文章编号: 1000-0550(2007) 03-0467-07

鄂尔多斯北部直罗组中烃类包裹体地球化学特征 及来源分析

李宏涛12 蔡春芳12 罗晓容^{1,2} 李开开^{1,2} (1中国科学院矿产资源研究重点实验室 北京 100029, 2中国科学院地质与地球物理研究所 北京 100029)

摘 要 对鄂尔多斯盆地东胜地区中侏罗统直罗组砂岩中烃类包裹体进行镜下观察、描述、利用压碎抽提法对烃类 包裹体进行色谱一质谱分析,并与白垩系油苗、三叠系油砂及源岩抽提物进行对比,目的是探讨其来源。包裹体油生 物标志物成熟度参数, Czaaa 甾烷 20S/(S+R), Cza β 藿烷 22S/(S+R)比值基本达到平衡值, 利用 甲基菲指数 计算 的镜质体反射率参数介于 0.64%~0.82%之间,显示包裹体中石油烃已接近成熟一成熟热演化阶段;物质来源及沉 积环境参数, ɑɑɑ 20R 甾烷百分含量 C,, > C ,, < C, , C, , C, 三环萜烷、规则甾烷 /17ɑC ,, , , , 藿烷比值 显示相对 低值, 结 合伽马蜡烷指数、C₃升藿烷指数等参数,综合反映了其来源应为弱氧化-还原环境下的腐殖-腐泥型湖相有机质。 参数对比发现, 包裹体油与三叠系油砂和三叠系源岩抽提物接近, 而与白 垩系油砂抽提物相差较远, 说明砂岩中包裹 体油主要来自三叠系湖相烃源岩。

关键词 烃类包裹体 色谱一质谱 生物标志物 源岩 第一作者简介 李宏涛 1977年出生 男 博士研究生 石油与天然气地质 通讯作者 蔡春芳 研究员 盆地流体一岩石相互作用 E-mail cai_c@ mail igg cas ac cn 中图分类号 P593 文献标识码 A

近几年在鄂尔多斯盆地东胜地区中侏罗统直罗 组,发现了砂岩型铀矿床。在铀矿区砂岩中发现含有 吸附烃和油气包裹体;在其北部,还发现了白垩系油 苗。研究表明.油气与铀矿床形成具有成因联 系^[12]。然而,该铀矿区砂岩中油气的来源,并没有 深入探讨过。本文主要通过分析包裹体中烃类色 谱一质谱,并与白垩系油苗、三叠系油砂和三叠系源 岩抽提物进行对比、来探讨其来源。

1 地质背景

鄂尔多斯盆地是我国陆上第三大沉积盆地,是在 古生代海相及海陆过渡相前陆沉积盆地之上.叠加了 中新生代陆相拗陷沉积的叠合克拉通台向斜盆地,富 含煤、石油、天然气和铀等多种能源。 盆地划分为: 伊 盟隆起、渭北隆起、晋西挠摺带、陕北斜坡、天环坳陷 和西缘冲断带六个一级构造单元。东胜砂岩型铀矿 区位于鄂尔多斯盆地伊盟隆起的东北部(图1),直罗 组为含矿层系。直罗组可分为上、下两段:上段岩性 以紫红、灰紫色泥质粉砂岩、粉砂质泥岩为主,夹中细 粒砂岩、细砂岩薄层;铀矿主要赋存于下段,岩性为灰 鄂尔多斯盆地

色、灰白色中粗粒、中细粒砂岩、夹泥质粉砂岩、粉砂 质泥岩。

鄂尔多斯盆地主要由太古界和下元古界的花岗 片麻岩等变质岩构成了盆地的结晶基底。基底之上 依次形成四套沉积盖层:中元古代一早古生代盆地以 海相沉积为主,发育了浅海碎屑岩和碳酸盐岩;晚古 生代石炭 一二叠纪盆地由海逐渐向陆过渡, 形成海陆 交互相的碎屑岩, 含煤夹层; 早中生代一中侏罗世盆 地内形成内陆凹陷,沉积了数千米厚的河、湖相碎屑 岩,生成丰富的石油和煤;早白垩世时期盆地内发育 了近千米厚的河流相沉积. 形成干旱气候下的泥、砂 岩互层,之后的晚燕山运动使盆地整体抬升,第三系、 第四系沉积盆地内零星分布^[3]。

