文章编号: 1000-0550(2007) 02-0201-06

黑龙江省绥滨坳陷下白垩统碎屑岩源区分析及其构造意义

王伟涛 刘招君 何玉平 陈秀艳

(吉林大学地球科学学院 长春 130061)

摘 要 黑龙江省东部绥滨坳陷下白垩统从下而上为滴道组、城子河组、穆棱组和东山组。通过分析各组砂岩一泥岩 主量元素、微量元素和稀土元素的特征,揭示了不同时期盆地的源区构造背景存在差异。滴道组源区构造背景为活动 大陆边缘,城子河组、穆棱组多呈现出从活动大陆边缘向火山弧转换的地球化学特征,东山组则反映活动大陆边缘构 造背景。结合各组古水流方向、沉积相特征和岩屑所反映的源区岩性特征,认为滴道组物源主要来自于盆地南侧,城 子河组、穆棱组时期则主要来自盆地东南,并且碎屑岩均来自上地壳。

关键词 地球化学 构造背景 物源分析 绥滨坳陷 黑龙江省 第一作者简介 王伟涛 男 1979年出生 硕士研究生 沉积学 通讯作者 刘招君 E-mail linz jo jlu edu cn 中图分类号 P512 2 文献标识码 A

1 概述

黑龙江省东部三江盆地是上叠于前中生代基底 之上的中、新生代盆地。处于中亚—蒙古构造域东部 与东北亚环西太平洋构造带的复合部位。三江盆地 可分为四个一级构造单元,从西向东依次为佳木斯隆 起、绥滨坳陷、富锦隆起和前进坳陷。绥滨坳陷位于 佳木斯复合地体的北缘,西侧受控于军川断裂(f,), 与佳木斯隆起为界;南为集贤断裂(f);东侧受限于 富锦断裂(f,)与富锦隆起呈斜坡过渡;北为黑龙江断 裂,总体走向北东,平面展布呈宽条状四边形(图 1)。

图 1 三江盆地构造地质略图

1 三江盆地; 2 那丹哈达地体; 3 东部其他盆地; 4 花岗岩带; 5.绥滨坳陷; 6 宝清沉积岩带; F₁佳一依断裂; f₁军川断裂; f₂. 笔架山断裂; f₃. 富锦断裂

Fig 1 Sketch tectonic map of the Sanjiang basin

国家专项 (大庆外围探区中、新生代盆地群断陷演化与油气远景)资助

收稿日期9202003-12、收修改稿日期: 2005-09-28 al Electronic Publishing House. All rights reserved. http://www.cnki.net

绥滨坳陷发育的地层主要有上侏罗统绥滨组、东 荣组、下白垩统滴道组、城子河组、穆棱组和东山组。 上侏罗统绥滨组和东荣组主要发育于绥滨坳陷的东 北部,分布较为局限,绥滨组主要由细砂岩夹砾岩、中 粗砂岩、粉砂岩组成,为一套较粗粒的海进沉积产物; 东荣组为一套相对较细的浅海相沉积,岩性主要为深 灰色粉砂岩,夹灰白色细砂岩、凝灰岩。下白垩统滴 道组北部为海陆交互相沉积,南部为陆相沉积,主要 由砾岩夹泥岩、细砂岩、粉沙岩以及煤线组成,厚度 450~500 m;城河组为一套以陆相为主的含煤碎屑岩 建造,以灰、灰白色粉砂岩、细砂岩为主,厚度 1500~ 1600 m;穆棱组主要为深灰、灰黑色泥岩与灰绿色粉 砂岩、细砂岩不等厚互层,厚度 800~900 m;东山组 则为一套火山岩和碎屑岩沉积建造,由粉、细砂岩夹 蚀变安山岩、安山质集块岩组成,厚度约 600 m。

2 样品采集

绥滨坳陷上侏罗统绥滨组以及东荣组地层分布 于坳陷的北部,较为局限,普遍认为其物源来自坳陷 的北部^[1-2],因此本文并未对晚侏罗世碎屑岩物源进 行讨论,而是针对绥滨坳陷南部下白垩统滴道组、城 子河组、穆棱组、东山组构造背景不清,物源存在争议 的层位进行研究。碎屑岩样品采自绥滨坳陷西南部 的滨参 1井,岩性主要为细砂岩、泥岩。岩石地球化 学分析中的常量元素收集自大庆油田有限责任公司 勘探开发研究院,稀土元素由中国地质科学院地球物 理地球化学勘查研究所采用等离子体质谱法(CP-MS)测定,其它元素采用压片法 X-射线荧光光谱 (XRF)测定。

