文章编号:1000-0550(2010)04-0821-11

塔里木盆地西克尔萤石地球化学特征及成因讨论

饶红 $\mathbf{f}^{1\,2}$ 罗 \mathbf{T}^2 阳正 \mathbf{R}^1 周 刚³ 宋金 \mathbf{R}^2

(1. 成都理工大学能源学院 成都 610059; 2. 中国石油勘探开发研究院 北京 100083;3. 成都理工大学沉积地质研究院 成都 610059)

摘 要 通过对塔里木盆地西克尔地区萤石矿及赋矿围岩进行地球化学分析,探讨该区萤石矿成因。研究表明,萤 石矿物稀土元素配分模式图表现出轻稀土元素相对富集,正铕异常特点;微量元素分析显示 Eu、Sr、Ba 具有相关性; Sr 同位素比值与围岩相近。最终认为萤石矿成矿流体主要来自于加热的盆地卤水,微量(包括稀土)元素来自下伏地层 及围岩, Ba、Eu、F等元素可能来自下寒武统硅质岩及磷块岩。

关键词 塔里木 萤石 稀土元素 正铕异常 热水沉积

第一作者简介 饶红娟 女 1984 年出生 硕士研究生 矿产普查与勘探 E-mail: rao05010130hj@ sina. com 中图分类号 P595 文献标识码 A

塔里木盆地巴楚一柯坪露头区中下奥陶统灰岩 地层内发育紫色萤石矿。西克尔萤石矿发育于中下 奥陶系鹰山组古风化壳溶洞内,并受断裂控制。此 外 在塔中45井 塔中12井、塔中16井、塔中161井 等的中上奥陶统灰岩缝洞中均发现萤石产出^[1]。前 人对萤石成因存在较大争议,多数研究者^[2~5]认为萤 石的形成与海西期晚二叠世塔里木盆地的岩浆热事 件有关 岩浆作用参与成矿。张兴阳等认为塔中45 井区中上奥陶统构造断裂溶扩带及巴楚一柯坪露头 区风化壳溶洞内充填的萤石为热液成因,成矿热液来 源于被加热的大气降水^[6]。 本文以巴楚一柯坪露头区西克尔萤石矿为研究 对象,对样品进行微量元素含量分析、锶同位素分析 等,发现萤石、重晶石样品存在极高正铕异常。因此, 本研究对萤石成因提出新的认识,即认为成矿流体为 盆地卤水,矿质来源与寒武系底部黑色岩系有关。

1 采样位置

西克尔地区位于塔里木盆地西缘的天山南麓。 样品采自距西克尔镇 8 km 的西克尔剖面(图1),萤 石矿发育层位主要位于中下奥陶统鹰山组,现已被采 掘空。露头见多处规模不等的岩溶。实测的西克尔

图1 研究区位置图

______Fig. 1 Location of the study area ①国家重点基础研究发展规划(批准号: G2006CB202304)资助。

收稿日期: 2009-07-19; 收修改稿日期: 2009-09-10

一号洼地剖面位于西克尔剖面的西北缘。剖面主要 岩性为亮晶砂屑灰岩、泥晶生屑灰岩、泥晶球粒灰岩 等 剖面上部生物礁灰岩发育。

萤石矿主要产于中奥陶统鹰山组厚层石灰岩暴

露溶蚀形成的古风化壳溶洞内,溶洞顶部及两壁发育 生物礁灰岩 少量黄褐色泥质物质沿裂隙充填。萤石 呈脉状充填于灰岩裂隙(图 2-a)或见团块状分布于 洞壁。萤石呈无色透明或淡紫色一紫色,结晶粒状,

图 2 西克尔萤石组构及露头特征

Fig. 2 Texture and outcrop characteristics of fluorite in Sickl areas

注: a. 围岩中萤石沿灰岩裂缝脉状充填; b. 溶洞中与萤石伴生充填的方解石、重晶石、泥质等; e. 萤石矿洞,见灰绿色蚀变,灰绿色 充填物中具有层理结构、层面呈下凸的弧形; d. 砂屑灰岩(XD-4),见硅质交代,单偏光,照片上方偏左位置为硅质所交代的鲕粒; e. 砂屑灰岩(XD-4),见硅质交代,正交偏光; f. 溶洞内充填的重晶石(XY-4),正交偏光 + λ; g. 溶洞内充填的萤石(XY-4), 单偏光,晶形较好,具方形轮廓; h. 溶洞内充填的萤石(XY-4),正交偏光 + λ,呈不规则粒状。 晶形为半自形一它形晶 粒径约2~10 mm,具玻璃光 泽。溶洞内除充填萤石外,还充填白色巨晶方解石、 重晶石及褐色泥岩、泥质粉砂岩等(图2-b),萤石、重 晶石及巨晶方解石晶粒通常镶嵌在一起,共同产出。 萤石产出的古风化壳溶洞顶板粉砂岩、泥质粉砂岩发 育灰绿色蚀变(图2-e),灰绿色充填物具层理结构, 层面呈下凸的弧形,这种灰绿色的蚀变可能是热液成 矿过程中热褪色的结果。洞内垮塌灰岩硅质交代明 显(图2-d、e)。萤石脉体周围蚀变现象不明显。

显微镜下重晶石晶粒粗大,粒径主要为2.5~ 5.5 mm,细粒方解石充填于重晶石晶粒空隙之中(图 2-4)。萤石具有无色透明,低突起,完全解理,正交偏 光下全消光等特征(图2-g、h)。晶粒大小一般为1. 25~3.5 mm,解理发育,与两侧细一粉晶方解石的晶 粒界限清晰,经鉴定细一粉晶方解石为流体灌入时受 到挤压破碎所致;部分萤石颗粒内部仍保留交代残余 后方解石碎屑。萤石晶粒之间还可见少量粗晶方解 石,应为同期热液作用的产物。薄片中还见石膏、硬 石膏、硅质等矿物,含量大多<1%。露头及镜下特征 显示萤石具有热液矿床显著的充填交代特征,说明本 区萤石矿床属于热液矿床类型。 剖面共采样 17 件,其中萤石、重晶石样品 5 件, 灰岩及方解石样品 12 件。

