in entologica Sinica 2002, 20(2): 349~352]
- 12 朱光有,张水昌,梁英波,等. 川东北飞仙关组 H₂S的分布与古环境的关系研究. 石油勘探与开发, 2005, 32(4): 65~69[Zhu Guangyou, Zhang Shuich ang Liang Yingbo, et al. Study on relationship between palaeoenvironment and the distribution of H₂S in T₁f Formation of eastern Sichuan Petrokum Exploration and Development 2005 32(4): 65~69]
- 13 谢增业,魏国齐,李剑,杨威,等.川东北飞仙关组鲕滩储层沥青与 天然气成藏过程.天然气工业,2004 24(12):17~19[Xie Zengyę WeiGuoqi Li Jian YangWei *et al.* Feixianguan Formation oolitic beach reservoir bitum en s and gas reservoiring process in north east Sichuan. Natural gas Indus try 2004; 24(12):17~19]

14 陈京元, 刘义成, 郑伟, 等. 罗家寨气田飞仙关组气藏高产井培育

分析. 天然气工业, 2004, 24 (4): 65 ~ 67 [Chen Jingyuan Liu Yicheng Zheng Wei, *et al* Analysis of drilling high productivity well in Feix ianguan gas reservoir of Luojiazhai field. Natural Gas Industry 2004, 24(4): 65~67]

- 15 黄建章,陈心胜,周国源,等.川东石炭系 气水理化性质与天然气 富集关系.石油与天然气地质,1994,15(4):285~292 [Huang Jianzhang Chen Xinsheng Zhou guoyuan *et al.* Physicochemical properties of Carbon iferous gas and water in East Sichuan and its relation to natural gas enrichment Oil& GasGeobgy 1994, 15(4):285 ~292]
- 16 朱光有,戴金星,张水昌,等.中国含硫化氢天然气研究及勘探前 景.天然气工业, 2004, 24(9): 1~4[Zhu Guangyou, Dai Jinxing Zhang Shuichang Li Jian, et al. Research on sour gas in China and its exploration prospects Nature Gas Industry, 2004, 24(9): 1~4]
- 17 朱光有,戴金星,张水昌,等. 含硫化氢天然气的形成机制及其分布规律研究. 天然气地球科学, 2004 15(2): 166~ 170[Zhu Guangyou Dai Jinxing Zhang Shuichang et al Generation mechanism and distribution characteristics of hydrogen sulfide bearing gas in China Nature Gas Geoscience, 2004, 15(2): 166~ 170]
- 18 王一刚, 窦立荣, 文应初, 等. 四川盆地东北部三叠系飞仙关组高 含硫气藏 H₂S成因研究. 地球化学, 2002 31(6): 517~524[Wang Yigang Du Lirong Wen Yingchu, et al. Origin of H₂S in Triassic Feix ianguan Formation gas pool northeastern Sichuan basin China Geochim ica 2002 31(6): 517~524]
- 19 CaiC F, Worden R H, Bottrell S H, et al. The mochem ical subhate reduction and the generation of hydrogen subhide and thick (mercaptans) in Triassic carbonate reservoirs from the Sidu an Basin, China Chemical Geology, 2003, 202, (1): 39~ 57.
- 20 沈平,徐永昌,王晋江,等.天然气中硫化氢硫同位素组成及沉积 地球化学相. 沉积学报, 1997, 15(2): 216~ 219[Shen Ping Xu Yongchang Wang Jinjiang *et al* Sulphur isotopic compositions of hydrogen sulphides in natural gases and the sedimentary geochemical facies A cta Sedimentologica Sinica, 1997, 15(2): 216~ 219]
- 21 戴金星, 胡见义, 贾承造, 等. 关于高硫化 氢天然气田科学安全勘 探开发的建议. 石油勘探与开发, 2004, 31(2): 1~5[Dai Jinxing Hu Jianyi Jia Chengzaq *et al* Suggestions for scientifically and safely exploring and developing high H₂S gas fields Petroleum Exploration and Development 2004 31(2): 1~5]
- 22 Zhu Guangyou Zhang Shuichang Liang Yingbo Discussion on origins of natural gas with high hydrogen sulphide content in China Acta Geologica Sinica 2005, 79 (5): 697~708
- 23 MachelH G, KrouseH R, Sassen R. Products and distinguishing criteria of bacterial and them ochem is al sulfate reduction Applied G eechem is try, 1995, 10(4): 373~ 389
- 24 OrrW L Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation study of the big Hom basin Paleozoic oils