3 岩石地球化学特征

主量元素统计分析数据 (表 1)。绥滨坳陷下白 垩统城子河组、穆棱组、东山组砂岩 SD、ALO、 TO₂、Fe₂O₃、MgQ CaO, K₂O 和 NaO 的平均含量分 别为 63 10%、 14 45%、 0 72%、 4. 77%、 1 21%、 1.93%、2.75%和1.45%、滴道组与其对应氧化物含 量为 73 84%、12 95%、0 33%、2 02%、0 49%、 0.90%、3.22%、和3.16%,两者之间存在明显差异、 总体体现为滴道组 SD₂, Na₂O含量较高, Fe₂O₃, CaO 含量较之偏低。稀土元素分析数据见表 2 绥滨坳陷 滴道组、城子河组、穆棱组和东山组稀土元素总量 (Σ REE,不包括Y元素)平均值分别为 283 21 × 10^{-6} , 214 78 × 10^{-6} , 243 81 × 10^{-6} 70 204 25 × 10^{-6} 轻重稀土比值 (Σ LREE / Σ HREE) 分别为 11. 64 9 93 8 38 和 9 33 平均 Eu/Eu* 值分别为 0.41 0 58 0 54 和 0 55 平均 Ce/Ce* 值分别为 0 95 0.94.1.06和1.06。总体表现为滴道组稀土总量高 于城子河组、穆棱组和东山组, Eu异常均呈现出明显 的负异常,滴道组 Eu的亏损程度强于城子河组、穆 棱组和东山组, Ce异常不明显。

	东山组	穆棱组	城子河组	滴道组	上兴中省			被动	
	(4)	(17)	(36)	(11)	大沣岛弧	大陆弧	沽动大陆边琢	大陆边缘	
A LO3	15 81	14 69	12 18	12. 95	17.11	14 04	12. 89	8.41	
SO_2	62 45	66 32	62 44	73.84	58 83	70 69	73. 86	81.95	
K ₂ O	2. 22	2 77	3 57	3. 22	1. 60	1 89	2 90	1.71	
C aO	2.32	2 42	1 15	0.90	5. 83	2 68	2 48	1. 89	
Т Ю ₂	0. 72	0 51	0 80	0.33	1. 06	0 64	0 46	0.49	
M nO	0.10	0 09	0 12	0.06	0.15	0 10	0 10	0. 05	
Fe_2O	34 84	3 74	5 22	2. 02	8. 08	4 82	3 05	3. 27	
P_2O_5	0. 21	0 22	0 16	0. 13	0. 26	0 16	0 09	0.12	
Na_2O	0. 70	2 68	2 04	3. 16	4.10	3 12	2 77	1. 07	
MgO	1. 27	1 05	1 21	0.49	3. 65	1 97	1 23	1. 39	
SD_2/A_2O_3	4.00	4 51	5 13	5.56	3. 45	5 00	5 56	10.00	
$K_2 O / N a_2 O$	3. 20	1 03	1 75	1. 02	0. 39	0 61	0 99	1. 6	
$A l_2 O_3 / (C aO + N a_2 O)$	5. 24	2 88	3 82	3. 20	1. 72	2 42	2 56	4. 15	

表 1 绥滨断陷早白垩世砂岩常量组分统计结果

Table 1	M a jor elem ents	s composition of	f the	bwer C retaceous	in Suibin	depression(%)
---------	-------------------	------------------	-------	------------------	-----------	---------------

注: Fe_2O_3 为全铁; 大洋岛弧, 大陆弧, 活动大陆边缘, 被动大陆边缘数据 (据 Bhatia 1983^[3]); 括号内的数值为样品数。

© 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 2 绥滨断陷早白垩世砂岩一泥岩微量元素表(ppm)

Table 2 Trace elements content of the lower Cretaceous sand stones and mud stones in Suibin depression