2 分析方法

微量元素及锶同位素实验室分析在核工业北京 地质研究院分析测试研究中心进行。微量元素采用 Finnigan—MAT 公司制造的 HR – ICP – MS(Element I)高分辨电感耦合等离子体质谱仪测试样品中的 稀土含量,同时检出 Sr、Ba、Tu、U、Cs、Fe、Cu、Mn 等微 量元素含量。样品中总体金属含量不高,矿物中 Fe、 Mn、Cu 等金属含量与围岩相似,仅 Cu 含量相对较 高,最高为 262 × 10⁻⁶。17 件样品稀土含量及分析结 果见表1和表2。

3 分析结果

3.1 稀土元素分析数据

由表 1 和表 2 可见,研究区 17 件样品稀土元素 总量(Σ REE) 变化于 2.961 × 10⁻⁶ ~ 28.351 × 10⁻⁶ 之间,平均值为 17.115 × 10⁻⁶,最低值与最高值相差 近 10 倍,样品稀土总量较低,灰岩样品稀土总量由底 部向顶部逐渐增加。萤石及重晶石样品稀土总量平

表 1 西克尔样品稀土元素含量(单位:×10⁻⁶) Table 1 REE content of samples from Sickl areas(unit:×10⁻⁶)

样品编号	岩石类型	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y
XY-I	萤石	3.73	5.83	0.77	3.19	0.88	5.65	1.01	0.10	0.47	0.08	0.18	0.04	0.17	0.09	5.37
XY-3	粗晶方解石	2.62	5.51	0.775	3.28	0.71	0.26	0.97	0.15	0.85	0.16	0.38	0.05	0.23	0.04	0.59
XY-4	重晶石	1.65	1.2	0.235	1.03	0.51	6.16	0.78	0.06	0.35	0.07	0.14	0.03	0.16	0.07	11.10
XY-2	亮晶砂砾屑灰岩	0.47	0.75	0.128	0.38	0.08	0.05	0.11	0.02	0.07	0.01	0.04	0.01	0.04	0.02	5.48
XP1W-2-0	脉状充填方解石	1.48	5.63	0.261	0.88	0.17	0.13	0.26	0.03	0.21	0.040	0.11	0.02	0.10	0.03	1.51
XP1W-2-1	亮晶生屑灰岩	0.62	0.83	0.114	0.40	0.070	0.05	0.12	0.01	0.06	0.01	0.04	0.01	0.04	0.02	0.57
XP1W-4-1	泥晶生物礁灰岩	1.10	1.84	0.277	0.88	0.160	0.05	0.21	0.03	0.20	0.040	0.12	0.02	0.10	0.03	1.44
XP1W-7-2	泥晶球粒灰岩	1.43	3.18	0.426	1.72	0.33	0.07	0.32	0.05	0.25	0.05	0.11	0.02	0.11	0.02	1.52
*西41	粗晶方解石	2.95	5.05	0.74	2.72	0.58	0.14	0.56	0.10	0.56	0.12	0.34	0.04	0.18	0.03	4.37
*西1	粗晶方解石	3.72	6.98	0.90	3.08	0.53	0.13	0.47	0.07	0.36	0.07	0.16	0.02	0.12	0.02	1.96
* 西21	粗晶方解石	4.04	7.62	1.30	5.08	1.12	0.28	1.12	0.18	1.06	0.19	0.44	0.05	0.29	0.05	5.54
* 西 8	粗晶方解石	4.50	8.13	1.07	3.73	0.64	0.21	0.54	0.06	0.37	0.07	0.19	0.02	0.13	0.02	2.36
*西30-2	紫色萤石	0.88	1.84	0.32	1.61	0.52	0.66	0.95	0.14	0.86	0.16	0.36	0.03	0.15	0.03	14.4
* 西 30	粗晶方解石	1.50	3.53	0.68	3.22	0.83	0.27	1.03	0.17	1.01	0.18	0.42	0.05	0.24	0.04	10.4
*西32-2	紫色萤石	1.66	0.962	0.16	0.80	0.41	9.83	0.70	0.01	0.08	0.01	0.04	0.02	0.12	0.02	0.81
* X1-I	紫色萤石	0.74	1.75	0.29	1.36	0.39	1.08	0.68	0.10	0.52	0.10	0.21	0.05	0.07	0.05	12
* X1-D-I	粗晶方解石	0.80	1.66	0.28	1.29	0.37	0.11	0.67	0.09	0.49	0.10	0.20	0.05	0.09	0.05	10.6
5 件萤石	5样品平均值	1.73	2.32	0.36	1.60	0.54	4.68	0.82	0.08	0.45	0.08	0.19	0.04	0.13	0.05	8.74
12 件方解石样品平均值		2.10	4.23	0.58	2.22	0.47	0.15	0.53	0.08	0.46	0.09	0.21	0.03	0.14	0.03	3.86
球粒陨石组合样		0.34	0.91	0.121	0.64	0.195	0.073	0.26	0.047	0.3	0.078	0.2	0.032	0.22	0.034	
北美页岩组合样		32	73	7.9	33	5.7	1.24	5.2	0.85	5.8	1.04	3.4	0.5	3.1	0.48	

注:带*号样品分析数据来自刘伟博士论文^[7];球粒陨石标准化值自赫尔曼(1971) 22 个球粒陨石平均;北美页岩标准化值自 R. H. Haskin (1968) 北美地台粘土

