文章编号:1000-0550(2012)05-0909-10

渝南申基坪铝土矿矿区钪的分布规律 及地球化学特征研究[®]

李军敏¹ 丁 俊¹ 尹福光¹ 廖朝贵¹ 陈 阳^{1 2} 吕 涛¹ 陈 莉¹

摘要 通过对渝南申基坪矿区四个典型钻孔中铝土矿(岩)和稀散元素钪的研究 ,发现 Al₂O₃主要分布在含矿层位的中上部和中部 ,其矿石类型主要为土豆状、砾屑状和致密块状 ,Sc 主要分布在含矿层位的中下部和下部 ,主要赋存的岩石类型为黏土岩和铝土岩。Sc 和 Al₂O₃的相关系数平均值 r = -0.62 ,即负的中等相关; Sc 和 A/S 比值(Al₂O₃/SiO₂)的相关系数平均值 r = -0.44 ,即负的弱相关; 四个钻孔 Sc 和 Σ REE 平均值 r = 0.285 ,为正的弱相关。稀土元素分布模式表明 ,申基坪矿区绝大多数铝土岩具有富集 LREE、Ce 正异常和 Eu 负异常的特征。铝土矿及其伴生元素 Sc 可能来自下伏地层的碎屑岩和铝硅酸盐岩类 ,铝土矿和钪的迁移、富集和演化均受到当时的海陆交互沉积环境的制约 ,铝土矿中的钪很可能有两种存在方式:类质同象和离子吸附。

关键词 钪 稀散元素 铝土矿 分布规律 渝南申基坪矿区 第一作者简介 李军敏 男 1976年出生 硕士 工程师 沉积型矿产研究 E-mail: 13913751@qq. com 中图分类号 P618.73 文献标识码 A

铝土矿中除主要元素铝、硅之外,还伴生有丰富的 镧、钪、镨、铈、镓、锂和铌等多种有用稀土矿^[1]及伴生 元素。稀土元素的综合利用不仅可增加企业的经济效 益,还可促进环境保护工作^[2]。钪是一种典型的稀散 型亲石元素,在自然界大多以类质同象或离子吸附的 形式存在于其它矿物中^[3,4]。研究表明,在 Al₂O₃的生 产过程中,稀土主要富集于尾矿赤泥中;本研究扫描电 镜和能谱分析发现,钪在矿石中呈分散状态分布于一 水硬铝石和高岭石等黏土矿物的周边。渝南地区铝土 矿是我国红土风化原地残积一搬运再沉积型铝土矿的 主要产地之一,通过历次的地质矿产工作,发现渝南地 区铝土矿赋矿地层存在钪富集的现象。

渝南地区铝土及其伴生元素的相关研究 相对于 黔北、黔中地区而言极低,甚至还没有公开的分析测 试数据和相关的论述。本次研究选取渝南车盘地区 申基坪矿区含矿岩系4个钻孔为载体,以铝土矿及其 伴生元素钪为研究对象,通过剖面观察、化学测试和 统计相关分析等手段,找出该矿区铝土矿和钪的横 向、纵向分布规律,并总结与铝土矿、钪相关的稀土元 素的地球化学特征。

由于渝南地区的铝土矿研究程度较低 微量元素

方面的研究尤其薄弱,因此本文提供的资料可以说是 该地区铝土矿微量一稀土元素较系统的第一手资料, 对进一步查明它们的分布、存在形式和综合利用价值 有重要的理论意义,有关钪和稀土元素的富集程度和 分布情况对综合利用具有重要的参考意义。

1 地质概况

1.1 构造特征

渝南一黔北地区大地构造位置为上扬子地块 区^[5],处于黔西北构造带内^[6]。受燕山期和喜山期 大地构造运动影响,北东向构造发育,且多为逆断层。 申基坪矿区位于重庆市武隆区东南车盘向斜中部,该 向斜轴部走向呈北北东向,两翼倾角5°~25°,西翼 稍缓而东翼较陡。向斜轴部最新地层为三叠系大冶 组,两翼地层为二叠系下统茅口组、栖霞组、梁山组、 志留系下统韩家店组,两翼岩层呈不对称出露,西翼 出露宽达3~4 km,而东翼仅为1~1.5 km。

1.2 地层特征

申基坪矿区下伏地层除缺失泥盆系和出露极少 部分石炭系外,其余时代的地层均有出露(如图1)。 含矿岩系上覆地层为中二叠统栖霞组(P,q),为一套

①西南地区矿产资源潜力评价(编号:1212010813035)成矿地质背景子课题,渝东地区地质构造演化及铁铝基地研究(编号:1212011085167),重 庆市大佛岩、吴家湾、申基坪铝土矿区铝土矿伴生钪、锂、镓综合评价项目共同资助。
 收稿日期:2011-09-30;收修改稿日期:2012-01-20

灰、深灰色中一厚层状粉屑生物灰岩夹沥青质生物屑 灰岩,是一套浅海相碳酸盐岩沉积,厚度几十米到上 百米不等。

图 1 申基坪矿区地质简图(据 1:20 万南川幅地质图修编) 1. 二叠系上统; 2. 二叠系中统; 3. 二叠系梁山组; 4. 志留系韩家店组; 5. 志留系小河坝组; 6. 志留系龙马溪组; 7. 奥陶系上统和中统并层;

8. 奥陶系湄潭组; 9. 钻孔位置

Fig. 1 Geological map of Shenjiping mine (based on the geologic map of Nanchuan($1\!:\!200000)$)

因渝南铝土矿形成时代有争议^[10,11,18,19,21],本文 将含矿岩系暂定为中二叠统梁山组(P₂*l*),下段为区 内铝土矿赋矿层位,呈假整合覆于中志留统韩家店组 粉砂质页岩或中石炭统黄龙组灰岩之上,厚几米至十 几米不等;上段为炭质页岩或页岩。铝土矿体产于含 矿岩系中上部,下部多为铁质黏土岩。含矿岩系和铝 土矿层中极少见到层理,部分矿点见到渗流带特有的 渗流管及渗流凝胶结构、构造。矿体多呈似层状产 出,平面形态呈不规则状,主要赋存在含矿岩系中及 中上部位,距梁山组上段炭质页岩底界一般0.4~ 1.6 m,少数地段与炭质页岩直接接触,个别地段缺 失炭质页岩,矿体与栖霞组灰岩直接接触。