盆地内潜在的烃源岩主要分为四套:下古生界奥 陶系海相烃源岩,以腐泥型有机质为主,有机质成熟 度达到高一过成熟阶段;上古生界石炭一二叠系煤系 <u> 经</u>源岩, 以氧化沉积环境的腐殖型有机质为主, 中 等一高的有机质成熟度为特征:中生界三叠系内陆湖 相烃源岩,通常以近成熟一成熟,弱还原环境的腐 殖一腐泥型有机质为主;下侏罗系湖沼相煤系烃源

国家重点基础研究发展计划 (973计划) "多种能源矿产共存成藏 (矿) 机理与富集分布规律" (编号: 2003CB214605) 资助 收稿日期:9202607-2ぞ收修改稿目期:rff06509tfnal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 1 鄂尔多斯盆地北部东胜铀矿矿区位置图

Fig 1 Location of Dongsheng uranium deposit North Ordos Basin

2 实验方法

通过荧光显微镜下观察. 挑选出含油气包裹体 GOI(GOI指含有烃类包裹体的颗粒/岩石中总的矿 物颗粒 ×100%) 丰度较高的 6个样品, 采用 George 等 (2004)的方法^[5]分析。即,首先把每个大约 50克 样品轻轻敲碎并过筛 40~ 60目,用蒸馏水清洗除去 粒径比较小的填系物及一些粘土矿物,低温烘干。然 后用二氯甲烷和甲醇的混和液 (93: 7), 浸泡 48~ 72小时,倒掉溶液风干后,用双氧水氧化矿物颗粒表 面残留的不溶有机物。最后将样品磨碎至 200 目以 下,用二氯甲烷浸泡抽提 48~ 72小时。为了对比,也 对白垩系油苗、三叠系油砂和三叠系源岩进行了索式 抽提。GC-MS分析在HP6890/5973MSD上进行,色 谱柱为 HP-5MS(30m×0 25mm×0 25µm), 载气为 氦气,升温程序为: 40℃恒温 2m in 然后以 4℃ /m in 的升温速率升至 300℃, 恒温 15m in。采用多离子检 测方法。

Fig. 2 Mass chromatograms(m/z=85) of oils extracted from inclusions from Zhiluo Formation sandstone, Cretaceous sandstone, Triassic sandstone and Triassic source rock

© 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

3 包裹体镜下特征描述

镜下观察显示,油气包裹体主要赋存在石英颗粒 愈合的次生裂缝中,为成岩次生包裹体。包裹体较 小,通常 < 5¹⁴m,呈条带状沿次生裂缝分布,烃类包裹 体发浅蓝一亮白色荧光,显示具有油气聚集或运移 过。对含油气包裹体丰度(*GOI*)统计结果显示,多数 砂岩 *GOI* 值低于 1%,少数样品 *GOI* 值可高达 5%。 *GOI* 参数被用来反映油气藏含油气饱和度的相对高 低: *GOI*大于 5%,表明含油气饱和度较高;相反,低 于 1%,指示了低的含油气饱和度^[5]。

4 包裹体油、油砂及源岩抽提物色谱 特征

GC-MS分析 (m / z= 85)显示, 流体包裹体石油烃中, 正构烷烃*OEP*(奇偶优势指数)为 0 9~1 1, 三叠系油砂烃类正构烷烃*OEP*值 1 04, 三叠系源岩有机质抽提物正构烷烃*OEP*为 1 07, 白垩系油砂抽提物正构烷烃*OEP*为 1 08, 均显示没有明显的奇数或偶数碳优势, 反映这些样品烃类基本达到了成熟阶段。包裹体油、三叠系油砂、三叠系源岩和白垩系油砂抽 $提物正构烷烃主峰碳数分别为 <math>C_{16} \sim C_{17}, C_{20}$ 和 C_{23} 。