Tuble - Tell unufus route of sumption form of the											
样品编号	岩石类型	Σ REE	LREE	HREE	L/H	Ce/Ce^*	Eu/Eu*	δCe	δEu	(La/Yb) $_{\rm N}^{*}$	(La/Yb) _N
XY-I	萤石	27.55	20.05	7.50	2.67	0.74	18.40	0.75	26.10	14.88	2.14
XY-3	泥晶生屑灰岩	16.56	13.15	3.41	3.86	0.86	0.95	0.84	1.33	7.71	1.11
XY-4	重晶石	23.54	10.79	12.76	0.85	0.51	29.95	0.40	41.33	6.91	0.99
XY-2	亮晶砂砾屑灰岩	7.66	1.86	5.80	0.32	0.67	1.73	0.66	2.41	7.96	1.14
XP1W-2-0	充填脉状方解石	10.84	8.54	2.30	3.72	1.90	1.85	1.95	2.56	9.98	1.43
XP1W-2-1	亮晶生屑灰岩	2.96	2.08	0.89	2.34	0.66	1.56	0.14	2.12	9.95	10.88
XP1W-4-1	泥晶生物礁灰岩	6.48	4.30	2.18	1.97	0.73	0.79	0.73	1.10	7.65	1.10
XP1W-7-2	泥晶球粒灰岩	9.60	7.16	2.45	2.93	0.90	0.70	0.88	1.01	8.61	1.24
*西41	粗晶方解石	18.41	12.18	6.23	1.96	0.75	0.77	0.75	1.11	11.05	1.59
*西1	粗晶方解石	18.58	15.35	3.23	4.75	0.83	0.81	0.83	10.93	21.08	3.03
*西21	粗晶方解石	28.35	19.44	8.92	2.18	0.74	0.75	0.72	1.08	9.33	1.34
*西8	粗晶方解石	22.04	18.29	3.76	4.87	0.81	1.09	0.81	1.60	22.98	3.30
*西30-2	紫色萤石	22.91	5.83	17.08	0.34	0.77	2.88	0.74	4.00	4.06	0.58
*西30	粗晶方解石	23.57	10.03	13.55	0.74	0.77	0.90	0.73	1.27	4.15	0.60
*西32-2	紫色萤石	15.64	13.82	1.82	7.61	0.34	56.27	0.36	76.90	9.03	1.30
* X1-I	紫色萤石	19.39	5.61	13.78	0.41	0.84	6.41	0.80	8.75	7.13	1.02
* X1-D-I	粗晶方解石	16.85	4.51	12.34	0.37	0.78	0.67	0.75	0.92	5.99	0.86
5 件萤石样品平均值		21.81	11.22	10.59	2.37	0.64	22.78	0.61	31.40	8.06	1.21
12 件方解石样品平均值		15.16	9.74	5.42	2.50	0.87	1.05	0.81	2.28	10.11	2.30

表 2 西克尔稀土元素分析数据 Table 2 RFE analysis results of samples from Sickl areas

注: L一轻稀土元素 ,H一重稀土元素 ,L/H一轻重稀土元素比值; Ce/Ce^{*}、Eu/Eu^{*}、(La/Yb) _N^{*} 一球粒陨石标准化值; δCe、δEu、(La/Yb) _N一 北美页岩标准化值。

均值为 21.81 × 10⁻⁶ 较灰岩高(15.16 × 10⁻⁶) 但除 Eu、Y 两元素含量极高外,其他稀土元素含量与灰岩 相当 未见明显富集 推测萤石中稀土元素大部分来 自围岩。从轻稀土 LREE(La~Eu) 和重稀土 HREE (Gd~Lu)的相对富集程度来看,样品总体富集轻稀 土 即具有标准曲线右倾特点 配分曲线较平缓。由 于受到重稀土元素 Y 极高值的影响,6 件样品的 LREE/HREE < 1。La 和 Yb 分别为 LREE 和 HREE 指标性元素 La/Yb 值可反映岩石中轻重稀土分馏情 况。研究区 17 件样品的球粒陨石标准化(La/Yb) * 比值均大于1 最高可达21.08; 北美页岩标准化(La/ Yb) x比值基本都大于1,最高可达10.88,平均值为 1.21。贾承造(2004) 对塔里木地区岩浆岩进行的研 究表明,本区岩浆岩稀土总量变化于139.43×10⁻⁶ ~347.03 × 10⁻⁶ 含量较高^[8]。研究区稀土元素较低 说明岩浆流体未参与成矿 若存在岩浆混合将会增加 流体中稀土元素含量。

在稀土元素(REE)地球化学研究中,为了直观 表示稀土元素的含量和分馏特征,常采用样品测量值 与球粒陨石或北美页岩标准样品中对应元素的比值, 通过数值法和图解法来反映稀土元素的富集与亏 损^{®1}。球粒陨石的稀土元素丰度代表地球原始组成 的稀土元素含量,其中的稀土未发生分馏作用,以其 为标准可以看出样品中稀土元素的分馏特征,多用于 火成岩的研究。页岩稀土元素含量(如北美页岩组 合样 NASC 等)反映上地壳的稀土元素平均丰度,故 常采用页岩标准化来比较沉积岩中 REE 的分馏特 点。为了不同的目的,例如研究沉积物的来源也可采 用球粒陨石标准化^{9~121}。

根据研究区样品的球粒陨石标准化图解,发现该 剖面萤石、重晶石样品具有强烈的正铕异常,标准化 曲线呈右倾式分布, 轻稀土相对富集(图3-a)。方解 石样品呈现两类 REE 配分模式(图3-b、c),一类是 标准化曲线呈右倾式分布, 轻稀土相对富集,略显正 铕异常; 另一类与一般的海相碳酸盐岩分布模式相似 (铕异常值为0.6~0.7),即呈 LREE 相对富集, HREE 相对平缓和负铕异常。北美页岩标准化后17 件样品几乎都表现为正铕异常(图3-d~f), 萤石样 品正铕异常更为明显。

在稀土元素中 Eu 被认为是唯一一个可以从 Eu³⁺还原为 Eu²⁺的元素。从表 2 和图 3 中可以看 出 研究区萤石及重晶石样品呈现出强烈的正铕异 常 球粒陨石标准化后 Eu/Eu^{*} 值变化范围为 2.88 ~ 56.27 ,高于上地壳平均值 0.65^[13],灰岩及方解石 Eu/Eu^{*} 变化范围为 0.67 ~ 1.85 ,略显正铕异常; 北 美页岩标准化后萤石中δEu 值变化范围为4.00 ~