样品编号	B-1	В-2	В-3	B-4	B-5	B-6	B-7	B8	B-9	B-10	B-11	B-12	B-13	B-14
层位	K_1d	K_1d	K_1d	K ₁ dı	K ₁ dı	K ₁ ch	$K_1 ch$	$K_1 ch$	K ₁ dh	K ₁ d	K_1m	K ₁ m	K ₁ m	K ₁ dsh
Вa	605	773	721	688	522	648	723	807	489	600	562	540	605	1076
Сr	27. 0	33. 3	51 0	35 3	57.0	42 0	47.6	46.6	42 2	86 8	72 3	74.6	73. 6	59.8
Cu	4. 0	17.6	20 1	16 7	17.9	20 8	26.9	19.8	199	48 7	46 3	43. 4	42.0	35.5
Ga	33. 2	26.8	29 6	22 7	28 1	24.3	28.7	22. 7	20 3	27.0	26 9	26.0	28.9	27. 9
Nb	58.9	26.3	26 7	20 5	25 8	22 8	23. 8	21. 6	19 2	19 8	18 9	18.6	21.4	17.6
N i	12.1	8.6	14 1	15 5	14 1	18 1	26.7	18.5	20 3	60 5	56 9	44. 0	37.1	28. 2
Pb	32. 7	45.5	44 6	35 0	22 6	26 0	48.9	27.8	32 7	44 2	43 3	34. 8	44. 0	22. 2
Rb	239	251	262	216	213	164	221	144	128	202	176	167	207	163
\mathbf{Sc}	3. 4	11. 2	8.5	98	13 0	87	14.7	11.6	87	16 5	13 6	11. 1	15.1	10. 9
Sr	190	205	182	259	257	264	294	240	319	174	197	205	180	645
Th	25. 2	26.5	33 0	16 9	18 6	16 0	23. 0	13. 7	13 5	23 6	23 4	17. 3	21. 6	23. 1
Тi	2607	3248	3677	3668	4869	4258	3985	4469	3858	4321	4177	4044	4340	3998
V	27	38	53	64	89	76	94	82	68	112	97	109	104	95
Zn	133	99	130	90	73	103	107	96	100	100	136	112	121	81
Zr	694	249	270	271	344	275	322	275	238	198	182	189	209	183
Y	25	24	43	25	23	26	32	27	28	26	34	36	39	27
La	86	47	66	43	56	49	52	43	41	39	52	46	46	40
Сe	175	81	122	93	104	90	104	90	75	82	118	104	102	91
Pr	17.3	8.8	13 8	10 2	12 0	10 7	12. 1	10. 3	94	9 02	12 6	10. 6	10. 9	9.7
Nd	59	30	49	38	44	39	44	39	35	32	46	38	40	36
Sm	9.68	5.41	9.36	7. 28	8 01	7.39	8. 22	7.49	6.97	5 83	8 43	7.07	7.91	6.66
Eu	0.72	0.82	1.51	1 41	1.39	1 31	1. 35	1. 22	1. 33	0 99	1.37	1 19	1. 35	1.11
Gd	7.34	4. 43	8.26	6 24	6 14	6 02	6.39	5.87	6.32	4 79	699	6 18	7.06	5.41
Tb	1. 08	0.78	1. 39	0 94	0 92	0 96	1. 09	0.97	1. 05	0 80	1 18	1 05	1. 20	0.82
Dy	5.47	4. 58	7.79	5 08	4 78	5 17	5.85	5. 33	5.40	4 89	6 82	6 31	6.83	4.82
Нo	0. 93	0.88	1. 52	0 87	0 81	0 95	1. 09	1. 00	0.97	0 97	1 30	1 26	1. 39	0. 98
Er	2.69	2, 61	4.58	2 44	2 38	2 74	3. 22	3. 08	2, 79	3 03	4 02	3 99	4. 28	3. 13
Tm	0.38	0.41	0.72	0 38	0 35	0 42	0.50	0.49	0.42	0 50	0 66	0 67	0.71	0. 52
Yb	2.44	2.65	4.65	2 41	2 13	2 83	3. 33	3. 09	2.77	3 30	4 43	4 46	4.87	3. 49
Lu	0.40	0.45	0.80	0 40	0 36	0 46	0.54	0.53	0.46	0 56	0 74	0 76	0.84	0. 61