铝土矿体构造以土豆状、土状(含半土状)矿石 为主,次为致密块状,并偶见砾屑状、豆(鲕)状铝土 矿石。致密块状矿石几乎在所有见矿工程中均有出 露,土豆状、土状铝土矿相对集中分布于近地表及中 浅部范围,深部主要分布在暗河流经区域或深部断裂 附近,其余矿石类型则零星分布于不同地段。从纵向 上看致密状铝土矿石主要产于矿体顶部和底部,局部 地段相变为致密豆状;砾屑状铝土矿石,土状(含半 土状)和土豆状、豆(鲕)状铝土矿主要分布在矿体中 部,局部在顶、底部也有产出。横向上矿体内部结构 变化较大,仅致密状铝土矿石相对稳定,其余类型多 呈透镜状、扁豆状、团块状产出。 含矿岩系下伏地层为中石炭统黄龙组(C₂h)和 中志留统韩家店组(S₂hj)交替出现。黄龙组为一套 断续分布,呈透镜状的灰、灰白及紫灰色的结晶灰岩, 砾状、角砾状碎裂灰岩,属浅海相碳酸盐岩建造残留 体,与上覆梁山组呈假整合接触,厚几米到十几米不 等。韩家店组为一套灰、灰绿、紫灰色粉砂质页岩,属 浅海相碎屑岩建造,与上覆中石炭统黄龙组或中二叠 统梁山组呈假整合接触,厚度大于100m。含矿岩系 下界与中志留统韩家店组为过渡关系,部分地段在含 矿岩系与中志留统韩家店组为过渡关系,部分地段在含 矿岩系与中志留统韩家店组之间见有上石炭统黄龙 灰岩残留,呈长短不一的透镜体产出,从Al₂O₃含量 分析结果(表1)来看,也有过渡现象。

1.3 矿石矿物组合特征

矿石矿物主要由他形晶的硬水铝石组成,见有少 量的软水铝石、勃姆铝石、高岭石(或者是绿泥石)和 蒙脱石及微量的伊利石、氧化铁(针铁矿等)、金红 石、锐钛矿,偶见铁电气石、锆石、石英、绿帘石、硝石、 埃洛石、斜长石、透长石、白云石、白云母、黑云母、镁 铝榴石、黑柱石等,局部矿段含黄铁矿。高岭土大多 分散于一水硬铝石集合体晶粒空隙中,金红石、锆石 和石英以屑级大小分散于矿石中,粒径一般小于 0.01 mm。矿石中一水铝石呈隐晶质一胶状结构,粒 径普遍小于0.001 mm,常与含硅脉石紧密镶嵌。

2 样品的采集和测试

本研究于渝南车盘矿区四个钻孔 ZK917、 ZK719、ZK1119 和 ZK921 共取得 56 件样品,在成都 地质矿产研究所测试中心完成制样工作,由中国地质 科学院矿产综合利用研究所完成常量、微量、稀土分 析工作 检测依据为 JY/T015—1996《感耦等离子体 原子发射光谱方法通则》,使用仪器为美国 PE 公司 生产的 5 300 V 等离子光谱仪,检测温度 20℃,湿度 60% 检出限为 10⁻¹²。分析结果见表 1~3。

3 矿石中铝和钪的分布规律

3.1 铝的分布规律

本矿区铝土矿可分为富矿(Al₂O₃含量 60% ~ 70% *A*/*S*比值 > 7)和贫矿(Al₂O₃含量 40% ~ 60% , 7 > *A*/*S*比值 > 1.8)两部分,富矿主要分布在含矿层 位的中上部和中部,少量分布于中下部,极少分布于 下部,其矿石类型主要为土、豆状铝土矿和砾屑状铝 土矿,少量为致密块状铝土矿,而贫矿主要分布于含 矿层位的上部和下部;所赋存的矿石类型主要为铝土 岩和黏土岩(图 2) 剖面柱状对比见图 3。

图 2 富铝(左)、贫铝(中)和高钪(右)分布层位和赋存矿石类型示意图

Fig. 2 The distribution horizon and ore type of rich-aluminium(left) ,pool-aluminium(middle) and rich-scandium (right)

3.2 钪的分布规律

本项目以 30 μ g/g 为界 把 4 个钻孔的钪分为高 (>30 μ g/g)、低(<30 μ g/g)含量两种类型矿石。 其中 高含量(36.8 μ g/g>钪含量>30 μ g/g 9 个样 品,平均值为 32.4 μ g/g)矿石主要分布在含矿层位 的下部,次为中下部和中部,所赋存的矿石类型主要 为黏土岩,次为铝土岩。高钪分布层位和赋存矿石类 型见图 2。

3.3 钪与铝土矿的相关性

通过对铝土矿、铝硅比和钪的统计(表1)、相关 性分析(表2) 得到车盘申基坪矿区四个钻孔钪与铝 土矿之间相关关系具以下特点: A1₂O₃和 A/S 比值具 有正的强相关关系,其相关系数介于 0.74~0.96 之 间,平均值为 0.88(*n* = 56)。Sc 和 A1₂O₃相关系数 *r* 均为负值 *r* 最低值 - 0.85,最高值 - 0.192,平均值 -0.62,因此 Sc 和 A1₂O₃为负的中等相关关系。Sc 和 A/S 比值相关系数值也均为负值,r 最低值 -0.804,最高值-0.113,平均值-0.44,因此 Sc 和 *A/S* 比值为负的弱相关关系。

4 钪及稀土元素的地球化学特征

4.1 钪与稀土元素总量特征

申基坪钻孔资料反映含矿岩系的 Sc 含量和 Σ REE 在横向和纵向上都有较大的差异(表3) 数据显示有如下特点:不同矿点的钻孔之间、同一钻孔不同层位之间都存在 Sc 含量和 Σ REE 上的差异,由表数据可知 ZK917 的 Sc 含量为4.53~31.43 µg/g,平均17.96 µg/g; Σ REE 为73.3~511.4 µg/g,平均241.3 µg/g。ZK719 的 Sc 含量为(9.69~31.13) µg/g,平均22.6µg/g; Σ REE 为55.0~2846.0µg/g,

表1 钻孔数据 Table 1 Data of the drill holes

	Al_2O_3	A/S	Sc	钻孔编号	Al_2O_3	A/S	Sc	钻孔编号	Al_2O_3	A/S	Sc	钻孔编号	Al ₂ O ₃	A/S	Sc
1 ZK917	36.5	0.8	17.5	ZK719	28.7	0.8	20.1	ZK1119	32.9	0.9	34.1	ZK921	34.9	0.9	25.3
2	35.1	0.9	26.2		37.0	0.9	13.2		48.6	2.4	24.4		35.8	0.9	11.7
3	59.6	6.1	22.0		34.0	1.0	9.7		48.6	3.8	18.8		38.9	1.0	8.2
4	53.6	4.9	16.7		44.3	5.8	15.6		48.6	4.0	21.5		35.3	1.0	11.3
5	39.9	2.0	24.9		53.9	5.3	31.1		46.4	3.5	17.1		44.8	2.5	18.7
6	34.5	1.2	20.6		48.3	4.3	23.0		46.0	3.3	19.1		29.8	1.2	24.0
7	59.9	5.0	8.0		50.5	4.6	13.7		54.6	5.3	13.2		35.5	0.8	14.7
8	47.3	1.6	13.9		41.2	2.9	25.7		54.3	5.4	20.3		30.4	0.8	29.5
9	64.6	6.1	4.5		28.0	1.5	28.8		54.8	5.3	17.1		30.4	0.8	36.5
10	66.7	7.1	5.1		33.7	1.0	17.6		46.4	3.7	25.7				
11	64.1	7.5	7.1		35.9	0.9	18.9		48.2	4.0	27.8				
12	37.3	0.9	17.3		33.2	0.9	28.1		46.6	3.7	25.2				
13	24.5	1.0	30.3		30.4	0.8	29.7		45.1	3.4	30.3				
14	14.0	1.0	31.4		31.2	0.9	28.9		32.6	0.9	30.6				
15	26.3	0.9	21.4		30.9	0.8	30.5		29.9	0.8	36.8				
16	29.2	0.9	20.5		30.4	0.8	27.0								