76.90, 結异常明显, 灰岩及方解石中 δEu 值变化范 围为 0.92~10.93 除样品 X1-D-1 外, 均表现为正异 常。

在海水中 pH 与 Eh 条件下,三价态的 Ce³⁺可以 氧化为难溶的四价 Ce⁴⁺ 很难保留在海水中,从而进 入到海相沉积物和有机质组分中,所以海水显示 Ce 亏损,而缺氧海水中则无明显的 Ce 异常,有时甚至 出现正 Ce 异常,因此 Ce 异常常常被作为古海洋氧 化一还原 状态的指标¹⁰¹。17 件样品中除样品 XP1W-2-0 值为 1.90 外,Ce 普遍为负异常。样品采 用北美页岩 Ce/Ce^{*} 比值介于 0.34~0.90 之间,数值 略有波动; 萤石、重晶石样品 Ce/Ce^{*} 值平均为 0.64, 低于灰岩样品 Ce/Ce^{*} (0.87) 值。结合 Eu、Ce 异常 之间反消长关系,说明萤石等矿物沉淀时的环境是由 还原环境向氧化环境过渡的。原始流体为还原性流 体 在开放的氧化环境下沉淀。

图 4 为采用北美页岩及球粒陨石标准化后稀土 元素配分模式对比图。总的来说,这两种曲线趋势基 本吻合,它们可所反映的稀土元素分配模式也基本相 同,证明所取得的稀土元素分析数据值,具有可信度。 3.2 稀土元素判别图解应用

萤石和方解石都是由 Ca 和易挥发组分 F 与 CO₂ 形成的矿物 研究表明 稀土元素在流体体系中易与 OH⁻、F⁻、CO₃²⁻、SO₄²⁻、HPO₄²⁻、HCO₃⁻等形成配合物, 配合物稳定性从 La→Lu 逐渐增加,显示轻稀土元素 与重稀土元素的差异。对自然界中各种不同产状的 萤石和方解石的稀土元素分布研究发现,在萤石中以 铽(Tb) 和镧(La) 分异明显,而在方解石中以镱(Yb)

和镧(La)分异最明显。可见Tb/La 或Yb/La 是稀土 元素分异的指标,它代表了元素活化的程度。因此, 对萤石采用Tb/La—Tb/Ca 图解,而对方解石则采用 Yb/La—Yb/Ca 图解。综合运用Tb/La—Tb/Ca 或 Yb/La—Yb/Ca 参数可以有效地判断萤石或方解石 的成因¹⁴¹。

(1) Tb/Ca—Tb/La 图解

Moller 等根据对全球 150 个萤石样品的研究,发现用 Tb/Ca—Tb/La 两个参数可以将萤石划分为伟 晶(气成) 岩的、热液的及沉淀的三个不同的成因组, 并据此投绘成 Tb/Ca—Tb/La 图解^[15],纵坐标 Tb/Ca 代表成矿环境(同化作用程度),横坐标 Tb/La 表示 稀土的分馏程度。根据这一图解可以为萤石成因提 供依据,将研究区萤石、重晶石分析数据投于 Tb/ Ca—Tb/La 图解上(图5),发现样品落点均位于热液 型区域内,说明萤石形成时确实受到热液的改造作 用,属热液成因型萤石。

(2) Yb/Ca—Yb/La 图解

Yb/Ca—Yb/La 图解可用于区别岩浆成因的碳酸岩和沉积成因的碳酸盐岩。作图方法是将碳酸盐 类岩石或方解石中的 Yb/Ca 和 Yb/La 比值求出,然 后将其投到 Yb/Ca—Yb/La 图解上,便可以清楚地鉴 别岩石或矿物为岩浆成因或沉积成因¹⁶¹。为此,将 研究区灰岩及方解石样品分析数值投点于 Yb/Ca— Yb/La 图(图6),判断灰岩及方解石成因。通过投点 发现,多数样品落于石灰岩或方解石区域,有三个样 品位于热液方解石区,且这三个样品均为粗晶方解石 样 在一定程度上说明确实存在热流体的作用,形成 热液方解石。

(3) Y/Ho-La/Ho 图解

图 5 萤石成因 Tb/Ca—Tb/Ca 判别图解 底图据 moller 等 ,1976 转引自文献 [15]

1. 产于岩浆岩及其接触带矿床(华南地区); 2. 产于古生界火山沉 积岩中的矿床(贵州晴隆大厂,云南富源老厂); 3. 产于白云岩(河 北双洞子)、大理岩(安徽含水横山)中的矿床; 4. 产于古生代灰岩 中矿床(四川二河水,贵州丰水岭); 5. 产于火山岩及次火山岩中 的矿床(浙江杨家); 6. 塔里木西克尔露头灰岩中的萤石及重晶石 Fig. 5 Tb/Ca—Tb/Ca discrimination graphy for fluorite genesis(Moller, *et al*, 1976, cited in reference [15])

除 Eu、Ce 异常之外, Y、Ho 比值也是示踪流体过 程的重要参数,由于 Y/Ho 比值不受环境的氧化一还

原条件控制,所以 Y/Ho 比值可以提供独立于 Eu、Ce 异常之外的有关流体的其他重要信息^[7]。Bau 等在 对德国 Tarmenboden 矿床和 Beihilfe 矿床中萤石和方 解石的 REE 地球化学过程进行研究后指出,同源脉 石矿物的 Y/Ho—La/Ho 大体呈水平分布^[8]。将研 究区萤石及方解石等样品投点于 Y/Ho—La/Ho 图解 上,明显看出,方解石样品大体上呈水平分布,仅有个 别样品有所偏离; 萤石及重晶石由于样品数较少,并 未能看出明显分布趋势。萤石和方解石等矿物 Y/ Ho—La/Ho 曲线不呈水平状分布可能是由于 Y 在以 F⁻为主要络合介质和在以 CO_3^2 为主要络合介质的 溶液中具有不同的络合行为,也就是说络合行为的差 异也是导致流体具不同 Y/Ho 比值的可能原因之 -^[7]。萤石样品在垂向上的变化与样品中 Y 含量变 化有关。