注: K₁d-滴道组; K₁d-城子河组; K₁m-穆棱组; K₁dsh-东山组

4 构造背景判别

在砂岩 SD₂—K₂O/N_{a2}O 构造背景^[4] 分区图上, 下白垩统滴道组样品绝大多数落在活动大陆边缘, 城 子河组与穆棱组虽然大部分样品落入活动大陆边缘, 但其位置明显靠近岛弧一侧, 部分样品落入活动大陆 边缘与岛弧的边界附近, 少数样品落入岛弧以及被动 大陆边缘的范围内 (图 2a)。Bha tia 和 Crook^[5] 以及 Tay br和 M d.ennan^[7] 认为, 砂岩的一些不活泼微量 元素 (如 La Th, Y, Zr T i Co, N i)及其比值 (如 Zr/ H f, Eu/Eu^{*}, Ta/Nh, La/Se, Th/U等)在沉积过程 中不发生明显改变, 因此在研究砂岩物源区和判别构 造环境上作用很大, 并提出了可以区分形成于海洋岛 弧、大陆岛弧、活动大陆边缘和被动大陆边缘的砂岩 图解。o本 文利,用, Ti/Zr—La/Se^[5], La—Th—Se^[5], Th—Sc—Zr/10^[6]图解, 对绥滨坳陷南部下白垩统砂 岩一泥岩样进行了投点 (图 2)。在 Ti/Zr—La/Sc图 解中(图 2b), 滴道组构造背景主要为活动大陆边缘, 样品部分落入被动大陆边缘; 城子河组主要落入活动 大陆边缘区, 但部分样品落入活动大陆边缘与大陆岛 弧的边界附近; 穆棱组和东山组样品全部落入活动大 陆边缘区。在 La—Th—Sc构造背景判别图中(图 2c) 滴道组样品落入活动(或被动)大陆边缘区; 而城子河 组和穆棱组砂岩一泥岩样品落入活动(或被动)大陆边 缘与大陆岛弧的边界位置; 东山组样品落入活动大陆 边缘构造环境。同样在 Th—Sc—Zr/10构造背景判别 图中(图 2d), 滴道组样品落入活动大陆边缘区(一例 落入被动大陆边缘), 城子河组砂岩一泥岩落入活动大 陆边缘与大陆岛弧之间; 穆棱组样品大部分为活动大

图解。994-2014 China Academic fournal Electronic Publishing Flouse: All 相信品落入活动大陆边缘构造环境。

图 2 绥滨断陷早白垩世砂岩 — 泥岩地球化学构造背景判别图 (a)砂岩 K₂O /Na₂O — SO₃图解 (据 Roser等, 1986^{4]}), (b)砂岩 — 泥岩 Ti/Zr — La/Sc图解(据 Bhata等, 1986^[5]), (c)砂岩 — 泥岩 La — Th — Sc图解 (据 Bhata等, 1986^[5]), (d)砂岩 — 泥岩 Th — Sc — Zr/10图解 (Murphy等, 2000^[6]); A:大洋岛弧, B:大陆岛弧, C:活动大陆边缘, D: 被动大陆边缘

Fig 2 Diagram of tectonic setting discrimination for the lower Cretaceous sandstones and mudstones in Subin depression

综合分析砂岩 一泥岩的各种构造判别结果,可以 认为绥滨坳陷下白垩统滴道组构造背景为活动大陆 边缘,城子河组构造背景为从活动大陆边缘向大陆岛 弧的过渡,穆棱组源区则显示从大陆岛弧向活动大陆 边缘过渡的构造背景,东山组的构造背景为活动大陆 边缘。

5 物源区分析

指示碎屑岩源区分析的指标中,稀土元素配分模 式^[89]是最可靠的指示器.源自上地壳的稀土元素具 有富集轻稀土、重稀土含量稳定,高的 LREE / HREE 和负的 Eu元素异常等特征^[10~13]。绥滨坳陷南部下 白垩统各组地层样品的稀土元素经过球粒陨石^[7]均 元素具明显的负异常,与上地壳中稀土元素的分布形态几乎完全一致 (图 3),显示其原岩物质应来自上地壳。微量元素经上地壳平均值^{14]}标准化后,显示样品与上地壳微量元素平均值含量相似 (图 4),同样反映碎屑岩源区物质来自于上地壳,但是滴道组 Ba Nb, Sr明显的亏损, Rb, Th, Zr富集,与广泛分布于绥滨坳陷南侧的 A 型花岗岩^{115]}具有明显的相似性;城子河组与穆棱组, Ba Nb, Sr亏损, Rb, Th, Zr虽然也富集,但程度较滴道组弱,显示源区有其它类型岩石的加入。通过分析砂岩的主量元素、微量元素和稀土元素的地球化学特征和构造判别图解,研究区滴道组砂岩一泥岩构造背景为活动大陆边缘,城子河组、穆棱组、构造背景为从活动大陆边缘向大陆弧的转换,