注: Al₂O₃ 单位为% Sc 含量单位为 μg/g ,下同。A/S 代表 Al₂O₃ /SiO₂

	表 2 Al ₂ O ₃ 、A/S 和 Sc 相关系数
Table 2	Correlation coefficient among Al.O. and A/S and Sc

	8 2 3														
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ZK917			ZK719			ZK1119			ZI	K921		平均		
珀扎狮亏	$Al_2O_3$	A/S	Sc	$Al_2O_3$	A/S	$\mathbf{Sc}$	$Al_2O_3$	A/S	$\mathbf{Sc}$	$Al_2O_3$	A/S	Sc	$Al_2O_3$	A/S	Sc
$Al_2O_3$	1			1			1			1			1		
显著性(双侧)															
A/S	0.909*	1		0.900*	1		0.955*	1		0.740 * *	1		0.88	1	
显著性(双侧)	0.000			0.000			0.000			0.023			0.01		
Sc	-0.850*	-0.725*	1	-0.192	-0.113	1	-0.842*	-0.804*	1	-0.585	-0.121	1	-0.62	-0.44	1
显著性(双侧)	0.000	0.000		0.476	0.678		0.000	0.000		0.098	0.756		0.14	0.36	

*. 在 0.01 水平(双侧) 上显著相关; * *. 在 0.05 水平(双侧) 上显著相关

#### 第5期

钻孔编号	1								ZK917								
层位(见)	) 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	平均
La	39.51	42.27	30.35	28.59	29.62	120.34	72.66	131.33	15.01	16.15	15.88	12.60	73.76	83.26	66.55	55.26	52.07
Ce	60.73	74.48	74.96	55.83	71.71	248.73	140.15	240.18	39.46	37.54	38.64	28.80	114.01	142.80	229.66	170.31	110.50
Pr	6.93	8.90	10.15	5.50	7.63	30.72	17.25	23.63	2.74	3.22	3.46	3.40	14.61	20.50	13.05	13.03	11.55
Nd	12.12	14.74	21.26	10.22	14.38	57.14	34.42	36.29	4.51	5.58	13.17	12.01	55.13	96.94	49.65	53.68	30.70
Sm	4.21	4.97	8.73	4.14	6.05	19.51	16.94	15.27	1.78	2.01	2.26	2.14	10.61	23.90	10.98	10.90	9.02
Eu	1.06	1.48	2.19	1.14	1.71	3.25	3.59	5.92	0.40	0.40	0.37	0.63	1.84	4.84	1.90	1.50	2.01
Gd	3.79	4.92	6.86	3.88	5.23	15.55	11.07	13.53	1.72	2.09	2.75	2.45	10.25	17.57	9.43	8.75	7.49
Tb	0.73	0.80	1.60	0.92	1.23	1.86	2.18	2.08	0.40	0.54	0.68	0.62	1.48	3.13	1.33	1.54	1.32
Dy	4.38	4.21	8.37	5.42	6.71	4.91	9.69	8.94	2.65	3.77	5.08	5.19	6.78	13.62	5.81	8.96	6.53
Ho	1.01	0.96	1.66	1.14	1.33	0.97	1.66	1.61	0.59	0.84	1.04	1.16	1.27	2.31	1.13	1.80	1.28
Er	3.09	3.11	4.67	3.19	3.67	4.14	4.52	4.59	1.65	2.32	2.85	3.54	4.15	6.66	4.02	5.54	3.86
Tm	0.63	0.61	0.85	0.62	0.68	0.52	0.64	0.68	0.33	0.45	0.43	0.62	0.56	0.81	0.61	0.80	0.61
Yb	3.49	3.50	4.73	3.54	3.88	3.22	3.65	3.92	1.78	2.39	2.70	4.06	3.89	5.51	4.44	5.16	3.74
Lu	0.56	0.56	0.74	0.57	0.61	0.50	0.53	0.58	0.29	0.39	0.43	0.66	0.61	0.81	0.71	0.82	0.59
Y	23.73	21.34	39,93	28.19	28.35	19.54	34.13	42.10	13.69	22.15	27.21	24.55	31.41	55.82	26.31	44.51	30.19
Sc	17.53	26.22	22.03	16.68	24.92	20.56	7.96	13.92	4.53	5.06	7.07	17.30	30.30	31.43	21.37	20.52	17.96
$Al_2O_2$	36.48	35.14	59.63	53.61	39.89	34.48	59.92	47.32	64.55	66.72	64.14	37.30	24.45	13.98	26.34	29.21	43.32
A/S	0.84	0.90	6.13	4.85	1.97	1.24	5.04	1.56	6.05	7.08	7.49	0.91	1.01	1.01	0.94	0.86	2.99
ΣREE	142.3	165.5	177.1	124.7	154.4	511.4	319.0	488.6	73.3	77.7	89.8	77.9	298.9	422.7	399.3	338.0	241.3
$\Sigma Ce/\Sigma$	Y 2.56	3.49	1.88	1.98	2.53	12.73	4.11	5.70	2.88	1.69	1.42	1.17	3.63	2.56	8.73	3.83	3.81
LR/HR	7.04	7.86	5.01	5.47	5.62	15.14	8.40	12.59	6.79	5.07	4.62	3.26	9.31	7.38	13.53	9.13	7.89