5 包裹体油、油砂及源岩抽提物生物 标志物特征

51 成熟度

 $C_{29} \alpha \alpha \alpha 20R$ 甾烷构型, 是生物合成的唯一构型。 随着成熟度增加, 该构型逐渐向 S构型转变, 比值 20S / (20R + 20S)平衡状态为 0 52~0 55⁶¹, 包裹体 油 $C_{29} \alpha \alpha \alpha$ 甾烷 20S / (S+R)比值为 0 51~0 56(表 1), 基本上达到了平衡状态。包裹体油 $C_{32} \alpha \beta$ 藿烷 22S / (S+R)比值为 0 55~0 59, 平均 0 57 (表 1), 基本都达到平衡值 0 55~0 6⁶¹, 甲基萘比率和二甲 基萘比率范围分别介于 1 39~1 58和 4 07~6 61 之间, 甲基菲指数 (MPI)值介于 0.41~0 69之间 (表 1), 由此计算而得的镜质体反射率 $R_c (R_c = 0.6^{\circ}$ MPI + 0 4)为 0 64%~0 82% (表 1)^[7], 这些参数反映 有机质已接近成熟一成熟的热演化阶段。

三叠系源岩抽提物成熟度参数 $C_{29} \alpha \alpha \alpha$ 甾烷 205 /(20S+20R)和 $C_{32} \alpha^{\beta}$ 藿烷 22S /(22S+22R)分 别为: 0 57, 0 59, 分别与三叠系油砂抽提物成熟度参 数 0 56, 0 61相近。本次所测的源岩和油砂抽提物 $C_{29} \alpha \alpha \alpha$ 甾烷 20S /(S+R)比值 (0 51~0.56), 与安 塞一富县地区长₄₊₅一长₈段源岩测试结果 (0 47~0.58, 平均值 0 54)基本一致^[8]。三叠系储层油砂抽

表 1 包裹体油与油砂、源岩抽提物生物标志物参数表 Table 1 Biom arker parameters of oils extracted from inclusions sandstones and source rock

样品号	31 - 1	45	26	39	10	6	T–o il	T-m ud	K-oil
C ₂₉ aaa 甾烷 20S/(S+R)	0 52	0. 53	0.51	0 56	0 54	0 53	0.56	0.57	0 54
C ₃₂ αβ 藿烷 22S/(S+R)	0 59	0.56	0.59	0 57	0 56	0 55	0. 61	0.59	0 63
M PI	0 69	0. 68	0.45	0 49	0 41	0 59	0.74	-	1 06
$R_{\rm c} = 0.6^{\circ}$ MPI+ 0.4	0 82	0.81	0.67	0 7	0 64	0 76	0.84	-	1 04
甲基萘比率	1.51	1.47	1. 39	1 58	1 56	1 47	1. 48	-	1 62
二甲基萘比率	6 34	5. 32	4.59	4 07	5 20	6 61	5. 55	-	6 85
Σ 三环萜烷 /C $_{30}$ 藿烷	7.71	9. 98	16.46	6 01	2 24	8 56	21.44	3. 68	41 99
C ₂₃ 三环萜烷 /C ₃₀ 藿烷	0 82	1. 05	1.51	0 51	0 28	1 03	1.54	0. 27	1 89
C ₁₉ /(C ₁₉ +C ₂₃ 三环萜烷)	0 13	0. 09	0.14	0 06	0 02	0 10	0.38	0.17	0 80
C ₂₅ /C ₂₆ 三环萜烷	0 63	0.58	0.54	0 84	1 05	1 10	0.74	0. 60	1 37
C ₂₄ 四环 /(C ₂₄ 四环 + C ₂₃ 三环萜烷)	0 26	0. 28	0. 28	0 29	0 20	0 13	0.18	0. 28	0 41
升藿烷指数	0 2	0.14	0. 21	0 23	0 05	0 09	0. 01	0.07	0
伽马蜡烷指数	0 14	0.07	0.11	0 17	0 22	0 1	0.04	0.15	0
规则甾烷 /17α 藿烷	0 54	0. 43	0.52	0 56	0 36	0 48	0. 93	0. 68	0 38
C ₂₇ aaa20R 甾烷 (%)	34 44	28. 24	38. 83	40 58	45 04	30 52	29. 02	28.70	16 1
C ₂₈ aaa20R 甾烷 (%)	25 72	30. 24	26. 9	25 23	21 83	31.82	28.18	27.04	25 82
C ₂₉ aaa20R 甾烷 (%)	39 84	41. 52	34. 27	34 19	33 14	37.66	42.80	44. 26	58 08