4 讨论

不同成因的萤石、重晶石具有不同的稀土元素地 球化学特征。因此,矿物中的变价元不 Ce、Eu 的分 布趋势具有十分重要的意义。它们既可以作为成矿 过程中氧化还原环境的表征,也可以反映源区稀土元

图 7 萤石、重晶石及方解石 Y/Ho—La/Ho 图解 Fig. 7 Y/Ho—La/Ho graphic illustration for fluorite, barite and calcite

素的组成。如在海底喷流环境下形成的热水沉积矿 床具有富铕及轻稀土元素、贫重稀土元素的特 点^[11,17,19](图8)。研究区的稀土元素配分模式图也 具有这样的特点。但就萤石的产状而言与热水沉积 矿床不符。因此,对矿物中的铕异常的讨论就显得十 分重要。

转引自文献 [11],有修改

Fig. 8 Shale-normalized REE pattern of seawater and black smoker and white smoker fluids (cited in reference [11])

4.1 Eu 异常的成因解释

许多研究者都曾发现,Eu的行为在地壳历史发展过程中有明显的变化,早元古代具有正常和较富集的 Eu 含量,晚元古代和显生宙的沉积物中同时具有 Eu 亏损的特点²⁰¹。

导致流体正 Eu 异常的原因主要有: 流体/斜长

石的离子交换、颗粒对稀土的吸附、络合作用差异、环 境因素控制等不同解释^[17]。由于 Eu 异常的形成与 环境的氧化一还原条件变化有关,Eu 异常特征成了 解水一岩作用过程的重要参数。

通常认为在常温常压条件下 除在极度还原环境 中(非氧化、碱性的海相沉积物孔隙水),溶液中 Eu 主要以 Eu²⁺为主,但此时低温流体破坏矿物晶格的 作用微弱,并不显示 Eu 的正异常或负异常。当温度 在 250℃时,Eu²⁺能稳定存在^[11],随温度的增加 Eu³⁺/Eu²⁺的平衡向着氧逸度(fo₂)增加的方向转移。 所以在温度足够高时,即便是在中等还原环境下 Eu 亦可主要以 Eu²⁺形式存在,从而与相邻的稀土元素 发生分离而显示 Eu 异常^[16]。Eu²⁺由于离子半径大 不易被吸附到矿物晶格中,从而导致流体相对富铕, 随着流体温度降低,Eu²⁺重新被氧化为 Eu³⁺,再次进 入矿物晶格发生离子置换,增加矿物中的铕含量。研 究区萤石样品中铕呈现极高的正异常,反映萤石形成 时存在热流体作用。

含矿溶液的稀土元素组成 取决于溶液与其所通 过的岩石的相互作用和源区稀土元素组成。从矿物 中稀土元素反映的异常来看 源区应该存在正铕异常 的岩石。一些学者认为通过对火山岩的淋虑可将长 石中的铕萃取出来,使得最终结晶的矿物富 Eu。虽 然热水溶液与火山岩发生水岩反应使长石释放出铕, 使热水溶液具正 Eu 异常 但单靠斜长石的溶解或蚀 变不足以形成流体 LREE 富集、正 Eu 异常的稀土配 分模式。玄武岩中的单斜辉石和基质是高温流体稀 土的主要来源 辉石、橄榄石的溶解将对流体的稀土 组成产生的效应与斜长石相反(铕亏损),不会导致 正 Eu 异常^[17]。所以除非源区发生强烈的斜长石堆 积现象才可导致水岩反应,产生富铕的长石化。研究 区矿物所表现出的铕异常可能与长石的水解作用有 关,但未必与岩浆作用有关,可能还与深部碎屑岩有 关。

于炳松等^[21]研究表明,塔里木盆地下寒武统底 部玉尔吐斯组下部发育的黑色页岩夹硅质岩岩石组 合,硅质岩具有 Ce 负异常,Eu 正异常或无异常,Eu 含量较高。这套黑色岩系也可提供大量的铕离子。 使萤石、重晶石呈现正铕异常。本文认为,形成萤石 和重晶石的流体可能来源于深部地层,与这套黑色岩 系有关。

4.2 Eu、Sr、Ba 元素分析

样品中 Ba、Sr 元素含量明显高于围岩,尤其是

Ba 的含量(至少高出围岩两三个数量级),且 Sr、Ba 元素具有良好的相关性。经计算 Eu、Sr 相关系数为 0.985,Eu、Ba 相关系数为 0.985,Sr、Ba 相关系数为 0.986。Ba、Eu、Sr 三者以离子替代形式,相互替代。 图 9 为样品微量元素作聚类分析图解。由于 Sr、Ba 元素离子半径相差较小,所以 Ba²⁺易于进入矿物晶 格,类质同相取代 Sr²⁺,因而围岩中 Sr²⁺含量高低会 影响到 Ba 离子浓度。由三者相关性以及露头上重 晶石与萤石的产出状态,推测 Ba、Eu 来源于同期热 液。同位素研究表明热液中的 Sr 与 Ba 主要来源于 围岩^[22]。Sr、Ba 含量远高于赋矿围岩说明除赋矿围 岩外可能还有别的 Sr、Ba 源供给。在玉尔吐斯组底 部 我们发现黑色重晶石结核,内部充填硅质、磷质成 分。流体中 Ba 是否来源于该套地层值得进行下一 步工作研究。