(La/Yb)	N 8 11	8.67	4.61	5.79	5.47	26.83	14.28	24.00	6.05	4.85	4.23	2.23	13.60	10.84	10.75	7.68	9.88
(Ce/Yb)	N 4 83	5 92	4 41	4 38	5 13	21 48	10.67	17 00	6 16	4 36	3 98	1 97	8 14	7 20	14 37	9 17	8 07
δΕυ	0.81	0.92	0.87	0.87	0.93	0.57	0.80	1 26	0.69	0.60	0.45	0.84	0.54	0.72	0.57	0.47	0.74
δCe	0.90	0.92	1.05	1.09	1 17	1 00	0.97	1.06	1 51	1 28	1 28	1 08	0.85	0.85	1 91	1 56	1 16
钻孔编号	2								ZK719								
层位	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	平均
La	93.39	42.28	26.94	13.46	9.23	6.57	8.34	10.68	11.86	71.18	35.91	81.31	67.41	43.62	36.56	214.49	48.33
Ce	307.50	86.13	48.92	37.12	22.89	21.10	30.44	55.63	66.75	2490.88	582.96	1148.03	376.65	438.67	401.77	275.19	399.41
Pr	27.77	8.46	4.78	5.16	2.49	1.62	1.49	2.83	3.93	29.42	11.67	26.48	14.63	11.09	10.47	43.69	12.87
Nd	108.28	28.45	17.04	25.01	10.13	6.83	5.08	10.56	17.44	136.07	46.17	111.53	49.42	41.53	47.12	139.48	50.01
Sm	18.71	3.73	3.80	6.05	2.17	2.21	1.21	2.64	6.67	33.66	9.64	21.61	8.20	8.43	11.83	20.04	10.04
Eu	2.48	0.73	0.82	1.23	0.55	0.63	0.36	0.75	1.55	5.55	1.61	3.53	1.58	1.79	2.27	3.02	1.78
$\operatorname{Gd}$	17.86	5.05	3.64	4.67	2.45	2.16	1.48	2.69	4.60	25.84	6.41	17.26	9.18	7.82	8.28	23.43	8.93
Tb	2.27	0.66	0.67	1.04	0.69	0.63	0.39	0.72	1.40	4.59	1.07	2.43	1.32	1.39	1.65	2.60	1.47
Dy	8.05	3.49	4.24	6.15	5.79	4.91	3.38	5.85	10.50	23.95	6.37	9.43	7.06	8.62	9.77	9.85	7.96
Ho	1.37	0.75	0.84	1.14	1.28	1.00	0.74	1.23	1.91	4.02	1.36	1.63	1.40	1.69	1.84	1.83	1.50
Er	5.04	2.63	2.51	3.29	3.86	2.88	2.22	3.59	4.76	10.84	4.02	5.94	4.98	5.42	5.80	7.07	4.68
Tm	0.53	0.40	0.37	0.49	0.67	0.50	0.38	0.61	0.69	1.21	0.79	0.80	0.82	0.90	0.94	0.91	0.69
Yb	3.72	2.77	2.55	3.29	4.57	3.42	2.61	4.13	4.33	7.75	5.05	5.94	5.73	6.14	6.42	6.47	4.68
Lu	0.54	0.44	0.39	0.52	0.75	0.55	0.44	0.66	0.67	1.08	0.84	0.93	0.92	0.97	1.00	1.03	0.73
Y	29.87	16.11	17.94	29.13	36.29	27.23	19.02	32.41	54.82	93.73	27.94	28.65	25.36	29.21	32.90	38.42	33.69
$\mathbf{Sc}$	20.05	13.17	9.69	15.63	31.13	23.01	13.70	25.67	28.82	17.57	18.87	28.15	29.71	28.94	30.48	26.97	22.60
$Al_2O_3$	28.74	36.98	34.00	44.31	53.92	48.34	50.52	41.19	28.04	33.74	35.90	33.16	30.37	31.15	30.88	30.42	36.98
A/S	0.76	0.87	0.96	5.75	5.30	4.25	4.59	2.92	1.45	1.04	0.91	0.91	0.84	0.85	0.83	0.78	2.06
ΣREE	597 5	186_0	117.5	108 6	67.5	55 0	58.6	102.6	137_1	2846.0	713.9	1436.8	549 3	578 1	545 7	749 1	553 1
$\Sigma Ce/\Sigma$	Y 10, 30	5.35	2.73	1.27	0.63	0.77	1.60	1.72	1.22	26.57	20.86	40.07	14, 85	15.02	12,21	7.16	10, 15
LR/HR	14.18	10.48	6.72	4.28	2.37	2.43	4.03	4.27	3.75	34.90	26.55	31.39	16.49	16.54	14.29	13.08	12.86
(La/Yb)	_N 18.01	10.95	7.57	2.93	1.45	1.38	2.29	1.86	1.96	6.58	5.10	9.81	8.45	5.09	4.09	23.77	6.95
(Ce/Yb)	_N 22.97	8.64	5.32	3.13	1.39	1.71	3.24	3.74	4.28	89.23	32.08	53.66	18.27	19.83	17.39	11.81	18.54
δEu	0.41	0.51	0.67	0.71	0.73	0.88	0.82	0.86	0.86	0.57	0.63	0.56	0.56	0.67	0.70	0.43	0.66
δCe	1 48	1.12	1.06	1.09	1.17	1.58	2.12	2.48	2.40	13.35	6.98	6.07	2.94	4.89	5.03	0.70	3.40