一化之后,表现为轻稀土富集、重稀土含量均一和 Eublish 而且组砂岩反映源区为活动大陆边缘。因此,绥滨坳

图 4 绥滨断陷早白垩世砂岩 – 泥岩微量元素蛛网图

Fig 4 Trace element spiler diagram of the the lower Cretaceous sandstones and mudstones in Suibin depression (上地売标准化值引自 Taybr等 1981^[14])

陷南部早白垩世砂岩一泥岩的构造背景和地球化学特征与其南部的桦南隆起和东南部的宝清地体非常的相似^[15]。同时绥滨坳陷南部滴道组岩相古地理图显示研究区从南向北发育冲积扇相(图 5)、(扇)三角洲相,地震主测线和联络测线的地震剖面前积反射结构以及野外实测的古水流方向也显示该时期水流方向为从南向北;城子河组、穆棱组和则发育三角洲前缘、滨浅湖相,古水流方向从东南向西北。滴道组冲积扇相砾岩砾石成分主要为花岗质砾石、泥砾等,镜下观察滴道组岩屑成分主要为花岗质砾石、泥砾等,镜下观察滴道组岩屑成分主要为花岗质砾石、泥砾等, 125滴道组内伴随多次火山作用有关;城子河组、穆棱组岩屑成分主要为沉积岩。以上分析揭示滴道组时期三江盆地绥滨坳陷处于断陷阶段,其物源主

图 5 滨参 1井冲积扇沉积相 1砾岩,2粉砂岩,3泥岩,4递变层理, 5大型槽状交错层理,6平行层理

Fig 5 Sedimentary profile of the allovial fan in Well Bincanl 要来自于盆地南部的桦南隆起;城子河组与穆棱组时 期盆地进入坳陷阶段,湖盆范围不断扩大,这一时期 黑龙江省东部盆地群可能形成相互连通的统一盆地, 绥滨坳陷南部物源区东移,具有大陆岛弧性质的宝清 地体^[15]及东三江隆起区成为主要物源区。此后盆地 抬升剥蚀,东山组时期盆地二次断陷。

6 结论

(1) 黑龙江省三江盆地绥滨坳陷滴道组构造背 景为活动大陆边缘,城子河组构造背景为从活动大陆 边缘向大陆岛弧的过渡,穆棱组源显示从大陆岛弧向 活动大陆边缘过渡的构造背景,东山组的构造背景为 活动大陆边缘。绥滨坳陷下白垩统砂岩的构造背景 表明盆地的构造演化经历了一个完整的旋回。

(2) 黑龙江省三江盆地绥滨坳陷下白垩统滴道 组砂岩一泥岩与城子河组、穆棱组和东山组砂岩一泥 岩组合的主量元素、稀土元素均存在明显的差别,显 示其物源区存在明显差异。

(3)综合分析黑龙江省三江盆地绥滨坳陷下白 垩统砂岩一泥岩地球化学特征其反映的构造背景、结 合沉积相特点、古水流方向以及岩屑特征,认为滴道 组物源主要来自盆地南部的桦南隆起;城子河组、穆 棱组和东山组其物源来自于坳陷的东南部的宝清地 体和东三江隆起区。

(4) 绥滨坳陷南部早白垩世碎屑岩物源区的确 。,定为黑龙江东部盆地群的演化提供了可靠的证据。

参考文献(References)

- 1 马小刚, 王东坡, 薛林福,等. 三江盆地绥滨坳陷构造特征及其与 油气的关系. 长春科技大学学报, 2000, 30(1): 47-49 [Ma Xi aogang W ang Dongpo, Xue Linfu, et al Tectonic characteristics and their relation to oil and gas of Sulbin depression in Sanjiang basin Journal of Changchun University of Science and Technology, 2000, 30 (1): 47-49]
- 2 沙金庚. 黑龙江东部早白垩世生物地层学研究的主要进展. 地学前 缘, 2002, 9 (3): 96-100 [ShaJingeng Major achievements in studying the early Cretaceous biostratigraphy of eastern Heilong jiang Earth Science Frontiers 2002, 9 (3): 96-100
- 3 Bhatia M R Plate tectonics and geochemical composition of sandstones Journal of Geology, 1983, 91: 615-625
- 4 Roser B P, Korsch R J Determ ination of tectonic setting of sandstonemud stone suites using SD₂ content and K₂O N a₂O ratio Journal of Geobgy, 1986, 94 634-649
- 5 Bhatia M R, Crook K A. Trace-element characteristics of gray-wackes and mudrocks Provenance tectonic setting discrimination of sedimentary Basin Sedimentary Geology 1986 92 181-193
- 6 Murphy J B Tectonic in fluence on sedimentation along the southerm flank of the late A paleozoic M agdalen b as in in the C anadian A ppalachians Geochemical and isotopic constraints on the Horton Group in the St M arys bas in Nova scodia Geological Society of American Bulletin 2000, 112 997–1010
- 7 Taylor S R , M dL enn an S M. The C on tinental Crust Its Composition and Evolution Oxford London: Blackwell scientific Publication, 1985. 100-301
- 8 M clennan S M, H emming S R, Taylor S R, et al. Early Protenzoic crustal evolutions geochemical and Nb-Pb isotopic evidence from metased in entary rock ş sou thwestern North American. G eoch in ical Cosmo-