Fig. 9 Cluster analysis diagram of trace elements

通过 Sr 同位素比值测定及比较,可追踪 Sr 的来 源。黄思静等的研究表明 塔里木盆地奥陶统部分海 相碳酸盐岩样品⁸⁷ Sr/⁸⁶ Sr(0.708 988~0.718 266)比 值升高与晚奥陶世盆地抬升过程造成的表生成岩环 境中近地表大气淡水作用带来的富放射性成因 Sr 的 影响有关^[23]。研究区萤石等样品的 Sr 同位素比值 较高,变化范围为 0.709 170~0.713 053 ,与赋矿围 岩 Sr 同位素(0.708 927~0.715 168)变化范围相一 致。Ca 与 Sr 具有相近的结晶化学特征,可以通过测 试⁸⁷ Sr/⁸⁶ Sr 值,考察萤石成矿溶液中 Ca 的来源^[15]。 样品中萤石的 Sr 同位素继承了围岩 Sr 同位素特点, 说明组成萤石的钙的来源为围岩,另一方面也反映了 萤石形成时的流体来源无岩浆水的混合 若存在深部 岩浆流体作用则会降低 Sr 同位素比值(年轻火山 岩⁸⁷Sr/⁸⁶Sr 值为 0.7040)^[5]。

4.3 F 的来源

关于萤石 F 的来源,前人也存在较多争议,多数 学者认为与岩浆热液混合^[2,4]或岩浆释气作用有 关^[3],也有学者认为 F 来源于赋矿围岩,并非来自岩 浆岩或岩浆期后热液^[5]。研究表明下寒武统底部玉 尔吐斯组下部发育的黑色页岩夹硅质岩和磷块岩岩 石组合,可以提供萤石形成所需的 F 元素,特别是黑 色磷块岩层。底部磷块岩层经鉴定其主要组成矿物 为胶磷矿,这是一种含碳酸一氢氧一氟的磷酸盐矿 物,为含氟矿物,主要成分为碳氟磷灰石,在流体作用 下可以提供 F⁻。根据前面的论述,认为成矿流体为 盆地卤水,不存在岩浆水的混合,在没有围岩 F 含量 实验数据佐证的情况下,本文认为下寒武统底部的这 套硅质岩与磷块岩有可能成为萤石中 F 的来源。

5 萤石成因讨论

西克尔露头充填产出的萤石矿,主要发育于中奥 陶统的鹰山组礁灰岩中。志留系粉砂质泥岩,除在断 裂附近的次级断裂中见有少量沿裂隙充填的萤石脉 外,一般对矿化起盖层作用。作为矿层底板的下奥陶 统的灰岩质白云、白云岩未见萤石矿化迹象。萤石矿 化对围岩的依赖性明显,生物礁(滩)相带有利的孔 隙度为矿质沉淀提供了有利场所。研究区发育小型 断裂构造,这些裂隙既是成矿溶液的运移通道,也可 以成为容矿空间,在相同条件下,断裂裂隙发育、岩石 构造破碎的地区(或地段)容易成矿。

目前关于塔里木地区中上奥陶统萤石的成因,多 数研究者认为萤石的形成与海西期晚二叠世塔里木盆 地的岩浆热事件有关,争议的焦点在于岩浆作用是否 直接参与成矿,即成矿流体的组成是否存在岩浆物质。

结合露头及实验分析数据,认为露头区风化壳溶 洞内充填萤石属于后生热液矿床,主要的成矿流体来 源为盆地中深部地层卤水。卤水在沿断裂运移及在 地层内循环过程中被加热,活性增加,萃取了围岩的 中的成矿元素,最终在合适的部位沉淀下来,富集成 矿。

早寒武世早期形成的黑色岩系可为后期的萤石 矿床提供成矿物质。随后沉积的奥陶纪海相碳酸盐 岩受加里东期岩溶作用影响强烈,发育大量溶洞,为 后来萤石的沉淀提供了空间。早二叠世柯坪一巴楚 地区普遍发育火山岩,研究区处于地热异常区,但岩 浆热液并未直接作用于围岩,而是起到"加热机"作 用 使盆地内部卤水受热。热流体在上升过程中萃取 围岩微量元素 使得萤石及重晶石继承了围岩中稀土 元素的特征 在流体运移过程中 随着温度的降低 物 化条件的改变 部分铕沉淀在围岩中 导致围岩也具 有微弱正铕异常。底部硅质岩及磷块岩中 F 元素也 随流体向上运移 这部分氟可与盆地卤水中硫酸盐、 碳酸盐和卤化物等发生化学反应。在 F 的迁移形式 中 ,MgF⁺络合物形式是所有含 F 络合物中最稳定的 一种^[24]。因此,Mg/Ca 增大时,有利于 F 的迁移,而 Ca离子的增加,则促进了F的沉淀。随着流体的向 上运移 Ca 离子含量增加 最终形成 CaF 沉淀 因此, 研究区萤石大都发育于在上部鹰山组灰岩内。

6 萤石成因的意义

在西克尔—三岔口沿线范围内,有若干个萤石矿 床(点),还可见一些与萤石相伴生的硫化物,这些矿 床都与热液作用以及断裂构造有关,是否将这一区域

图 10 萤石矿床(点) 分布图(据文献 [7])

Fig. 10 Fluorite deposit(mineral occurrence) distribution map(cited in reference [7])

划分为萤石矿成矿带,值得做进一步的工作。柯坪地 区为塔里木地区一铅锌(铜)矿化带^[25],铅锌赋矿层 位为奥陶系灰岩,萤石可能为铅锌矿的指示矿物,研 究区在深部可能发育铅锌矿化。塔里木盆地内寒武 至奥陶纪地层内仅出露少量铅锌矿化,柯坪—巴楚露 头区萤石的发现可能预示着区域内下部岩层中可能 存在铅锌矿。

多数学者认为,萤石形成于海西期的二叠纪末, 与萤石形成相关的深部热液溶蚀作用也发生于二叠 纪末^[2-5]。而海西期也是塔里木盆地重要的生油期 之一,大规模的构造变动,不仅有利于盆地内含烃类 流体的运移,也有利于成矿流体的运移,热流体可对 寒武—奥陶系碳酸盐岩产生溶蚀作用形成溶蚀孔洞; 流体活动进而使原生孔隙溶蚀扩大,从而使储层物性 得到进一步改善; 热液作用生成的萤石等热液矿物通 过交代等形式,按体积替换原理替换方解石,形成新 的储集空间; 此外萤石晶体在后期的流体作用下再次 溶蚀,仍有形成新的储集空间的可能性。