## 表 3 钻孔稀土元素数据(单位为 µg/g) Table 3 Data of REE in drill holes(unit: µg/g)

9	1	4
_	-	

沉积学报

钻孔编号								ZK1119								续表3
层位	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	平均
La	133.45	33.30	9.04	6.80	7.22	5.23	3.74	5.16	3.48	7.69	11.12	11.71	11.59	24.48	21.85	19.72
Ce	255.87	121.45	79.47	82.73	96.25	79.04	66.72	97.09	53.33	79.23	69.50	70.48	83.63	117.76	201.41	103.60
Pr	23.56	14.85	1.76	1.47	1.49	1.09	0.77	1.26	0.85	2.04	2.83	3.40	3.62	5.55	6.64	4.74
Nd	62.32	59.14	6.29	4 94	5.02	3.82	2.88	4.52	3.32	8.75	11.58	13, 10	13.48	21.22	24.66	16.34
Sm	11.17	10.50	2.21	1.61	1.49	1.16	0.92	1.43	0.97	2.23	2.90	2.93	2.91	4 69	6.11	3.55
Eu	2 25	1 79	0.64	0.56	0.53	0.39	0.28	0.39	0.26	0.52	0.65	0.67	0.70	1 41	2.06	0.87
Gd	10.56	7.43	1.86	1.70	1.48	1.13	0.82	1.23	0.83	2.13	2.71	2.97	3.18	4 59	5.70	3.22
Th	1 21	1 40	0.67	0.68	0.49	0.39	0.29	0.40	0.27	0.54	0.67	0.66	0.76	0.79	1 04	0.68
Dv	6 14	8 77	6.02	6.70	4 61	3 69	2 90	4 01	2 55	4 29	5 18	4 95	5 78	5 02	6 31	5 13
Но	1 28	1.85	1 29	1 51	1.07	0.87	0.69	0.95	0.60	0.94	1 13	1.06	1 22	1.05	1 20	1 11
Fr	3 01	5 20	3 27	3.87	2 81	2 41	1.85	2 57	1.62	2 98	3 56	3 31	3.76	3 37	3 80	3 22
Tm	0.73	0.08	0.60	0.88	0.64	0.55	0.43	0.50	0.37	0.51	0.60	0.56	0.63	0.55	0.64	0.62
Thi Vh	0.75 4 50	0.90 6.16	4 37	5 45	4 12	3 13	2 70	3 72	2 30	3.60	4 20	3.84	4 38	4 04	4 64	4 11
1D 1	4.39	1.04	4.57	0.06	4.12	0.60	2.70	0.64	2.39	0.58	4.29	0.62	4.30	4.04	4.04	4.11
Lu V	0.75	27 60	0.75	0.90	0.72	0.00	16 26	0.04	14 04	0.56	0.70	0.02	0.70	0.04	0.75	0.09
1	21.05	21.00	10 04	21.51	25.95	21.01	10.00	22.39	14.04	24.10	27.04	25.14	29.11	20.61	25.00	23.01
	34.10	24.38 48.62	10.04	49 62	17.12	19.07	15.21	20.33	54.02	23.0/	27.8l	25.19	30.20 45 11	30.01	20.73	24.13 15 59
$AI_2O_3$	32.93	48.63	48.63	48.63	46.39	45.98	54.60	54.32	54.82	46.41	48.18	46.60	45.11	32.62	29.89	45.58
A/S	0.91	2.44	3.84	3.95	3.51	3.31	5.28	5.39	5.30	3.65	4.00	3.68	3.37	0.90	0.83	3.30
<u>N</u> REE	517.8	273.9	118.3	119.9	127.9	103.8	85.5	124.0	/1.3	116.0	117.4	120.2	136.3	195.1	286.8	167.61
$\sum Ce / \sum Y$	9.47	3.23	2.58	2.18	3.71	3.66	4.08	4.30	3.80	3.29	2.50	2.80	2.81	5.06	8.74	4.15
LR/HR	16.76	7.34	5.25	4.51	7.03	6.95	7.42	7.78	6.89	6.46	5.23	5.70	5.68	8.74	10.92	7.51
La/Yb) _N	20.87	3.88	1.48	0.89	1.26	1.10	0.99	0.99	1.05	1.53	1.86	2.18	1.90	4.35	3.38	3.18
Ce/Yb) _N	15.49	5.48	5.05	4.22	6.49	6.41	6.86	7.24	6.21	6.11	4.50	5.09	5.31	8.10	12.05	6.97
δEu	0.63	0.62	0.97	1.04	1.10	1.05	0.98	0.91	0.88	0.72	0.70	0.70	0.70	0.93	1.07	0.87
	1.12	1.34	4.88	6.43	7.20	8.12	9.66	9.32	7.61	4.91	3.04	2.74	3.16	2.48	4.10	5.07
	5	1	2		3	4	5		6	7		8	Q	)	亚均	_
 	102	27	21 38	35	, 	10.01	12	, 02	18 80	14	58	0	514	36	++J 47 02	_
La	186	. 21	65 1 <i>4</i>	91 81	42	30.07	38	11	66.88	36	55	260.80	880	85	104 01	
D.	17	80	7 40	01. Q	53	1 11		32	4 35	30.	08	6.03	112	04	10 54	
Nd	52	. 80	7.40	0. 20	55 67	4.11	4.	32 28	4.55	11	08	22 53	301	. <del>94</del> 60	10. 54 36. 21	
Sm	9	10	3 21	6	.07 .10	10.12	3	03	3 80	2	06	5 28	72	07	6 88	
5m F.,	0.	25	0.68	0.	47 20	4.15	J. 1	10	1 46	2.	90 24	1 25	10	70	1 29	
Cal	1. o	19	3 70	1.	50 76	2.76	2	20	2 57	1.	24 64	1.55	55	70	5 61	
Gu Th	0.	40	5.79	4.	70	2.70	5.	50 02	0.91	2.	04 67	4.00		75	0.95	
1D D	1. 5	09	0.38	0. -	7U	2.07	U.	0 <i>3</i> 07	5 74	0.	21	7 90	1	42 42	0.83	
Dy L	). 1	70 25	J. 18	). 1	/ I 1 Q	5.0/ 0.65	Э. 1	21 20	J. 74	J. 1	51 12	1.00	20.	43 37	4.30	
ПО	1.	23	0.85	1.	10	0.05	1.	29 44	1.20	1.	12	1.74	4	51 (7	0.85	
Er T	<i>3</i> .	82 71	2.37	5.	14 56	1.65	5.	44 69	5.10	2.1	91 50	4.79	14.	07	2.35	
1 m Vl	0.	/1	0.50	0.	30	0.54	0.	20	0.05	0.	38 (7	0.94	2.	14 72	0.44	
Y D	4.	4/ 72	5.25 0.52	3.	41 54	2.10	4.	50 72	4.0/	5.	0/	5.82	14.	13	2.87	
Lu	0.	15	0.53	0.	54	0.35	0.	15	0.69	0.	41	0.95	2.4	40	0.47	
Y	23.	. 10	14.34	23.	. 08	0.53	29.	54 (9	35.65	26.	41	35.33	82.	15	17.17	
Se	25	. 28	11.74	8.	13	11.34	18.	08	25.97	14.	/4 5.4	29.48	36.	52	11.24	
$AI_2O_3$	34	. 91	55.78 0.86	38.	. 8/	35.26	44.	/8	29.76	35.	34 92	50.39	30.	40 75	19.73	
A/S	0.	80	0.86	1.		1.00	2.	48	1.20	0.	82	0.84	0.1	13	0.61	
∑ REE	394	4.6	146.9	18.	5.1	86.2	97	.4	131.0	87	.0	351.4	2119	9.3	224.8	
$\Sigma \text{Ce} / \Sigma^{2}$	Y 8.	05	4.54	3.	44	5.98	1.	29	1.99	1.	38	7.38	10.	83	2.81	
LR/HR	13	. 88	8.27	8.	07	6.38	3.	74	5.59	3.	96	11.67	15.	60	4.82	
(La/Yb)	_N 16	. 41	6.92	7.	45	3.33	2.	01	3.33	2.	85	3.41	25.	05	4.42	
(Ce/Yb)	N 11	. 58	5.56	6.	63	5.03	2.	46	4.56	2.	77	12.44	16.	78	4.24	
δEu	0.	50	0.60	0.	76	0.98	1.	01	1.21	1.	35	0.83	0.3	52	0.48	
δCe	1.	07	1.05	1.	15	1.49	1.	30	1.81	1.	34	4.95	0.9	91	1.67	

