文章编号: 1000-0550(2009) 03-0529-08

湘江悬浮物的稀土元素地球化学研究

龚玲兰 奚小双 孔 华 戴塔根 (中南大学地学与环境工程学院 长沙 410083)

摘 要 在湘江及其支流采集了 44件悬浮物样品进行稀土元素 ICP-MS分析。研究表明,湘江悬浮物中稀土总量 (∑REE)、轻稀土(IREE)和重稀土(HREE)含量分别为 63~387 µg/g 58 2~353 µg/g和 4 8~34µg/g 尽管湘江 悬浮物中稀土分布不均匀,稀土含量相差很大,所有样品的球粒陨石标准化曲线均呈向右倾斜的富 LREE 的模式,北 美页岩标准化模式为 LREE稍富集的平坦型。湘江中下游河心与两岸水体悬浮物中稀土发生了明显分异。湘江悬浮 颗粒物中 REE 受多方面因素控制,其源区控制了 REE 分配模式,而其稀土元素含量与颗粒中粘土矿物及重矿物有 关。支流捞刀河悬浮物稀土的分布模式为 Eu正异常型,与北美页岩有显著差别,捞刀河的悬浮物物源及成因有待进 一步研究。

关键词 稀土元素 地球化学 湘江 悬浮沉积物

第一作者简介 龚玲兰 女 1968年出生 博士 矿产普查与勘探 E-m ail gonglinglan@ 163. com 中图分类号 P595 文献标识码 A

0 前言

REE 在表生环境中非常稳定, 在河流中主要以碎屑态搬运, 沉积物中 REE 组成及分布模式主要取决于源岩, 而受风化剥蚀、搬运、沉积、成岩及变质作用影响小。因而 REE 常用作为沉积物的物源示踪剂^[1~3], 河流沉积物中 REE 也被常用来示踪上陆壳的稀土组成^[4~7]。目前国内对如长江、黄河等大河稀土元素地球化学研究很多^[16~18], 但对湘江流域尚未开展类似研究工作。鉴于湘江悬浮物元素地球化学研究对于了解洞庭湖及长江物质来源、扩散特点、沉积特征等均具有重要意义, 因此本文研究了湘江及支流悬浮物的 REE 地球化学特征, 探讨城市化江段稀土变化特征、稀土组成的制约因素及其示踪意义。

以 Cullers为代表的一批学者详细地研究了 REE 在粘土粒级中及其它粒级中富集规律^[4~5.89],认为沉 积物中粘土粒级具有与物源最近似的 REE 组成,其 REE 配分形式可近似地代表源岩中 REE 组成特征, 而粉砂粒级尽管其矿物组成与源岩最相近,但由于重 矿物的存在而使其表征源岩 REE 特征的意义下降, 砂粒级中因石英、长石及碳酸盐矿物等稀释作用而使 得 REE 模式偏离源岩中 REE 特征。由于本文分析 选用平、枯水期通过 0 45 μm滤膜截获的悬浮物,粒 径在 0 45~ 100 μm, 属极细沙, 淤泥和粘土,其矿物 组成以粘土矿物中的伊利石、绿泥石为主,其来源与 细粒沉积物(< 63 µm)一致,只是悬浮物粒径分布 的相对变化范围比细粒沉积物小,而且悬浮物的平均 粒径比细粒沉积物更细,对元素的吸附作用更强^[10]。 因此可基本排除全岩样因水动力分选造成粒级及矿 物组成不同而对沉积物的 REE 组成产生的影 响^[458911,12],应能准确地反映沉积物物源信息。

研究区处于湘中丘陵与洞庭湖冲积平原过渡地 带,地貌主要为山地、丘陵、岗地、平原等;区内地形起 伏不大。研究区为东亚季风湿润气候,气候温和,雨 量充沛,四季分明。年均气温 16~17℃,雨量较丰, 全年降水量为 1 200~1 450 mm。湘江支流有捞刀 河、浏阳河、涟水、涓水等。流域内石灰岩分布很广, 变质岩广泛存在,尤其是板岩、千枚岩、大理岩和变质 碎屑岩。土壤类型多,以红壤、黄壤、水稻土为主。

研究区是湖南省经济带的核心地区,有长沙、湘 潭、株洲和浏阳等城市,工农业生产较快增长。城市 的工业废水和生活污水多采用沿岸直排方式处置,使 湘江受到不同程度的污染。

1 样品的采集与分析

11 样品的采集及预处理

2004年 12月至 2005年 1月在湘江中下游段设 立 7个断面及湘江支流 4个断面, 共采取 44个悬浮

1 湖南洞庭湖生态地球化学调查项目资助

收稿日期:02008/06-24.收修改稿日期: 2008-07-18 Http://www.cnki.net 颗粒样品。水系布置点分别为江心、距岸 50 m 处和 江心至两岸的 1/2处; 悬浮颗粒样品以过滤法采集, 用孔径为 0 45 ^µm 孔径聚酯纤维膜, 加压过滤; 收集 滤膜上颗粒物, 自然风干, 样品干重大于 100 mg 进 行样品登记。记录悬浮物浓度 (mg/L)。