7 结论

(1) 西克尔剖面中样品稀土总量较低,萤石样品除 Eu、Y外,其他稀土元素含量与剖面灰岩样品相当,推断萤石中大部分稀土元素来自围岩。

(2) 萤石样品具有高的正铕异常特点,其稀土配 分图显示明显的正铕异常,萤石中 Eu 可能来自下寒 武统底部黑色岩系或深部碎屑岩层。F 的来源可能 为磷块岩。

(3) 萤石等样品 Sr 同位素比值与围岩相似,继 承围岩 Sr 同位素特征,并未发生岩浆流体混入现象, Ca 的来源为围岩碳酸盐岩。

(4)研究区萤石矿成因为后生热液矿床,流体在 上升过程中萃取了下寒武统底部黑色硅质岩及磷块 岩层中部分元素,共同向上运移,在合适的位置矿质 沉淀下来形成萤石矿床。生物礁灰岩良好的孔隙度 为矿质沉淀提供了良好的场所上覆志留系起到了盖 层的作用。

致谢 感谢杨式升高级工程师在薄片鉴定过程 中提供的大力帮助;感谢陈文玲、翟秀芬同学对本文 的支持与帮助。

参考文献(References)

1 顾家裕,朱筱敏,贾进华,等著.塔里木盆地沉积与储层[M].北 京:石油工业出版社 2003:94-268 [Gu Jiayu, Zhu Xiaomin, Jia Jinhua , et al. Sediment and Reservoir of Tarim Basin [M]. Beijng: Petroleum Industry Press 2003: 94-268]

- 2 钟广法,马在田,刘瑞,等. 塔里木盆地奥陶系萤石脉油气叠合成藏作用——高分辨率成像测井资料提供的证据[J]. 高校地质学报, 2000 向(4):576-582 [Zhong Guangfa, Ma Zaitian, Liu Rui, et al. Origin of the oil and gas accumulation related to fluorite veins in Lower Ordovician limestones, Tarim Basin, Northwest China: Evidences from high resolution borehole electric image logs [J]. Geological Journal of China Universities, 2000, 6(4):576-582]
- 3 赵霞. 塔里木盆地塔中 45 井及柯坪西克尔萤石成因讨论 [J]. 西北 地质 2000 33(3):5-8 [Zhao Xia. Discussion on the genetic type of the fluorite from T45 drill hole and Kelpin Xekar Area, Tarim Basin [J]. Northwestern Geology 2000 33(3): 5-8]
- 4 王嗣敏,金之钧,解启来.塔里木盆地塔中45 井区碳酸盐岩储层的 深部流体改造作用[J].地质论评,2004,50(5):543-546 [Wang Siming, Jin Zhijun,Xie Qilai. Transforming effect of deep fluids on Carbonate reservoirs in the Well TZ45 region [J]. Geological Review, 2004,50(5):543-546]
- 5 朱东亚,胡文琏,宋玉才,等. 塔里木盆地塔中45 井油藏萤石化特 征及其对储层的影响[J]. 岩石矿物学杂志 2005 24(3): 205-215 [Zhu Dongya, Hu Wenlian, Song Yuncai, et al. Fluoritization in Tazhong 45 reservoir: characteristics and its effect on the reservoir bed [J]. Acta Petrologlcaet Mineralogis, 2005 24(3): 205-215]
- 6 张兴阳,顾家裕,罗平,等. 塔里木盆地奥陶系萤石成因及其油气 地质意义[J].岩石学报 2006 & 8(8): 2220-2228 [Zhang Xingyang, Gu Jiayu, Luo Ping, et al. Genesis of the fluorite in the Ordovician and its significance to the petroleum geology of Tarim Basin [J]. Acta Petrologica Sinica, 2006 & 8(8): 2220-2228]
- 7 刘伟. 奥陶系古岩溶储层表征——以塔里木盆地西克尔剖面为例 [D]. 北京: 中国石油勘探开发研究院 2008:85-105 [Liu Wei. Ordovician Reservoir Characterization of the Karst [D]. Beijing: Research Institute of Petroleum Exploration and Development, PetroChina 2008: 85-132]
- 8 贾承造,等. 塔里木盆地板块构造与大陆动力学 [M]. 北京:石油 工业出版社 2004: 57-97,114-167 [Jia Chenzao, et al. Tarim Basin Plate Tectonics and Continental Dynamics [M]. Beijing: Petroleum Industry Press, 2004: 57-97,114-167]
- 9 韩吟文,马振东. 地球化学 [M]. 北京: 地质出版社 2003: 56-132. [Han Yinwen, Ma Zhendong. Geochemistry [M]. Beijing: Geological Publishing House 2003: 56-132.]
- 10 刘文均. 沉积地球化学常用数据的应用问题 [J]. 山西地质, 1991, 16(1):109-123 [Liu Wenjun. Sedimentary geochemistry common data applications [J]. Shanxi Geology, 1991, 16(1):109-123]
- 11 伊海生 林金辉 涨西西,等. 西藏高原沱沱河盆地渐新世—中新 世湖湘碳酸盐岩稀土元素地球化学特征与正铕异常成因初探 [J]. 沉积学报,2008,26(1):1-8 [Yi Haisheng, Lin Jinhui, Zhao Xixi, et al. Geochemistry of rare earth elements and origin of positive europium anomaly in Miocene-Oligocenc lacustrine carbonates from Tuotuohe Basin of Tibetan Plateau [J]. Acta Sedimentologica Sinica, 2008,26(1):1-8]
- 12 刘建清,贾保江 杨平,等.羌塘盆地中央隆起带南侧隆额尼一昂