AAPG Bulletin, 1974, 50 $2295 \sim 2318$

- 25 Krouse H R, Viau C A, Eliuk L S, Ueda A, Hahs S Chemical and isotopic evidence of them ochemical subhate reduction by light hydrocarbon gases in deep carbonate reservoirs Nature 1988, 333(2): 415 ~ 419
- 26 W orden R H, Smalley P C H $_2$ S-producing reactions in deep carbonate gas reservoirs Khuff Formation, Abu Dhabi Chemical Geology 1996, 133
 157 ~ 171
- 27 樊广锋, 戴金星, 戚厚发. 中国硫化氢天然气研究. 天然气地球科学, 1992, 3(3): 1~10[Fan Guangfeng Dai Jinxing and QiHoufa Study ofH₂S in China Nature GasGeoscience 1992, 3(3): 1~10]
- 28 戴金星. 中国含硫化氢的天然气分布特征, 分类及其成因探讨. 沉积学报, 1985 (4): 109~120 [Dai Jinxing Distribution, classification and origin of natural gas with H₂S in China A cta Sed in entologica Sinica, 1985, 3(4): 109~120]
- 29 朱光有,张水昌,李剑,等.中国高含硫化氢天然气田的特征及其 分布.石油勘探与开发, 2004 31 (4): 18~21 [Zhu Guangyou Zhang Shuichang Li Jian, *et al* Form ation and occurrence of hydrogen sulfide bearing gas in China Petroleum Exploration and Development 2004, 31 (4): 18~21]
- 30 Sassen R. G eoch em ical and carbon isotopic studies of crude oil destruction, bitum en precipitation and sulfate reduction in the deep Smackover Fom ation. O rgan & G eoch em istry, 1988, 12(2): 351~361
- 31 Worden R H, Smalley P C, Oxtoby N H. The effects of the mocham ical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate reservoirs Geochimica et Cosmochimica A cta, 1996 60 3925 ~ 3931
- 32 Heydari E. The role of burial diagenesis in hydrocarbon destruction and H₂S accumulation. Upper Jurassic Smackover Formation, Black Creek Field, Mississippi AAPG Bulletin, 1997, 81(1): 26~45
- 33 朱光有,张水昌,梁英波,等. 硫酸盐热化学反应对烃类的蚀变作用.石油学报,2005,26(5):48~52[Zhu Guangyou, Zhang-Shuichang Liang Yingbo, et al The alteration of TSR to hydrocarbons gas A cta Petro lei Sinica 2005, 26(5):48~52]
- 34 朱光有,张水昌,梁英波,等. 川东北地区飞仙关组高含 H2S天然 气 TSR成因的同位素证据. 中国科学(D辑), 2005, 35(11): 1037 ~ 1046[Zhu Guangyou, Zhang Shuidhang Liang Yingbo et al. F sobpic evidence of TSR origin for natural gas bearing high H₂S contents within the Feix ianguan Fom at ion of the northeastern Sidu an Basin, southwestern China, Science in China (D), 2005, 48 (11): 1960~1971]
- 35 Shuichang Zhang Guangyou Zhu, Yingbo Liang et al. Geochemical characteristics of the Zhaokanzhuang sour gas accumulation and thermochemical sulfate reduction in the Jixian Sag of Bohai Bay Basin Organic Geochemistry, 2005, 36(12): 1717~1730.

Characteristics of Gas Reservoirs with H igh Content of H_2 S in the Northeastern Sichuan Basin and the Consumption of Hydrocarbons due to TSR

ZHU Guang-you¹ ZHANG Shui-chang¹ LIANG Ying-bo¹ MA Yong-sheng² ZYOU Guo-yuan³ DA I Jin-xing¹

(1 Research Institute of Petroleum Exploration and Development China National Petroleum Corporation, Beijing 100083;
 2 Institute of Southern Exploration and Development Division Company of SINOPEC, Kunning 650200;
 3 East Sichuan Drilling Co Ltd, Sichuan Petroleum Administration, Chongqing 400021)

Abstract During the recent years several medium and large-scale gas fields such as the Luojiazhai Dukouhe Tianshan po and Puguang etc, whose most remarkable features being the higher H₂S contents, have been discovered in the northeastern Sichuan basin Their H_2S contents among the gas compositions account for 10 to 17 percent while the average being 14 percent Based on the thorough study, it can be found that although these large-scale onlitic shoal gas reservoirs usually have rich reserves a bng with high individual-well producing rate their coefficients of fullness which ranging from 25 to 91 percent are generally rather low, also their pressure coefficients are not high and mostly less than 1.2 A coording to their reservoir forming conditions, i.e., the abundant onlitic dissolution pores, the efficient reservoirs with huge thickness, the robust gas source, the well-developed transport systems, together with the excellent seal ability of the caprocks constituted by shale and gypsolyte, their bwer coefficients of fulness were possibly due to a large quantity of hydrocarbons had been consum ed or depleted within the traps. In the northeastern Sichuan basin, due to the H₂S contained within the Feixianguan formation was generated from the TSR reactions, which occurred within reservoirs, between hydrocarbons and sulfate, there exist negative correlations between the H₂S contents and the pressure coefficients, the reservoir water salinity together with the hydrocarbons contents, etc Therefor μ as far as the gas reservoirs with high H₂S contents of the Feixianguan formation was concerned, their lower pressure coefficients and coefficients of fullness are likely caused by both the hydrocarbons had been consumed greatly due to TSR and the volume of reservoirs had been expanded

Key words hydrogen subhide(H_2S), formation pressure, formation water, coefficients of fullness, the mochem ical sulfate reduction (TSR), the northeastern Sichuan Basin