1.2 分析方法

本文悬浮物样品采用 HF-HCD₄-HNO₃进行消 解,在天津矿产地质研究所和中南大学地学院采用 CP-MS(Inductively coupled plasma-mass spectrum etry)方法检测悬浮颗粒物中 REE 及微量元素含量。 天津矿产地质研究所仪器为美国热电公司 X-7型 等离子质谱分析仪。中南大学地学院实验室所用仪 器为美国 VGPlasmaQuad PQ3 Tabo型等离子质谱分 析仪。监控测试精度与准确度,分析过程中进行了重 复样与标样分析,绝大部分元素分析的相对偏差小于 5%,表明分析结果可靠。采样及分析过程中所用聚 乙烯和玻璃容器均在 14%的 HNO₃溶液中浸泡 24 h 以上,并用超纯水冲洗后低温烘干。分析所用试剂除 各种酸为优级纯外,其余均为分析纯,水为超纯水。

2 结果与讨论

21 REE 组成

测试结果表明: 湘江及支流稀土总量 (ΣREE)、 轻稀土 (LREE)、重稀土 (HREE)含量分别为 63~387 mg/kg 58 2~353 mg/kg和 4.8~34 mg/kg(表 1)。 悬浮物中稀土含量大体遵循以下顺序: Ce> La> Nd > Pr> Sm> Gd> Dy> Er Yb> Eu Ho> Th Tm, Lu, 此排序与长江、珠江等大致相似^[15-19], 且与稀土 元素在地壳中丰度的排序基本一致, 说明河流悬浮物 中稀土元素含量分布主要受元素的地壳丰度控制。

为了避免污染影响,取湘江各断面河心稀土含量 统计,湘江主流7个江段稀土总量平均为14068 mg/ kg IREE平均值为12895 mg/kg HREE平均值为 11.73 mg/kg IREE/HREE比值为1099(表2),表 明悬浮颗粒物中轻稀土较重稀土富集。除三叉矶断 面河心与两岸水体悬浮物稀土含量分布较均匀外 (其变异系数小于20%),湘江长、株、潭各断面河心 与两岸水体悬浮物中稀土分布不均匀,发生明显分 异,变异系数分布于20%~52%,均超过20%。长沙 断面右岸稀土含量相对左岸大多数样品较高,这是因 为右岸比左岸工业发达、人口集中而产生的大量的生 活废水及工业污水引起。湘潭左岸稀土含量较右岸

高,可能也是由于湘潭左岸工业和城市人口集中引起 的生活和工业废水引起:株洲段在霞湾窑段水体左岸 较河心和右岸含量高,在马家河口湘江右岸含量较 高,株洲渌水河口上游 100 m 处河心稀土含量高,与 生活污水及工业废水排放有关。湘江支流河心与两 岸稀土含量变异小、涟水稀土变异系数界于 13 5% ~ 19%, 渌水稀土变异系数界于 0 9% ~ 6.6%, 表明 渌水河心与两岸悬浮物中稀土基本均匀分布: 浏阳河 河心与两岸稀土含量差异大,变异系数界干 30%~ 52%,分布不均匀,说明浏阳河两岸可能受到浏阳市 烟花鞭炮生产废水的影响。长、株、潭段不同断面悬 浮颗粒物中稀土含量变化明显,长沙暮云镇江段稀土 含量较高,湘潭段含量较低,稀土变化明显,其变异系 数处于 20%~30% 之间, 说明沿湘江悬浮粒子的化 学组成发生了变化,长、株、潭段湘江水体受到了稀土 环境污染,可能是长、株、潭城市群人口稠密、工农业 发达引起的。有些样品稀土含量高,可能受到人类活 动污染。与我国不同地带的其他河流如珠江、长江、 松花江、世界沉积物平均值沉积物相比,湘江悬浮物 中的稀土含量均明显偏低,这可能与其物源关。

2 2 REE 分布模式

相同的沉积物样品进行不同的 REE 标准化可得 到不同的表观分异模式,由于北美页岩(North American Shale Composite, NASC)与上陆壳(the Upper Continental Crust UCC)同沉积物的 REE含量接近,相对 来说,更适合作标准化物质,来揭示不同沉积物的 REE 组成和分异特征差异,本文上陆壳(UCC)标准 化采用具有广泛代表性的 Taybr和 M dLennan^[24]的 数据,避免了选用不同标准化数据而造成的 REE 模 式解释和物源判别偏差。由图 4可知,湘江中下游悬 浮物稀土北美页岩标准化模式为 LREE 稍富集的直 线型,其上陆壳(UCC)标准化模式表现为 LREE 明显 富集而重稀土元素相对亏损。通常用(La/Sm)ucc表 征轻稀土元素内部的分异程度,(Gd/Yb)ucc表征重 稀土元素的分异程度,从图 2知,从株洲经湘潭至长 沙段, 各河段 (La /Sm) ucc 值相近, 表明其轻稀土分异 程度差不多; 长沙三叉矶 (Gd /Yb) ucc 值最大, 重稀土 分异最明显。

从表 2可以看出, 湘江 (La/Sm) ucc 值为 1. 14, 与

长江^[14]、黄河^[13]、世界河流颗粒物平均值、M issi Amazon河等 (La/Sm)_{UCC} 值相近,表明其轻稀土分异程 度差不多; 与长江和世界河流比较 (表 2 图 5),湘江 LREE含量相对较低,但湘江与黄河 LREE 含量基本