ch in ica A c ta, 1995, 59: 1160-1178

- 9 M elennan S M, Taylor S R. Geochem cal evolution of A rechean shales from south A frica: The Swaziland and ponggola supergroups Precambrian Research 1983, 22 93–94
- 10 李志明,刘家军,胡瑞忠,等.兰坪中新生代盆地沉积岩源区构造 背景和物源属性研究. 沉积 学报, 2003, 21 (4): 547-551 [Lizhim ing LiuJiajun, HuRuizhong *et al.* Tectonic setting and provenance of source tock for sedimentary tocks in Lanping M esozoie-C enozoic basir evidences from geochem istry of sandstones A cta Sd in entobgica Sinica, 2003, 21, (4): 547-551
- 11 邵磊,李文厚,袁明生.吐鲁番一哈密盆地的砂岩特点及构造意 义.沉积学报, 1999, 17 (1): 96-99[Shao Lei LiWenhou, Yuan Mingsheng Characteristic of sandstones and its tectonic implications of the Turpan basin A cta Sed in entologica Sinica, 1999, 17(1): 96-99]
- 12 ShaoI, Stattergger K, Garge-Schoenberg C D. Sandstone petro bgy and geochimistry of the Turpan Basin (NW China): implications for the tectonic evolution of a continental basin Journal of Sedimentary Research 2001, 71(1): 39–49
- 13 Gu X X, Liu JM, Zheng M H, et al. Provenance and tectonic setting of the proterozoic turbidites in Hunan, south China geochemical evidence Journal of Sedimentary Research, 2002, 72(3): 393-407
- 14 Tay br S R, and M clennan S M. The composition and evolution of the continental crust rare earth element evidence from sed in entary rocks Phil Trans R Soc. London, 1981, A 301, 381–399
- 15 黑龙江省地质矿产局.黑龙江省区域地质志.中华人民共和国地质矿产部地质专报一区域地质第 33号.北京:地质出版社,1993 354-601[Geobgy and Mineral Resources of Heilong jiang Province Regional Geology of Heilong jiang Province Ministry of Geobgy and Mineral Resources, People's Republic of China, Geobgical Memoirs, No. 33 Beijing Geological Publishing House, 1993 354-601]

Provenance of Lower Cretaceous Clastic Rocks in Suibin Depression Heilongjiang Province and Its Tectonic Significance

WANG Weitao LIU Zhao-jun HE Yu-ping CHEN Xiu-yan (Geosciences Colledge Jilin University, Changchun 130061)

Abstract Lower Cretaceous of Subin depression includes Didao, Chengzihe, Muleng and Dongshan Formations The geochemical compositions of sandstones and mudstones in Suibin depression. Sanjiang basin reveal the tectonic settings in the different epochs. Didao Formation mainly represents active continental margin but the tocks of Chengzihe and Muleng indicate the transition from continental island to active continental margin. Dongshan Formation expresses active continental margin. Combined with ancient direction of waterflow, the characteristic of the facies of sedimentary rocks and lithic fragments, it is referred that the provenance of Didao Formation beated in the south of the Suibin depression and the provenance of Chengzihe, Muling and Dongshan Formations in the southeast of the Subin depression. The primary materials of sedimentary rocks should come from the upper crust. This provides strong geochemical evidence for realizing the evolution of basins of eastern Heibng jian province correctly.

Key words geochemistry, tectonic setting provenance analysis, Subin depression, Heilongjiang province © 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net