注:表中层位指在钻孔剖面图中划分的岩性段和取样位置。 $\delta Eu = Eu_N / (Sm_N \times Gd_N)_{0.5} \delta Ce = Ce_N / (La \times Pr)_N^{0.5} N 表示球粒陨石标准化^[7].$ 

μg/g,平均 553.1 μg/g。ZK1119 的 Sc 含量为 13.21 ~36.75 μg/g,平均 24.13 μg/g; ΣREE 为 71.3 ~ 517.8 μg/g 平均 167.61 μg/g。ZK921 的 Sc 含量为 8.15 ~36.52 μg/g,平均 19.99μg/g; ΣREE 为 86.2 ~2119.3 μg/g,平均 399.66 μg/g。由此可以看出, ΣREE 含量的波动性比 Sc 含量的波动大的多,Σ REE 含量波动最高为 51.75 倍,而 Sc 含量波动最高 仅为 4.48 倍。

#### 4.2 稀土元素特征

四个钻孔的稀土分布模式具有以下特点: LREE 曲线较陡,HREE 曲线较平缓,相对富集 LREE,总体 具 Ce 正异常、Eu 负异常的特征(图4)。据表 3 数据 可得出 4 个钻孔 LREE/HREE 比值,其中 ZK917 比 值 3.26~15.14,平均值为 7.89; ZK719 比值 2.37~ 34.9,平均值为 12.86; ZK1119 比值 4.51~16.76,平 均值为 7.51; ZK921 比值 3.74~15.6,平均值为 8.57; 4 孔平均值为 9.21。同样 A 孔 $\Sigma$  Ce/ $\Sigma$ Y 平均 值为 5.77 (La/Yb)_N平均值为 6.97 (Ce/Yb)_N平均 值为 10.08 这些反映轻重稀土分馏度的数据均 > 1, 显示出申基坪矿区富集 LREE 的特征。





Ce 正异常: 其中 ZK917 的 δCe 值为 0.85 ~ 1.91,平均值为 1.16; ZK719 的 δCe 值为 0.70 ~ 13.35,平均值为 3.40; ZK1119 的 δCe 值为 1.12 ~ 9.66,平均值为 5.07; ZK921 的 δCe 值为 0.91 ~4. 95,平均值为 1.67; 4 孔平均值为 2.83。除钻孔 ZK917 第 8 层明显显示正异常外,其余均为 Eu 负异 常:其中 ZK917 的 δEu 值为 0.45 ~1.26,平均值为 0.74; ZK719 的 δEu 值为 0.41 ~0.88,平均值为 0.66; ZK1119 的 δEu 值为 0.62 ~1.10,平均值为 0.87; ZK921 的 δEu 值为 0.50 ~1.35,平均值为 0. 86; 4 孔平均值为 0.78。

4.3 钪与稀土元素总量的关系

四个钻孔 56 个样品数据可以看出 ,Se 含量和  $\Sigma$ REE之间存在着比较复杂的关系 ,其中 ZK917 相 关系数 r = 0.393 ,为弱正相关; ZK719 相关系数 r = 0.024 ZK1119 相关系数 r = 0.103 ,两孔都为微弱正 相关 ,可以忽略不计; ZK921 相关系数 r = 0.730 ,为中 等正相关。从图 1 可以看到 A 个钻孔的平面距离并 不大 ,直线距离也就在 2 km 左右 ,但数据处理结果却 有很大差距。而 4 个钻孔数据取平均值后 相关系数 r = 0.285 ,为正的弱相关(图 5)。

表3数据仅代表申基坪铝土矿区钪和稀土元素 的含量特征,其数据分析结果也只能代表申基坪矿区 Sc与稀土元素之间的关系。同样是铝土矿区,但铝 土矿品位、其稀土元素含量高低不等的现象是渝南一 黔北地区沉积型铝土矿区普遍存在的问题,至于申基 坪矿区以外区域的 Sc 含量和ΣREE 之间有什么样 的相关性,还必须通过结合具体矿区的沉积环境因 素 综合考虑它们的地球化学特征、元素赋存状态特 征等来综合分析判断。

通过和文献^[8 9]提供的数据进行比较,申基坪矿 区4个钻孔的 Sc 与 REE 含量相对黔中地区而言都 比较低,仅与可能是黔中地区铝土矿钪和稀土元素的 主要源岩的碎屑岩参数相当,接近世界铝土矿钪和稀 土元素的平均含量。

## 5 讨论

#### 5.1 铝土矿和钪的来源

关于铝土矿及其伴生元素物源及沉积环境方面 的研究 刘长龄认为: 我国二叠纪海相铝土矿主要形 成于地表海障壁海岸环境 湖泊相铝土矿形成于海退 条件下冲积平原内近海湖泊环境^[10] 据此本文认为, 不管何种相的铝土矿 弱的水动力和有限的物质交流 是铝土矿及其伴生元素富集的前提条件。pH 值为 5 ~8、Eh 值大于 -0.3 是三水铝石沉淀的最适宜范 围^[9]。在此物理、化学条件下,铝的相对富集和绝对 富集才可能既可以经过由黏土分解直接转化而来 也 可以由非晶质的氢氧化铝凝胶凝聚而成[11]。而地壳 运动和岩浆活动促进了物质分异和稀土的矿化富集, 岩石中原生稀土矿物的风化解体 提供了稀土物质的 来源:原生造岩矿物的风化提供了黏土矿物的来源; 原生造岩矿物的风化以及黏土矿物的形成 提供了稀 土次生富集的有利条件;上扬子地块区在二叠世期间 刚好位于亚热带^[5] 湖湿多雨的气候环境提供了表



图 5 铝土矿中稀土元素球粒陨石标准化分布模式 Fig. 5 Chondrite-normalized REE distribution patterns in bauxite

生作用下稀土转移富集的环境条件。

沉积过程中的稀土元素一般没有发生显著的分 异,无论稀土元素来自于何种岩石,其实都是各种火 成岩经过一定地质时期经由沉积、变质等地质作用后 完全混合的结果,沉积过程可以看作是在火成岩形成 时期发生分异的稀土元素均一化的过程^[12]。稀土在 地质体中,一经存在便很少受地质作用的影响^[13]。 因此,铝土矿(岩)中的微量元素对其源岩具有一定 的继承性,常以类质同象形式进入含铝矿物中,与铝 土矿中的铝元素成一定程度的共生关系,它们常呈的 正比或定比关系^[14~16]。

本研究发现, 抗与铝土矿、稀土元素间都具有一定的相关性,且 Se、REE 主要是以分散状态存在于一水硬铝石等铝矿物和绿泥石、高岭石等铝硅酸盐矿物中, 其赋存状态可能有类质同象和离子吸附两种形式。可以推断, 申基坪矿区铝土矿底板地层的镁铁矿物、黏土质矿物、碳酸盐类矿物在各种地质作用的影响下发生一系列物理、化学反应(比如发生间隙反应^[17]、水解水合作用^[18]等), 导致矿物晶格中的 Se(REE)—Fe—Al 化学键被破坏,由于 Se(REE)离子半径比 Fe、Al 大, 首先离开矿物晶格进入溶液中,并在弱碱性溶液中沉淀下来。