表 1	湘江河段水体悬浮物中稀十元素的含量分布。	(mg/kg)
-1X I		$(m_{s}) m_{s}$

Table 1 Contents of REEs in suspended matter of the Changzhutan section of X iangjiang R iver(mg/kg)

样号	位置	La	Се	Pr	N d	Sn	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	TREE	LRE E	H REE L	REE /HRE	Е бСе	δEu
H-1	左岸 1/2	25 78	46 48	5 79	23 8	4 24	0.637	3 3 1 9	0 435	2 149	0 625	1. 127	0 19	1	0 159	1 15 73	106 73	9 004	11.85	0 77	0 50
H-2	左岸 50m	37. 63	72 3	8 61	34 4	6 24	0. 983	4 633	0 678	3 199	0 939	1.566	0 271	1.54	0 268	173 26	160 16	13 094	12 23	0 81	0 54
H-3	右岸 100m	47.83	87.64	9 84	36 9	7.01	1. 224	5 584	0 789	3 3 5 2	0 858	1.556	0 32	1.84	0 332	205 08	190 44	14 631	13 02	0 81	0 58
H-4	右岸 50m	13 78	26 6	3 07	12 2	2 17	0. 381	1.737	0 226	1. 174	0 288	0 615	0 099	0 58	0 091	63 01	58 20	4 81	12 10	0 82	0 58
H-5	河心	20 26	37.06	4 55	17.6	2 99	0.562	2 561	0 317	1.6	0 486	0 774	0 138	09	0 121	89,92	83 02	6 897	12 04	0 78	0 61
LD-6	右岸	32 67	58 43	6 56	24	3 89	0. 651	2 895	0 478	2 0 3 2	0 531	0 797	0 159	1.1	0 146	134 34	126 20	8 138	15 51	0 79	0 57
LD-7	河心	44 94	79.52	10 51	53 8	9.77	1.195	4 858	0 967	5 324	0 899	1. 593	0 262	1.47	0 205	215 31	199.74	15 578	12 82	0 74	0 47
LD-8	左岸	21. 78	39 2	5 24	25 4	4 64	0.568	2 469	0 512	2 704	0 423	0 756	0 146	0 73	0 117	104 69	96 83	7. 857	12 32	0 75	0 46
S-9	右岸	31.2	61.57	7	26 9	4 85	0 75	3 762	0 522	2 401	0 621	1.078	0 212	1. 21	0 195	142 27	132 27	10 001	13 23	0 84	0 52
S-10	右岸 1/2	29, 45	58 52	6 34	25 1	4 38	0.711	3 75	0 552	2 509	0 659	1. 134	0 235	1. 13	0 18	134 65	124 50	10 149	12 27	0 86	0 52
S-11	河心	29 41	55 13	6 56	26 7	4 77	0 74	3 875	0 531	2 588	0 747	1. 346	0 233	1. 29	0 213	134 13	123 31	10 823	11.39	0 8	0 51
S-12	左岸 1/2	32 54	59,7	6 94	28 3	5 06	0.793	4 171	0 579	2 789	0 796	1. 362	0 224	1. 31	0 203	144 77	133 33	11. 434	11.66	0 8	0 51
S-13	左岸	41.56	75 91	8 87	35 4	6 56	1.043	5 505	0 737	3 642	1.035	1. 912	0 331	1.72	0 315	184 54	169.34	15 197	11.14	0 79	0 52
LD-14		24 38	35 17	4 08	15 8	2 77	0.977	2 184	0 334	1. 537	0 407	0 699	0 132	0 71	0 101	89, 28	83 18	6 104	13 63	0 68	1. 17
Y-15	右岸	15 28	27.41	3 22	12 8	2 44	0.408	2 063	0 285	1. 405	0 344	0 545	0 098	0 51	0 093	66 90	61.56	5 343	11.52	0 78	0 54
Y-16	左岸	31. 47	60 21	7	29.4	5	0.876	4 578	0 62	2 841	0 783	1. 492	0 253	1. 48	0 188	146 19	133 96	12 235	10 95	0 82	0 55
Y-17	右岸 1/2	28 7	55 77	6 73	27.4	4 96	0.786	4 177	0 59	2 575	0 781	1.469	0 246	1.36	0 226	135 77	124 35	11. 424	10 88	0 81	0 51
Y-18	左岸 1/2	43 21	81. 48	9 43	39.2	6 64	1.019	5 772	0 802	3 704	1. 127	2 068	0 262	2 05	0 262	197.03	180 98	16 047	11.28	0 81	0 49
Y-19	河心	26 01	49, 93	5 99	$24\ 4$	4 24	0.722	3 654	0 501	2 399	0 748	1. 222	0 267	1. 12	0 163	121.37	111. 29	10 074	11.05	0 81	0 55
M-20	左岸点	82 17	160 19	19. 08	75 9	13 47	2.197	11. 592	1. 656	8 631	2 611	4 108	0 701	3 98	0 669	386 96	353 01	33 948	10 40	0 82	0 53
M-21	左岸 1/2	30 5	59, 44	6 94	29.5	5 44	0.845	4 497	0 678	3 093	0 866	1. 501	0 296	1. 53	0 247	145 37	132 67	12 708	10 44	0 83	0 51