提物甲基菲指数为 0 74 计算的镜质体反射率 R_c 为 0 84%,甲基萘比率、二甲基萘比率分别为 1 48 5 55,这些成熟度参数与包裹体油近似,反映有机质 经历了相近的热演化程度。白垩系油砂抽提物的成 熟度较高,甲基菲指数 (1 06)、镜质体反射率 R_c (1 04%)以及甲基萘比率 (1 62)和二甲基萘比率 (6 85),均高于包裹体油、三叠系油砂和源岩有机 质。

5.2 有机质来源与沉积环境

521 甾烷

C27、C28、C29(aaa20R)规则甾烷,常用于区分沉 积有机质的来源。C27甾烷主要来自低等水生生物藻 类,而 C₂₉甾烷主要来自高等植物^[6]。六个包裹体油 甾烷分布以 C₂₇ > C₂₈ < C₂₉即"V"字形分布为特征, C71甾烷介于 28% ~ 45%、C28甾烷介于 22% ~ 32%、 C29甾烷介于 33%~ 42% (表 1), C27甾烷百分含量与 C₂₉相当,而高于 C₂₈。说明沉积有机质主要来自湖相 藻类,并具有高等植物的贡献,对应有机质类型为腐 殖一腐泥型。油砂抽提物、三叠系源岩有机质和包裹 体油的甾烷分布三角图表明,包裹体油的甾烷分布基 本与三叠系油砂、源岩有机质相近,且与郭艳琴等 (2006)对安塞一富县地区原油及源岩的 $(\alpha\alpha\alpha 20R)$ 规则甾烷百分含量、分布特征研究结果吻合,那里的 C_{27} 、 C_{28} 、 C_{29} ($\alpha \alpha \alpha 20R$)规则甾烷百分含量分别介于 36%~47%、19%~25%、31%~45%之间,平均值分 别为 40%、23%、37% (图 3)^[8]。而白垩系油砂抽提 物以 C20甾烷含量高、C21甾烷含量低为特征,反映了 有机母质主要来自陆生高等植物。

通常高含量的甾烷以及高的甾 權比值 (≥1)主 要来源于浮游或底栖藻类生物,为海相和超盐度湖相 有机质的特征^[9]。相反,低含量甾烷和低的甾 /藿比 值则指示陆源和 /或微生物改造过的有机质^[10]。所 以甾 /藿比通常可以区分海相或超盐度湖相与陆相淡 水 一微咸水环境下生成的石油。六个包裹体油规则 甾烷 /17α 藿烷比值从 0 36~0 54 平均 0 48(表 1),比值相对较低,说明包裹体油来源于陆相淡水或 微咸水环境,而不是来自海相或者超盐盐湖相环境的 有机质。

522 三环萜烷和藿烷

三环萜烷广泛出现在石油和源岩抽提物中,可能 主要来源于原核生物细胞膜。 A quino N eto等(1983) 系统地研究了不同有机质来源及沉积环境的石油、源 岩抽提物中三环萜烷分布,认为 G23三环萜烷在大多

图 3 C₂₇、C₂₈、C₂₉ (aaa20R)甾烷百分含量三角图

Fig 3 Temary diagram of percentages of C₂₇, C₂₈, C₂₉ (ααα 20R) steranes

数有机质中是具有绝对优势的三环萜类^[11],而高等 植物来源的抽提物中, C_{19} 、 C_{20} 三环萜烷更占优势^[6], 高含量 C_{24} 四环萜烷指示了更多的陆源高等植物有机 质的输入^[12]。由于抗生物降解能力强,受热成熟度 影响较小,因此三环萜烷及四环萜烷的分布特征是指 示沉积有机质来源的可靠参数^[6]。