#### 5.2 钪矿层的形成

钪和镧系元素在周期表中同属ⅢB族元素,原子 外壳层电子结构类似,具有相似的物理和化学性质。 在沉积成矿的地质演化过程中,无论沉积环境如何变 化, 航和镧系元素常常作为一个整体迁移和沉淀。自 然界沉积体系中, Eu²⁺比其他稀土元素更容易被水 溶液带走, 在长期的开放体系中, Eu²⁺就会不断减 少,更有某些化学风化过程可优先将 Eu 移出, 使留 下来的沉积物贫 Eu²⁺, 形成 Eu 负异常。钻孔 ZK917 第8层为致密块状铝土岩, 是4个钻孔中唯一一个数 据处理结果明显显示 Eu 正异常的层位,可能和该层 源岩有关。同样的,自然界中的 Ce 有两种价态: Ce³⁺和 Ce⁴⁺, 在海水的 pH、Eh 范围内, Ce³⁺ 很容易 转变为 Ce⁴⁺。当 Ce 发生氧化时, 过剩的碳酸盐和重 碳酸盐浓度降低以及 pH 值下降的条件下, 已经发生 水解并与其他稀土元素分离的 Ce 可以又和轻稀土 结合, 甚至比轻稀土更牢固地保持在吸附的水解状 态^[12]。比如潮湿状态下沉积的海绿石, 就有 Ce 的过 剩。

据区域地质资料及前人研究成果^[10,11,19~22] 显 示,渝南一黔北地区铝土矿沉积环境为海陆过渡环 境,且含矿岩系出现黄铁矿和白铁矿,说明铝土矿形 成于较封闭的环境,离海岸线较远,是一个海水硫酸 盐供给不充分的水盆,属于滨海湖相沉积。申基坪矿 区位于这个环境的边缘地带,在整体环境处于较封闭 的相对静水条件下,矿区里的钪与稀土元素会以类质 同象或者离子吸附两种形式存在于铝土质源岩的矿 物之中,随着地壳的升降运动,成矿环境在氧化一还 原条件下来回动荡。含矿岩系下部铁质黏土可能主 要为原地风化残留形成,而铝土矿则是经历了搬运、 沉积,并在成岩(矿)期和成岩(矿)后生改造期物理 化学的综合作用影响下,三水铝石经过脱硅去铁去硫 等变质作用形成一水硬铝石。此时钪与稀土元素可 能以类质同象形式进入铝土岩(矿),或者以离子吸 附形式赋存于其他矿物周围,进而形成了铝土矿钪矿 床。

## 6 结论

(1) 申基坪铝土矿区的 A1₂O₃主要分布在含矿 层位的中上部和中部,主要赋存的矿石类型为土豆 状、砾屑状铝土矿和致密块状铝土矿。钪主要分布在 含矿层位的中下部和下部,钪主要赋存的矿石类型为 黏土岩和铝土岩。

(2) Sc 和 A1₂O₃相关系数平均值 r = -0.62,为 负的中等相关; Sc 和 A/S 相关系数平均值 r = -0.44,比值为负的弱相关。也就是说,在钪的开采 过程中 要多关注 Al₂O₃含量并不高的顶、底板黏土 岩或铝土岩。

(3)稀土分布模式表明,含矿层位稀土元素具有 富集 LREE 的特征,申基坪矿区铝土质岩大多具有正 的 Ce 异常和负的 Eu 异常。4 个钻孔 Sc 含量和 ∑REE取平均值后,相关系数 r = 0.285,为正的弱相 关。

(4) 申基坪矿区铝土矿和钪的迁移、富集和演化 都要受到当时的海陆交互沉积环境的严格制约,铝土 矿中的钪很可能是以类质同象形式和离子吸附两种 形式存在于矿物之中。

铝土岩中伴生稀有元素的研究一直是学术界的 热点,但其复杂程度导致研究工作一直难于取得进 展,由于稀土元素含量低,且在采样、制样、扫描电镜 以及电子探针等多方面都存在不少困难,至今无法对 这些稀土元素的赋存状态进行快捷准确地物相鉴 定^[23]。本文仅仅通过渝南车盘地区申基坪矿区的四 个钻孔资料,还不能完成赋存状态方面的研究,文中 所涉及的数据也不能完全概括黔渝地区铝土矿中稀 土元素的分布规律和地球化学特征,只为以后的生产 和科研提供进一步的信息和参考资料。

致谢 重庆市地勘局 107 地质大队提供钻孔资 料和样品,成都地质矿产研究所测试中心程万华完成 制样工作,中国地质科学院矿产综合利用研究所完成 样品测试工作,高原室沈敢富研究员、朱同兴研究员、 丛峰工程师提出宝贵意见,在此一并表示感谢,并对 评审专家的细心修改表示感谢和敬意。