M-22	河心	36 6	69.59	8 19	34	6 13	0.986	5 537	0 844	3 531	0 986	1. 966	0 34	1. 78	0 293	170 77	155 50	15 277	10 18	0 81	0 51
M-23	右岸 1/2	76 3	135 84	15 9	65 4	10 98	1. 85	9 422	1. 676	5 896	2 081	3 815	0 52	3 87	0 694	334 24	306 27	27.974	10 95	0 78	0 54
M-24	右岸	32 75	61.44	8 02	32 1	5 62	0. 927	4 93	0 739	3 445	1. 021	1.778	0 293	1.57	0 264	154 90	140 86	14 04	10 03	0 77	0 53
X-25	右岸 1/2	15 63	28 7 52	3 36	13 789	2 34	0.379	2 138	0 286	1. 501	0 38	0 755	0 127	0 784	0 118	70 34	$64\ 25$	6 089	10 55	0 8	0 51
X-26	右岸	33 31	64 437	7.76	31. 479	5 33	0.797	5 049	0 669	3 261	0 873	1. 761	0 282	1.563	0 31	156 88	143 11	13 768	10 39	0 81	0 46
X-27	左岸 1/2	29 01	62 678	6 88	27.745	4 88	0 8	4 18	0 598	2 734	0 787	1. 391	0 237	1. 293	0 215	143 43	131, 99	11. 435	11.54	09	0 53
X-28	左岸	39, 63	80 39	8 99	38 3	5 73	1. 033	5 343	0 743	3 616	1. 001	1. 832	0 307	1.75	0 266	188 93	174 07	14 858	11.72	0 86	0 56
X-29	河心	24 69	45 16	54	21.9	4 15	0.678	3 443	0 494	2 212	0 625	1. 317	0 197	1. 14	0 224	111.63	101. 98	9 652	10 57	0 79	0 53
M J-30	右岸 1/2	139	27.09	3 19	13 2	2 17	0.345	2 037	0 267	1. 392	0 413	0 699	0 129	0 73	0 115	65 68	59,90	5 782	10 36	0 82	0 49
M J-31	右岸	34 53	66 62	7.59	29 6	5 27	0 81	4 687	0 633	3 01	0 881	1. 679	0 299	1. 61	0 245	157.46	144 42	13 044	11.07	0 83	0 49
M J−32	左岸	28 04	55 46	62	25 7	4 44	0.724	3 878	0 526	2 5 3 9	0 677	1. 365	0 212	1. 14	0 185	131.09	120 56	10 522	11.46	0 85	0 52
XL-33	右岸	25 33	48 47	5 47	21.7	3 93	0.662	3 392	0 463	2 2 2 7	0 589	1. 088	0 181	1.05	0 161	114 71	105 56	9 151	11.54	0 83	0 54
XL-34	右岸 1/2	25 16	47.56	5 55	22 6	4 12	0.659	3 381	0 463	2 209	0 619	1 09	0 187	1. 11	0 168	1 14 88	105 65	9, 227	11.45	0 81	0 52
XL-35	河心	44 71	78 35	8 38	34 1	5 65	0.871	4 894	0 682	3 5 5 3	1. 035	1. 624	0 259	1. 91	0 141	186 16	172 06	14 098	12 20	0 8	0 50
XL-36	左岸 1/2	23 38	45 19	5 62	22 8	4 03	0. 612	3 079	0 449	2 331	0 645	1. 201	0 213	1. 17	0 153	1 10 87	101. 63	9 241	11.00	08	0 51
XL-37	左岸	27.86	52 25	6 56	26 2	4 58	0.666	3 767	0 55	2 651	0 708	1. 2.24	0 231	1. 22	0 219	128 69	118 12	10 57	11.17	0 78	0 48
LS-38	左岸	18 19	33 67	3 86	16 4	3 11	0. 513	2 418	0 353	1. 634	0 516	0 922	0 155	0 93	0 132	82 80	75 74	7.06	10 73	0 8	0 55
LS-39	左岸	25 69	47.5	5 68	22 3	4 22	0. 697	3 3 3 6	0 479	2 421	0 654	1. 365	0 197	1. 22	0 246	1 16 01	106 09	9 918	10 70	0 79	0 55
LS-40	右岸	23 03	43 52	5 09	20 8	4 02	0.656	3 065	0 482	2 128	0 593	1. 022	0 206	1. 1	0 201	105 91	97.12	8 797	11.04	0 81	0 55
J-41		30 23	55 95	6 63	26	4 98	0.895	3 94	0 509	2 299	0 795	1. 218	0 208	1. 28	0 208	135 14	124 69	10 457	11.92	0 8	0 60
LS-42	右岸	26 68	48 75	5 81	23 1	3 88	0. 695	3 117	0 466	2 094	0 579	1. 049	0 19	1.04	0 168	1 17. 62	108 92	8 703	12 51	0 79	0 59
LS-43	河心	25 62	47.94	5 74	21.4	3 58	0 61	3 1 2 6	0 433	2 061	0 555	1. 005	0 174	1. 09	0 158	113 49	104 89	8 602	12 19	08	0 55
LS-44	左岸	26 41	48 69	5 37	21	3 49	0.669	2 964	0 409	1. 965	0 533	0 992	0 169	0 98	0 165	1 13 81	105 63	8 177	12 92	0 81	0 62