 C_{25} / C_{26} 三环萜烷比值可以反映来自不同沉积相 有机质来源,该比值小于 1,表明 C_{26} 三环萜烷含量比 C_{25} 三环萜烷含量更加丰富,这是湖相源岩的典型特 征^[13]。包裹体油该值范围在 0 54~1 10之间,多数 比值小于 1,均值 0.79,与三叠系油砂抽提物 (0 74) 和三叠系源岩 (0 60)接近,而与白垩系油砂 (1 37) 相差较远 (表 1),暗示包裹体油和三叠系油砂有机质 可能来自相同湖相源岩。

包裹体油及三叠系油砂和源岩抽提物 $C_{19} / (C_{19} + C_{23})$ 三环萜烷比值接近 (表 1),小于 0.5, C_{23} 三环萜烷轮 C_{19} 三环萜烷占优势,而白垩系油砂该比值高达 0.8,远大于 0.5,明显 C_{19} 优势 (图 4)。包裹体油及三叠系油砂和源岩抽提物 C_{24} 四环萜烷 / (C_{23} 三环萜烷 + C_{24} 四环萜烷)比值接近,分布范围为 0.13~ 0.29,反映具有相似的母源,且该比值低于白垩系油砂抽提物 (0.41)(表 1)。表明包裹体油与三叠系油砂和源岩抽提物来源相似,而白垩系油砂抽提物具有较多的陆源高等植物的贡献,这与其 m/z= 85谱图 中主峰碳数较太 (C_{23})及甾烷三角图中具有绝对优势 的 C29ααα20R 甾烷(58.08%)是一致的。

此外, C₂₃三环萜烷 /C₃₀藿烷、Σ 三环萜烷 /C₃₀藿 烷主要作为母源参数, 用来比较细菌或藻类脂体 (三 环萜烷)和来源于不同原核生物的贡献, 但也可能受 成熟度作用的影响^[6]。白垩系油砂抽提物较包裹体 油、三叠系油砂和源岩抽提物均高, 应该是白垩系油 砂有机质来源及成熟度, 不同于包裹体油及三叠系油 砂和源岩抽提物综合反映。

伽马蜡烷经常出现在高盐度的海相和非海相沉 积物中,因而一般认为伽马蜡烷是高盐度的指标^[6]。 然而, Sinninghe Damste等发现伽马蜡烷的前身物为 纤毛虫,存在于水体分层的环境^[14]。而在某些因季 节或温度而引起水体分层的淡水一微咸水环境中,也 含有较高的伽马蜡烷含量^[15]。所以,严格地说,丰富 伽马蜡烷是水体分层的标志,尽管高盐度的环境常出 现水体分层。研究区包裹体油伽马蜡烷指数(伽马 蜡烷/17αC₃₀藿烷)为007~022,而三叠系油砂、源 岩抽提物分别为004和015,可与包裹体油对比 (表1),说明其可能形成于半深湖一深湖局部水体分 层的还原环境。而白垩系油砂抽提物中,几乎检测不 到伽马蜡烷,这可能与沉积水体较浅,无法形成水体分 层有关。C₃₅升藿烷指数(C₃₅升藿烷/(C_{31~35}升藿烷)) 是反映有机质的氧化、还原沉积环境的参数(图4)。

Fig. 4 Mass chromatograms showing distribution of tricyclic terpanes and hopanes of inclusion oils from

Zhiluo Formation sandstone and oils from Cretaceous sandstone, Triassic oil sandstone and source rock © 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 包裹体油 C₃₅升藿烷指数介于 0 05~ 0 23之间 (表 1),显示有 C₃₅升藿烷的存在,这从某种程度上反映 包裹体油来源于弱还原的沉积环境^[6]。

