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Preliminary Study of Three-dimensional Flow and Deposition of
Turbidity Currents in Sinuous Submarine Canyons
HUANG Lu ZHANG Jia-nian WU Hao-yu HUANG He-qing

( Research Institute of Environmental Fluid Anhui University of Technology Maanshan Anhui 243032)

Abstract: The characteristics of the flow and deposition of turbidity currents in deep-sea is a focus of present re—
search. A three-dimensional computational model based on Reynolds-averaged Navier-Stokes equation and buoyancy
modified turbulence k- model is used to study the flow and deposition of turbidity currents in a sinuous submarine
canyon with arc cross-section. The findings are: (1) subaqueous turbidity current generally increases its thickness on
its way downstream due to the entrainment of environmental fluid and spills over the bank as soon as its thickness ex—
ceeds the height of the canyon resulting in mass and momentum losses; (2) at channel bend apex much current
strips out due to centrifugal force; the largest local stripping occurs just downstream the outer bank of the bend apex
excess density of the stripped current reaches as much as 37.5% that of inflow; (3) the secondary flow at canyon
bend apex is riverdike 1i.e. directed from outer bank to the inner bank near the bed for the arc-shaped channel simu-
lated; (4) in the canyon simulated deposition occurs around canyon center and downstream the inner bank of bend
apex while erosion occurs downstream the outer bank of bend apex. Those features may assist us in reconstructing the
ancient environments in exploring the submarine hydrocarbon reservoirs by observing the turbidites.

Key words: turbidity currents; numerical simulation; sinuous canyon; flow and deposition