注: H – 长沙猴子石大桥,ID – 6, 7, 8长沙东屯渡,ID – 14捞刀河, S – 长沙三叉戟,Y – 湘潭易家湾,X – 株洲霞湾,M J – 株洲马家河,XL – 株洲湘江渌水口,

LS38, 39, 40-湘潭涟水河口, LS42, 43, 44-株洲渌水。 ② 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 2 湘江悬浮物中稀土与其他河流比较 (mg/kg) Table 2 Comparison of REE concentrations in sediments of various rivers(mg/kg)

	La		D.,	Nd	C	F	C4	ΤL	D.,,	Но	Fr	Tm	vh	I.,	Σ dee	IDFF	UDFF	T /LI	(La/Sm)	8C a	9E		
	La	Ce	rr	IN G	an	Ŀи	Ga	I D	Dу	по	Er	Im	1.0	Lu	∠ REE	LKEE	HKEE	L/H	UCC	UCC	U CC	oce _N	ωu _N
湘江平均值	31. 18	57.83	6 75	27.53	4 87	0 79	4.21	0.6	2 77	0.8	1.46	0 25	1.42	0 21	140 68	128 95	11 73	10, 99	1.14	1.76	2 13	0.8	0 57
长江 ^[13]	53 35	86, 79	11	34.36	622	1 47	5.68	0 84	4.64	Q 94	2 67	Q 39	2 38	0 37	211 1	193 19	17 91	10 79	1. 53	1.42	2 17	0 71	0 81
黄河 ^[13]	33. 45	54.12	6 47	21.15	396	0 85	3 68	0 55	3.04	0 61	1. 67	0 25	15	0 26	131. 56	120	11 56	10 38	1.5	1.46	2 16	0 73	0 74
长江 ^[14]	36 09	65.08	8 33	32 6	609	1. 3	5.58	0 85	4.71	Q 98	2 56	0 37	2 23	0 33	167 1	149.49	17 61	8 49	1.06	1.49	1 57	076	0 74
黄河 ^[14]	28 97	53.92	7 07	26 67	499	1 04	4.65	0 75	3 92	0 84	2 23	0 35	2 05	0 31	137.76	122 66	15.1	8 12	1. 03	1. 35	1 37	0 77	0 71
U CC [20]	32	73	7.9	33	5.7	1 24	5. 21	0 85	5.8	1.04	3.4	0.5	31	0 48	173 22	152 84	20 38	7.5	1	1	1	0 94	075
NASC ^[21]	30	64	7.1	26	4.5	0 88	3.8	0 64	3.5	0.8	2 3	Q 33	2 2	0 32	146 37	132 48	13 89	9.54	1. 19	1. 03	1 32	089	0 69
世界河流 ^[22]	45	95	8	35	7	1.5	5	1		1	3	0.4	35	05	205 9	191 5	14.4	13.3	1. 15	0 85	1 25	0 98	0 80
M iss [23]	43.7	92.5		39 8	752	1 52	5. 93		5. 05		2 44		2 09	0 29	200 84	185.04	15.8	11.71	1.04	1. 69	2 03		073
Am azon ^[23]	35	72.9		32 6	593	1. 1	4.18		2 64		1. 23		1. 02	0 15	156 75	147.53	9.22	16	1. 05	2 44	3 32		0.7

注: La-Lu数据: 世界河流为颗粒物平均值, UCC为平均上陆壳, NASC 据文献 21. 长江、黄河根据文献 13, 14, 其他数据为本文计算。

图 3 球粒陨石标准化曲线 (图中湘江稀土为本文 平均值,其他数据见表 2)

Fig 3 Chondrite-normalized patterns of the suspended matter in the X iangjiang R iver and other rivers

一致,甚至稍高于黄河。湘江 (Gd/Yb)ucc为 1 76, 长江为 1 42~1 49,黄河为 1 35~1 46,世界河流
0 85, M issi河为 1 69,表明湘江重稀土分异比长江、 黄河及世界河流明显。

湘江中下游及支流 (La/Yb)ucc处于 1.84~ 3 33之间, 湘江 (La/Yb)ucc平均值为 2 13, 与长江、 黄河^[13]、M issi河相近, 高于世界河流颗粒物平均 值, 低于 Amazon河。说明湘江中轻、重稀土之间的 分异与长江、黄河^[13]、M issi河相似, 与世界河流相 比, 湘江稀土分异较大。

湘江中下游及支流悬浮物中稀土的分布模式均 与北美页岩相似,均为轻稀土富集、Eu负异常型,表 明它们均直接来源于沉积岩的风化产物。而捞刀河 悬浮物稀土的分布模式为 Eu正异常型,与北美页 岩有显著差别。由此可判断捞刀河的悬浮物不是直 接来源于受人为因素影响较小的沉积岩风化产物。

© 1994-2013 China Academic Journal Electronic Publishing Aduse. An rights reserved. "http://www.chki.net"

图 4 湘江及支流悬浮颗粒物稀土元素标准化分配模式 Fig. 4 The UCC- and NASC-normalized patterns of the suspended matter in the Xiangjiang River and its tributaries