5 3 综合分析

利用生物标志物参数, 对以上样品有机质抽提物 进行对比, 由图 5可见, 白垩系油砂抽提物明显不同 于包裹体油、三叠系油砂及源岩抽提物, 说明烃源岩 热演化程度、有机质来源及沉积环境不同。包裹体油 $C_{29} \alpha \alpha \alpha$ 甾烷 20S/(20R+20S)与 $C_{32} \alpha \beta$ 藿烷 22S/(S + R) 比值都达到了平衡值, 利用 MPI所计算的镜质 体反射率在 0 64% ~ 0 82% 之间, 达到中等成 熟的 热演化阶段; 规则甾烷百分含量 $C_{27} > C_{28} < C_{29}$ ($\alpha \alpha \alpha 20$ R), C_{25} / C_{26} 三环萜烷、规则甾烷 /17 αC_{29-33} 藿 烷比值低于 1, 伽马蜡烷与 C_{35} 升藿烷的存在, 表明其 来源应为弱还原环境下的腐殖一腐泥型湖相有机质。 包裹体油与三叠系油砂、源岩抽提物生物标志物参数 相近,说明包裹体油应主要来自三叠系湖相烃源岩。 相反,白垩系油砂抽提物规则甾烷百分含量 $C_{27} < C_{28}$ $< C_{29}(\alpha\alpha\alpha 20R), C_{29}占绝对优势(58,08\%), C_{25}/C_{26}$ 三环萜烷、 $C_{19}/(C_{19} + C_{23})$ 三环萜烷、 C_{24} 四环萜烷, C_{24} 0, C_{24} 0

图 5 包裹体油、三叠系油砂及源岩和白垩系油砂抽提物生物标志物参数对比图

Fig 5 Biomarker parameters correlation of inclusion oils from Zhiluo Formation sandstone and oils from

 $C\,retaceous\,\,sandstone,\,\,T\,riassic\,\,sandstone\,\,and\,\,source\,\,rock$

6 结论

(1)研究区砂岩中发现烃类包裹体,包裹体丰度 低于 1%,少数可高达 5%,显示具有油气聚集或运移 过。

(2)包裹体油达到了近成熟一成熟阶段;包裹体油(ααα20R)甾烷百分含量 C₂₇ > C₂₈ < C₂₉, C₂₅ /C₂₆ 三 环萜烷、甾 權比值较低,存在一定含量的伽马蜡烷, 是陆源湖相弱还原环境下的腐殖一腐泥型有机质的 特征;包裹体油与三叠系油砂和源岩抽提物可以很好 地对比,应主要来自三叠系湖相烃源岩。

参考文献 (References)

 张如良,丁万烈.努和廷式铀矿床地质特征及其油气水与铀成矿作 用探讨.铀矿地质,1994,10(5):257-265 [Zhang Ruliang Ding Wanlie Discussion on geobgical characteristics of Nuheting type uranium deposit and the relation between oil and gas-bearing water and uranium metallogenesis Uranium Geobgy, 1994, 10(5): 257-265]

<u>是陆源湖相弱还原环境下的腐殖一腐泥型有机质的</u>。2 CaiChun ang Li Hongtao Qin Mingkuan *et al* Biogenic and petro-1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net kum-related ore-form ing processes in Dongsheng uranium deposit NW China Ore Geology Reviews (in press), 2007

- 3 长庆油田石油地质志编写组. 长庆油田 中国石油地质志 卷十二. 1992. 79-133 [EditorialCommittee of Petroleum Geobgy of Changqing Oil-Field Petroleum Geobgy of China, Vol 12 1992. 79-133]
- 4 陈建平,黄第藩.鄂尔多斯盆地东南缘煤矿侏罗系原油油源.沉积 学报,1997,15(2):100-104[Chen Jianping Huang Difan Oil/ Source correlation of crude oils from the coalmines in the southeast of the Ordos basin Acta Sedimentologica Sinica, 1997, 15(2): 100-104]
- 5 George S C, Ahm ed M, Liu K, Volk H. The analysis of oil trapped during secondary migration. Organic G eoch emistry, 2004, 35: 1489-1511
- 6 Peters K E, Moldow an JM. The B iomarker Guide-Interpreting Molecular Fossils in Petroleum and Ancient Sed in ents, Preatice H all, In ç 1993
- 7 RadkeM, WelteDH. Themethylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. In: Bjothy M, et al. Advances in Organic Geochemistry, Chichester Wiley, 1983 504-512
- 8 郭艳琴,李文厚,陈全红,等.鄂尔多斯盆地安塞一富县地区延长 组一延安组原油地球化学特征及油源对比.石油与天然气地质, 2006,27(2):218-224[Guo Yanqin,LiWenhou,Chen Quanhong et al Geochemical behaviors of oil-source corraelation in Yanchang-Yan' an Formations in Ansai+Fux ian area Ordos basin Oil and Gas Geolegy, 2006, 27(2): 218-224]