- 刘长龄, 覃志安. 我国铝土矿中微量元素的地球化学特征[J]. 沉积 学报,1991 9(2):25-33 [Liu Changling, Qin Zhian. Geochemistry of trace elements in bauxite of China [J]. Acta Sedimentologica Sinica, 1991 9(2):25-33]
- 2 庹必阳,王建丽,张覃.稀土元素在铝土矿中的赋存状态及利用现 状[J].稀土 2007 28(1):117-119[Tuo Biyang ,Wang Jianli ,Zhang Qin. Occurrence and utilization of rare earth element in bauxite[J]. Chinese Rare Earths 2007 28(1):117-119]
- 3 朱敏杰,沈春英,丘泰.稀有元素钪的研究现状[J].材料导报, 2006 20(VI): 379-381 [Zhu Minjie, Shen Chunying, Qiu Tai. Research state of Lanthanon-Scandium [J]. Materials Review, 2006, 20 (VI): 379-381]
- 4 廖春生 徐刚,贾江涛 等.新世纪的战略资源——钪的提取与应用 [J].中国稀土学报,2001,19(4):289-297 [Liao Chunsheng,Xu Gang Jia Jiangtao *et al.* Recovery and application of Scandium: A strategic resource of new century [J]. Journal of the Chinese Rare Earth Society 2001,19(4):289-297]
- 5 潘桂堂.中国大地构造单元划分[J].中国地质 2009 36(1):1-28 [Pan Guitang. Subdivision of tectonic units in China [J]. Geology in China 2009 36(1):1-28]
- 6 万桂梅,等.黔中隆起及邻区分带性变形特征[J].地质学报 2008, 82(3):317 [Wan Guimei, et al. Zonation of Qianzhong (Central Guizhou) uplift and its adjacent areas [J]. Acta Geologica Sinica, 2008,82(3):317]
- 7 Sun S S ,McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [C] // Saunders A D ,Norry M J ,eds. Magmatism in the Ocean Basins. Geology Society Special Puplication ,1989 ,42: 313-345
- 8 肖金凯,雷剑泉,夏祥.黔中铝土矿及其赤泥中钪的某些特征[J]. 矿物学报,1994,14(4):388-393 [Xiao Jinkai,Lei Jianquan,Xia Xiang. Some characteristics of Scandium in bauxite from central Guizhou as well as in red mud[J]. Acta Mineralogica Sinica, 1994,14 (4):388-393]
- 9 张玉学 何其光 邵树勋 等. 铝土矿钪的地球化学特征[J]. 地质地 球化学,1999,27(2):55-62 [Zhang Yuxue,He Qiquang,Shao Shuxun *et al.* Geocemical characteristics of Sc in bauxite[J]. Geology Geochemistry, 1999, 27(2):55-62]
- 10 刘长龄 筹. 中国铝土矿和高铝黏土[M]. 天津: 天津科技出版社, 1992: 164 [Liu Changling *et al.* Bauxite and High-Al Clays in China [J]. Tianjin: Tianjin Science and Technology Press, 1992: 164]
- 11 廖士范 深同荣 等.中国铝土矿地质学[M].贵阳:贵州科技出版 社,1991:170 [Liao Shifan ,Liang Tongrong , et al. Geology of Bauxite Deposits in China [M]. Guiyang: Guizhou Science and Technology Press,1991:170]
- 12 王中刚,于学元,赵振华,等. 稀土元素地球化学[M]. 北京:科学 出版社,1989: 258-273 [Wang Zhonggang, Zhao Zhenhua *et al*. Rare Earth Element Geochemistry [M]. Beijing: Science Press, 1989: 258-273]
- 13 张培善 陶克捷 杨主明 ,等. 中国稀土矿物学 [M]. 北京: 科学出

版社,1998:4[Zhang Peishan, Tao Kejie, Yang Zhuming *et al.* Mineralogy of Rare Earths in China [M]. Beijing: Science Press, 1998: 4]

- 14 刘英俊,曹励明,李兆麟,等. 元素地球化学[M]. 北京: 科学出版 社,1982 [Liu Yingjun, Cao Liming, Li Zhaolin, et al. Element Geochemistry [M]. Beijing: Science Press, 1982]
- 15 刘英俊,中国含镓矿床的主要成因类型[J]. 矿床地质,1982,1:
  51-60 [Liu Yingjun. Chief genetical types of Gallium-bearing deposits in China [J]. Mineral Deposits, 1982,1:51-60]
- 16 刘长龄. 华北地台铝土矿床的物质来源 [J]. 轻金属,1985 & 1.4 [Liu Changling. Source of material of bauxite of north China platform [J]. Light Metal,1985 & 1.4]
- 17 刘宝珺. 沉积岩石学[M]. 北京: 地质出版社,1980:406 [Liu Baojun. Sedimentary Petrology [M]. Beijing: Geological Publishing House,1980:406]
- 18 刘巽锋,王庆生,陈有能,等. 黔北铝土矿成矿地质特征及成矿规 律[M]. 贵阳: 贵州人民出版社,1990 [Liu Xunfeng, Wang Qingsheng Chen Youneng, et al. Bauxite Minerogenic Geological Characteristic and Minerogenic Law in Northern Guizhou, China [M]. Guiyang: Guizhou People's Publishing House, 1990]

- 19 陈有能 汪生杰 杨文会. 贵州北部含铝岩系地质时代及沉积相特 征[J]. 贵州地质,1987,3(12):323-338 [Chen Youneng, Wang Shengjie, Yang Wenhui. The geologieal age of Al-bearing rock system and its features of sedimentary faeies in northern Guizhou [J]. Geology of Guizhou,1987 3(12): 323-338]
- 20 李昌全. 贵州早二叠世沉积相[J]. 贵州地质 ,1989 ら(2):123-132
  [Li Changquan. The sedimentary facies in Early Permian in Guizhou
  [J]. Geology of Guizhou ,1989 ら(2):123-132]
- 21 刘平. 三论贵州之铝土矿——贵州北部铝土矿成矿时代、物质来 源及成矿模式[J]. 贵州地质 ,1993 ,10(2): 105-113 [Liu Ping. An additional discussion on Bauxite Deposits of Guizhou(Ⅲ): Their metallogenetic epoch and material source [J]. Geology of Guizhou ,1993 , 10(2):105-113]
- 22 王立亭,卢彦邦,赵时久,等.中国南方二叠纪岩相古地理与成矿作用[M].北京:地质出版社,1994[Wamg Liting Lu Yanbang Zhao Shijiu *et al.* Permian Lithofacies Paleogeography and Mineralization in South China[M]. Beijing: Geological Publishing House,1994]
- 23 Mwakio P Tole. Thermodynamic and kinetic aspects of formation of bauxites [J]. Chemical Geology, 1987, 60: 95-100

## Regularities of Distribution and Geochemical Characteristics of Sc in Bauxite of Shenjiping Mine ,Southern Chongqing

LI Jun-min¹ DING Jun¹ YIN Fu-guang¹ LIAO Chao-gui¹ CHEN Yang^{1 2} LÜ Tao¹ CHEN Li¹

(1. Chengdu Institute of Geology and Mineral Resources, Chengdu 610081;2. Chinese Academy of Geological Sciences, Beijing 100037)

Abstract: Based on the study of the bauxite and Sc of Shenjiping mine in the southern Chongqing ,The Al₂O₃ was found distributing mainly in the middle-upper and middle place ,the main type of bauxite are argillaceous , pisolitic , ruditel and tight. The Sc was found distributing mainly in the middle-under and under place , the main type of bauxite are claystone and bauxite. The average of correlation coefficient r = -0.62 between Sc and Al₂O₃ ,it is a moderate negative correlation. The average of correlation coefficient r = -0.44 between Sc and A/S(Al₂O₃/SiO₂) , it is a low negative correlation. The REE distribution patterns suggest that the bauxite of Shenjiping mine has some characteristics as follows: enriched LREE , Ce positive anomalies and Eu negative anomalies. The dependence relation between Sc and  $\Sigma$ REE of each drill hole is remarkable , and the average is a low degree of positive correlation. Bauxite and Sc may come from the aluminosilicate rocks , The migration , enrichment and evolution of bauxite and Sc have been confined by the environment of sedimentation , likely there are two types of Sc in bauxite: one is isomorph , the other is ion adsorption.

Key words: Sc; scattered elements; bauxite; distribution; Shenjiping mine in Southern Chongqing