王立军^[15]等把天津沿海南北排污河中沉积物、悬浮物中的正 Eu异常型解释为排污河水体中大量有机 质的存在是造成其稀土元素地球化学特征与天然河 流显著差别的主要原因之一,有机质的大量增加可 能引起 Eu的正异常和重稀土的相对亏损。捞刀河 的悬浮物物源及成因有待进一步研究。水体及其沉 积物中 Gd正异常也被认为是人类活动污染的结 用^[25 35] 湖江是浮物中 Gata 表现相对宣集的现象 表明其有可能受到一定程度的污染影响。

2 3 悬浮物 REE 组成特征的控制因素

尽管本次研究的样品其稀土元素含量变化大, 但其所有样品的分布模式相似。湘江长、株、潭段及 支流 (除捞刀河外) 悬浮物的物质来源应相同。除 源区岩石外,河流悬浮物中的 REE 组成可能还受到 风化作用、矿物组成、吸附和解吸,以及人类活动影 响^[26]。因此,下面笔者对这些因素对湘江悬浮物 REE 组成可能产生的影响进行逐一评价。

湘江流域物理化学风化强烈, 湘江流域强的化 学风化作用使土壤呈弱酸性, ₁H 低使河流中胶体含 量较高而吸附较多的 REE, 尤其是 LREE, Ce易于则 易迁移。稀土矿物具有明显的碱性, 当水的 ₁H 较 低时, 稀土元素以三价自由离子形式存在; ₁H 值较 高时, 稀土元素与 Fe(OH)₃可产生共沉淀, 且重稀 土与水中 CO₃²⁻、OH⁻等还可形成更稳定的配合物, 所以高 ₁H 的水中相对富重稀土元素^[28]。我们测得 湘江水体 ₁H 平均为 7. 3~ 8 为弱碱性。这些因素 决定了湘江悬浮物 REE 的组成特征: REE 含量变 化大, 球粒陨石标准化模式表现为 LREE 明显富集、 重 REE 相对亏损和明显的铕亏损。

矿物组成是控制沉积物中 REE 组成的另一重 要因素^[4]。湘江沉积物组成轻矿物主要为石英(重 量百分比 75 8% ~ 79 2%)、长石(4 0% ~ 6 3%) 和岩屑(14 5% ~ 20 2%)^[29];重矿物主要有褐铁 矿、磁性矿物、锆石、钛铁矿、石榴子石、绿帘石、榍石 和电气石等。

重矿物对 REE 组成特征的影响受到许多关 注^[4,5,8,11,12],重矿物含量即使是微小的变化也会对 整个沉积物的 REE 组成及模式产生较大影响。榍 石是主要的重矿物,众所周知沉积物中几种含钛矿 物(如黑云母、钛铁矿、榍石、钛磁铁矿)中,只有榍 石稀土含量高^[30],榍石可能控制沉积物中 REE 含 量^[9]。榍石易风化,甚至比花岗岩类中斜长石更易 风化^[31],在风化过程中,榍石可能发生变化形成新 的次生矿物,或者分解为其组成元素如 Ca Ti Si和 REE,这些组分薄层覆盖在沉积物颗粒表面,Ti和 REE 相对不活泼,无论榍石发生变化还是分解,Ti 和 REE 相关性好 (图 4d), REE、HREE、LREE 与 Ti 相关分析结果为 0 86,0 89,0 85,说明结果是一致 的。其他重矿物如锆石、石榴子石、磷灰石对稀土地 球化学影响小^[30]。

533

^{25 x}) 湘江悬浮物中 G d均表现相对富集的现象。 © 1994-2015 China A Cademic Johnna Electronic Publishing Hollys Altrophysics Served 1995, 其次为石英 和长石。粘土矿物是 REE的主要载体^[32],其中大 部分 REE存在于粘土矿物的晶格里,小部分被粘土 矿物表面所吸附。因此,粘土矿物对 REE的控制可 能比重矿物的控制更重要^[32]。

湘江悬浮物 REE 与 Fe₂O₃线性相关 (图 6),相 关性为 0 97,这是因为悬浮颗粒粒度小,表面积大,可以吸附更多的矿物。铁的氢氧化物是角闪石的风 化产物,以外壳沉淀在矿物颗粒上。许多文献也表 明 REE 与 Fe的氢氧化物有强的亲缘性^[33,34,9]。 REE 和 Th相关性好 (图 6),相关系数高达 0 95,含 沉积物中大部分 Th赋存于独居石^[35],磷灰石中也 含有 Th^[36],但 REE 和 P相关性差,说明独居石对 REE 含量贡献大。

稀土元素属于过渡类元素, 金属性很强, 又是亲 石元素, 多呈氧化物或硅酸盐、磷酸盐、碳酸盐等形 式存在。可与 Ca Sr Ti Zr Th Fe K等发生类质同 象置换。

3 结论

(1) 湘江及支流悬浮物中稀土组成变化很大, 其稀土总量、轻稀土和重稀土含量变化范围分别为 63~387 mg/kg 58 2~353 mg/kg和 4 8~34 mg/ kg 湘江中下游河心与两岸水体悬浮物中稀土分布 不均匀,发生了明显分异,研究段湘江水体可能受到 了稀土污染。

(2) 湘江及支流悬浮物中稀土含量变化很大, 但其稀土元素标准化分布模式基本一致(除捞刀河 外)。球粒陨石标准化曲线均轻稀土富集型,负 Eu 异常明显,北美页岩标准化模式为 LREE 稍富集的 平坦型。