达尔错布曲组古油藏白云岩稀土元素特征及成因意义 [J]. 沉积 学报 2008 26(1):28-38 [Liu Jianqing, Jia Baojiang, Yang Ping, et al. Characteristics of the paleo-oil dolomite REE geochemistry of Buqu Formation in southern part of the central uplift zone of Qiangtang Basin and it's significance [J]. Acta Sedimentologica Sinica 2008, 26(1): 28-38]

- 13 McLenna S M, Taylor S R, McCulloch M T, et al. Ceochemical and Nd-Sr isotopic composition of deepsea turbidites: Grustal evolution and plate tetonic associations [J]. Geochimicaet Cosmochimica Acta, 1990. 2015-2052.
- 14 陈德潜,陈刚.实用稀土元素地球化学 [M].北京:冶金工业出版 社,1990:15-226 [Chen Deqian, Chen Gang. Practical Rare-Earth Element Geochemistry [M]. Beijing: Metallurgical Industry Press, 1990:15-226]
- 15 涂光炽, 等编著. 低温地球化学 [M]. 北京: 科学出版社, 1998: 15-28 [Tu Guangchi, *et al.* Low Temperature Geochemistry [M]. Beijing: Science Press, 1998: 15-28]
- 16 赵振华 编著. 微量元素地球化学原理 [M]. 北京: 科学出版社, 1997: 56-130,194-206 [Zhao Zhenhua, et al. Trace Element Geochemical Principle [M]. Beijing: Science Press, 1997: 56-130]
- 17 丁振举,刘从强,姚书振,等. 海底热液系统高温流体的稀土元素 组成及其控制因素 [J]. 地球科学进展,2000,15(3):307-312 [Ding Zhenju, Liu Congqiang, Yao Shuzhen. Rare Earth Elements compositions of high-temperature hydrothermal fluids in sea floor and control factors [J]. Advances in Earth Science, 2000,15(3):307-312]
- 18 黄智龙 陈进,韩润生,等. 云南会泽铅锌矿床脉石矿物方解石 REE 地球化学 [J]. 矿物学报,2001,21(4):659-666 [Huang Zhilong, Chen Jin, Han Runsheng, et al. REE geochemistry of calcite gangue mineral in the Huize Ore Deposit, Yunnan [J]. Acta Mineralogica Sinica, 2001,21(4):659-666]
- 19 高怀忠. 关于热水沉积物稀土配分模式的讨论 [J]. 地质料技情报, 1999, 18(3): 40-42 [Gao Huaizhong. Discussion on the REE pat-

terns of submarine hot-water sediments [J]. Geological Science and Thchnology Information , 1999 ,18(3):40-42]

- 20 王小风,陈宣华,陈正乐,等. 阿尔金地区成矿地质条件与远景预测[M]. 北京: 地质出版社,2004: 180-184 [Wang Xiaofeng, Chen Xuanhua, Chen Zhengle, et al. Geological Setting for Metallogenesis and Prospecting of Ore Deposits in the Altyn Tagh Area [M]. Beijing: Geological Publishing House, 2004: 180-184]
- 21 于炳松,陈建强,李兴武,等.塔里木盆地肖尔布拉克剖面下寒武 统底部硅质岩微量元素和稀土元素地球化学及其沉积背景 [J]. 沉积学报,2004,22(1):59-66 [Yu Bingsong, Chen Jianqiang, Li Xingwu, et al. Rare earth and trace element patterns in bedded-cherts from the bottom of the Lower Cambrian in the Northern Tarim Basin, Northwest China: Implication for depositional environments [J]. Acta Sedimentologica Sinica, 2004, 22(1):59-66]
- 22 刘英俊,曹励明,王鹤年,等.元素地球化学导论[M].北京:科学 出版社,1985:42-57 [Liu Yingjun, Cao Liming, Wang Henian, et al. Elements Geochemical Introduction [M]. Beijing: Science Press, 1985:42-57]
- 23 黄思静,刘树根,李国蓉,等. 奥陶系海相碳酸盐锶同位素组成及 受成岩流体的影响[J]. 成都理工大学学报:自然科学版 2004, 31(1):1-7 [Strontium isotope composition of marine carbonate and the influence of diagenetic fluid on it in Ordovician [J]. Journal of Chengdu University of Technology: Science & Technology Edition 2004 31 (1):1-7]
- 24 《中国矿床》编委会.中国矿床(下) [M].北京:地质出版社, 1989:281-339 [The Editors of China's Deposits . China's Deposits (down) [M]. Beijing: Geological Publishing House, 1989:281-339.]
- 25 芮行健,贺菊瑞,郭坤一,等编著. 塔里木地块矿产资源 [M]. 北京:地质出版社,2002:56-134 [Rui Xingjian, He Jurui, Guo Ku-nyi, et al. Tarim Block Mineral Resources [J]. Beijing: Geological Publishing House,2002:56-134]

Geochemistry of Fluorite and Its Genesis in Sickl Area , Tarim Basin

RAO Hong-juan^{1 2} LUO Ping² YANG Zheng-xi¹ ZHOU Gang³ SONG Jin-min²

(1. Energy School, Chengdu University of Technology, Chengdu 610059;

2. Research Institute of Petroleum Exploration & Development, Beijing 100083;

3. Institute of Sedimentary Geology , Chengdu University of Technology , Chengdu 610059)

Abstract Geochemistry of fluorite deposits and its ore rocks in Sickl area, Tarim Basin is applied to investigate the ingenesis. The study shows that: relative LREE concentration and positive Eu anomaly are resulted from REE distribution pattern diagrams of fluorite; Eu, Sr and Ba are related closely in trace element analysis; the isotope ratio of Sr in fluorite is close to that in surrounding rocks. Conclusions are: ore-forming fluids of the fluorite mainly are from the infiltration of heated basin brine; trace elements(including REE) are from underlying strata and surrounding rocks; and elementsF, Ba, Eu are from Lower Cambrian siliceous rocks and phosphorite.

Key words Tarim; fluorite; rare earth element; positive europium anomaly; hydrothermal deposits