- 9 Mołdowan JM, Seifert W K, Gallegos E J Relationship between petroleum composition and depositional environment of petroleum source rocks Bulletin 1985, 69 1255-1268
- 10 Tissot B P, Welte D H. Petroleum Formation and Occurrence Springer-Verlag New York, 1984 699
- 11 Aquino Neto F R, Trendel JM, Restle A, Connan J Albrecht P. O ccurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums In: Bjot^p y M, et al. Ed. Advances in Organic Geochemistry, Wiley NewYork, 1983. 659–667
- 12 Preston J C, Edvards D S The petroleum geochem istry of o is and source rocks from the northern Bonaparte Basin, offshore northern Australia The Australian Petroleum Production and Exploration Journal 2000, 40 (1): 257–282
- 13 Schiefelbein C.F., Zumberge J.E., Cameron N.R., Brown SW. Petrokum systems in the South A tlantic margins. In: Cameron N.R., Bate R. H. and Chure V.S. eds. The oil and gas habitats of the South A tlantic, Geo bg ical Society of London Special Publication, 1999. 169-179
- 14 Sinninghe Damste J S, Kenig F, Koopmans M P, et al Evidence for gamma cerane as an indicator of water column stratification A cta G eoch in ica et Cosm och in ica 1995, 59: 1895-1900
- 15 张立平,黄第藩,廖志勤. 伽马蜡烷——水体分层的地球化学标志. 沉积学报, 1999, 17(1): 136-140 [Zhang Liping Huang Difan, Liao Zhiqin. Gammacerane geochemical indicator of water column stratification. Acta Sed in en to bg ica Sinica 1999, 17(1): 136-140]

Geochem ical Characteristics and Source of Hydrocarbon Inclusions in Zhiluo Formation Sandstone in Dongsheng Area, Northern Ordos Basin

LIH ong-tao CAIChun-fang LUOX iao-rong LiKai-kai

 $({\it Key\ Laboratory\ of\ M\ ineral\ Resources},\ {\it Institute\ of\ G\ eo\ bgy\ and\ G\ eophysics},\ {\it Chinese\ A\ cadem\ y\ of\ S\ ciences},\ {\it B\ eijing\ 100029})$

Abstract First of all the researchers observed and described hydrocarbon inclusions in M ild E Jurassic Zhiho Formation sandstones in Dongsheng area northern Ordos basin under microscope and UV fluorescence, and then, carefully selected the sandstone samples containing hydrocarbon inclusions with high abundance Subsequently, these samples were washed crushed extracted for hydrocarbons and analyzed for GC and GC-MS and compared with oils extracted from C retaceous sandstone. Triassic sandstone and source rock, respectively. The results show that $C_{29} \alpha \alpha \alpha$ sterane 20S/(20S+ 20R) and $C_{32} \alpha \beta$ hopane 22S/(22S+ 22R) ratios of the inclusion oils are close to respective equilbrium values V itrinite reflectance values were calculated based on methylphenanthrene index (MPI) and have values from 0.64% to 0.82%, suggesting that the inclusion oils are nearm ature to mature Among C_{27} , C_{28} and C_{29} $\alpha \alpha \alpha 20R$ steranes $C_{27} > C_{28} < C_{29}$. C_{25}/C_{26} tricyclic terpane and regular steranes/17 αC_{29-33} hopanes ratios are relatively bw. The values together with those of gamm acerane index and homohopane index consistently indicate that the inclusion oils were derived from hum ic-sapropel type organic matter under poor reducing freshwater to sem i-saline environment. The features are sinilar to those of organic matter extracted from Triassic sandstone and source rock, but are different from that of C retaceous sandstone. Thus, it can be concluded that the inclusion oils were mainly derived from T riassic lacustrine fac is source rock.

Keywords hydrocarbon inclusions, GC-MS, birmarker, source rock, Ordos basin

© 1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net