(3) 捞刀河悬浮物稀土的分布模式为 Eu正异 常型,表明捞刀河的悬浮物不是直接来源于受人为 因素影响较小的沉积岩风化产物,而是可能与人为 污染导致的有机质大量增加有关,捞刀河的悬浮物 物源及成因有待进一步研究。

(4) 湘江悬浮颗粒物中 REE 地球化学特征受风化作用、矿物组成、吸附和解吸等多种方面因素控制,其稀土元素含量与悬浮物颗粒中粘土矿物及重矿物密切有关。

致谢 感谢中南大学吴堑虹教授、湖南省环境 监测中心等专家的帮助与指导。

图 6 Fe₂O₃与 TREE、T 与 TREE、LREE与 Th变化图 Fig 6 Variation diagrams of Fe₂O₃-TREE, T+TREE and IREE-Th

参考文献 (References)

- K laver G Th, Van W eering T C E Rare earth element fraction ation by selective sediment dispersal in surface sediments the Skagerrak [J]. Marine Geology, 1993, 111: 345–359
- 2 VitalH, Stattegger K, Garbe-Schonberg C D. Composition and traceelement geochemistry of detrital clay and heavy-mineral suites of the low erm ost Am azon R iver a provenance study [J]. Jou mal of Sedimentary R esearch Section, 1999, 69: 563-575
- 3 Niek Crosky Munksgaard, Kezia Lin, David Livingstone Pany. Rare earth ekments as provenance indicators in North Australian estuarine and coastalmarine sediments [J]. Estuarine, Coastal and Shelf Science, 2003 57: 399-409

Hobcene soil and stream sediment[J]. Chemical Geobgy, 1987, 63 275-297

- 5 Cullers R L, Basu A, Suttner L J Geochem ical signature of provenance in sand-size mineral in soil and stream near the labacco rool batbo lith M on tana USA [J]. Chem ical Geology, 1988, 70 335-348
- 6 M cLennan SM, Taylor S R. Sedin entary rocks and crustal evolution tectonic setting and secular trands[J]. Journal of G eology, 1991, 99 : 1–21
- 7 M cLennan S.M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. R eviews in M ineralogy, 1989, 21: 169-200
- 8 Condie K C. Another look at REEs in shales [J]. Geochinica et Cosmochinica Acta, 1991, 55 2527–2531
- 9 Pram od Singh V, Rajam an i REE geochem istry of recent clastic sediments from the Kaveri floodplains, southern India in plication to source area weathering and sedimentary processes[J]. Geochimica et Cosmochimica Acta 2001, 65(18): 3093–3108
- 10 杜青, 文湘华, 李莉莉, 等. 天然水体沉积物对重金属离子的吸 附特性 [J]. 环境化学, 1996, 15 (3): 199–206 [Du Q ing W en X ianghua, Li Li li, *et al.* A doorption behaviors of the natural sed in ent on heavy metals[J]. Environmental Chemistry, 1996, 15 (3): 199– 206]
- 11 Shokovitz E R. Rare earth elements in the sediments of the North Atlantic O cean, Am azon Delta, and East China Sea. Reinterpretation of terrigenous input patterns to the oceans[J]. Am erican Journal of Science, 1988, 288: 236
- 12 Shokovitz E R Rare earth elements in marine sed in ents and geochem ical standards[J]. Chem ical Geology, 1990, 88 333-347
- 13 杨守业,李从先, Lee C B,等. 黄海周边河流的稀土元素地球化 学及沉积物物源示踪 [J]. 科学通报, 2003, 48(11): 1233-1236 [Yang Shouye, Li Congxian, Lee C B, et al The trace-element geochem is try and source tracing of sediments from rivers around Huangha[J]. Chinese Science Bulletin, 2003, 48(11): 1233-1236]
- 14 杨守业,李从先.长江与黄河沉积物 REE地球化学及示踪作用
 [J].地球化学, 1999, 28(4): 374-380 [Yang Shouye LiCongwine Reference on the structure of the s
- 15 王立军,梁涛,丁立强,等. 天津沿海排污河中稀土元素的地球 化学特征 [J]. 中国稀土学报, 2003, 21 (6): 699-705 [Wang Lijun, Liang Tao, Ding Liqiang *et al.* Geochemical characteristics of nare earth elements in sewage discharge channels in Tianjin [J]. Journ al of the Chinese Rare Earth, 2003, 21 (6): 699-705]
- 16 王立军,张朝生,章申,等.珠江广州江段水体中稀土元素的地球化学特征[J]. 地理学报,1998,53(5):453-462[Wang Lijun, Zhang Chaosheng Zhang Shen Geochemical characteristics of rare earth elements the Zhujiang River in Guangzhou [J]. Acta Geographica Sinica, 1998,53(5):453-462]
- 17 Chaosheng Zhang Lijun W ang Shen Zhang G eochemistry of rare earth elements in the mainstream of the Yangtze River China[J].

- 18 王立军,章申,张朝生,李 岫霞. 长江中下游稀土元素的水环境 地球化学特征 [J]. 环境科学学报, 1995, 15(1): 57-65[W ang Li jun, Zhang Shen, Zhang Chaosheng, Li X iuxi, Aquatic environmental geochemistry characteristics of rare earth elements in them ildle-bower reaches of Chang jiang (Yangtzi) river[J]. Acta Scientiae Circum stantiae, 1995, 15(1): 57-65]
- 19 Zhu W, Kennedy M, de Leer E W B et al. D istribution and modeling of rare earth elements in Chinese river sediments[J]. The Science of the Total Environment 1997, 204: 233–243
- 20 Taybr S R, Srctitle The Continental Crust Its Composition and Evolution[M]. Oxford Blackwells 1985 29–45
- 21 Peter Gromet Larry A Haskin, Randy L Korotev, et al. The "north American Shale Composite": its compilation, major and trace element characteristics [J]. Geochimica et Cosmochimica Aeta, 1984, 48–2469
- 22 Chester R. Marine Geochen istry [M]. Oxford Blackwell 2000 353
- 23 Steven J Goldstein, Stein B Jacobsen. Rare earth elements in river waters[J]. Earth and Plan etary Science Letters, 1988, 89(1): 35-47
- 24 Condie K C. Another look at REEs in shales [J]. Geochimica et Cosmochimica Acta 1991, 55 2527-2531
- 25 Fran coise E Ibaz Poulichet Jean Luc Seidel Clara Othoniel Oecurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France [J]. Water Research, 2002, 36 1102– 1105
- 26 Bau M. An thropogenic origin of positive Gadolinium anomalies in river waters[J]. Earth and Planetary Science Letters, 1996, 143: 245
- 27 Egashira K, Fujii K, Yamasaki S, et al. Rare earth element and clay m inerals of paddy soils from the central region of the M elong R iver [J]. Laos Geoderna, 1997h, 78: 237–249
- 28 陈莹, 王晓蓉, 彭安. 稀土元素分馏作用研究进展 [J]. 环境科学 进展, 1999, 7(1): 10-151[Chen Ying Wang Xiaorong Pen An. The research progress of fraction ation among the rare earth elements[J]. Advances in Environmental Science, 1999, 7(1): 10-151]
- 29 王中波,杨守业,李萍,等.长江水系沉积物碎屑矿物组成及其示 踪意义 [J]. 沉积学报, 2006, 24 (4): 570-578 [Wang Zhongbo Yang Shouye, LiPing *et al.* Detrialmineral compositions of the Changjiang River sediments and their tracing in plications [J]. Acta Sedimento bgita Sinica, 2006, 24 (4): 570-578]
- 30 Basir S R. Balakrishnan S. Geochem istry of sphene from granodiomites surrounding the Hutti-Maski Schist Belt Significance to rare earth element (REE) modeling [J]. Journal of Geology Society of India 1999, 54: 107–120
- 31 Condie K C, Dengate J Cullers R L Behaviour of rare earth elements in a palaeoweathering profile on granodiorite in the Front Range, Colorado U. S A [J]. Geochimica et Cosmochimica Acta 1995, 59: 279-274
- 32 Condie K C. Another look at REEs in shales [J]. Geochimica et Cosmochimica Acta 1991, 55: 2527-2531

Applied Geochemistry 1998, 13(4):. 451-462 33 Fleet A. J. Aqueous and sedimentation geochemistry of the rare 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

earths [C] // Henderson P, ed. Rare Earth E km en t Geochem istry. Elsevier, Am sterdam, 1984 343–373

- 34 BauM, DulskiP. An thropogenic origin of positive gado linium anomalies in riverwaters[J]. Earth and Planetary Science Letters, 1996 143 (1-4): 245-255
- 35 Grom et L P, Silver S T. Rare earth element distributions among min-

erals in a granodiorite and their petrogenetic implications [J]. Geochimica et Cosmochimica Acta, 1983, 47, 925-939

36 Weber IIE T, Owen R M, Dickens G R, et al. Causes and implication of the middle mare earth element depletion in the eolian component of North Pacific sediment[J]. Geochimica et Cosmochimica A cta, 1998 62: 1735-1744

Geochem istry of Rare Earth Elements in the Suspended ParticulateM atters of X iang jiang R iver

GONG Ling-lan XIX iao-shuang KONG Hua DA ITa-gen

 $(\ {\bf School \ of \ Geosciences \ and \ Environm \ ental \ Engineering \ of \ Central \ South \ University \ Changsha \ 410083)}$

Abstract Forty-four sed in ent samples were collected from the X iang jiang R iver and its tributary, and its REE concentrations were analyzed using Inductively Coupled Plasma-M ass Spectrometry (ICP-MS). The total REE concentration (ΣREE), lightREE (LREE) and heavy-REE concentration (HREE) were 63~387, 58 2~353 and 4 8~34 mg· kg⁻¹, respectively. In spite of district differences in REE concentrations, the chondrite-normalized REE patterns are characterized by LREE-rich right curves in the suspended matter of all samples. The REE curve normalized by North Am erica shales(NASC) is a horizontal one REE in suspended matter of X iang jiang R iver are controlled by many k inds of factors, probably associated with clayminerals and heavyminerals. The chondrite-normalized REE patterns in suspended matter of Laodao river d isplayed positive Eu anomaly, which is distinctly different from North America shales, and its sources and origin need to be further studied in the future.

Keywords rare earth elements; geochemistry, Xiangjiang River; suspended sediment