文章编号:1000-0550(2017)04-0834-09

四环聚异戊二烯类化合物:中国东部断陷湖盆新分子化石

杨永才,李友川,孙玉梅,吴克强,刘丽芳

中海油研究总院,北京 100028

摘 要 渤海湾盆地海域断陷湖盆歧口凹陷古近系烃源岩及原油样品中,检测出丰富的四环聚异戊二烯类化合物。四环聚异戊 二烯类化合物(C₃₀TPP)具有两个异构体,能有效地区分渤海湾盆地海域歧口凹陷沙三段(Es₃)烃源岩和沙一段(Es₁)烃源岩形 成的混源原油,是湖相原油的油源对比研究中的新分子化石。四环聚异戊二烯类化合物与水体盐度之间有密切关系,沉积环境 水体盐度越高,其丰度越高。随热演化程度增大,原油的四环聚异戊二烯类化合物(TPP)丰度逐渐降低。四环聚异戊二烯类化 合物(TPP)具有湖相有机质输入的很强专属性,可用于判识湖相原油研究,在研究湖相沉积环境有机质的油源对比、沉积环境及 热演化规律中具有重要地质—地球化学意义。

关键词 四环聚异戊二烯类化合物(TPP);生物标志物;油源对比;湖相;沙河街组;断陷湖盆

第一作者简介 杨永才, 男, 1978年出生, 博士, 高级工程师, 石油地球化学, E-mail: yangyc2003@126.com

中图分类号 P618.13 文献标识码 A

三环至七环单芳聚异戊二烯类化合物(图 1a~ d)首先由 Schaeffer *et al.*^[1]检测出;在西加拿大盆地 下白垩统烃源岩及其相关的原油亦被检测到^[2]。对 应的同系列多环含硫聚异戊二烯类化合物在全新世 湖相沉积物和中新生界沉积盆地发现^[3]。

四环聚异戊二烯类化合物(Tetracyclic Polyprenoid, TPP)包括21R和21S两个异构体(图1e),首先 在东南亚湖相原油检测出,当时该化合物尚未被命 名^[4]。在南大西洋两岸被动大陆边缘盆地亦检测到 该化合物。相对于C₂₇重排甾烷丰度而言,四环聚异 戊二烯类化合物在气相色谱/质谱(GC/MS)具有更 显著的丰度优势,其比值(C₂₇重排甾烷/四环聚异戊 二烯类化合物)作为南大西洋盐下湖相油气系统的 典型生物标志物^[5-6]。

在六个含油气盆地大量原油样品的分析化验结 果的基础上, Holba *et al.*^[7-8]系统地研究了四环聚异 戊二烯类化合物,并将该化合物两个异构体分别命名 为 $18\alpha(H)$, $21R-C_{30}$ 四环聚异戊二烯类化合物(18α (H), $21R-C_{30}$ TPP)和 $18\alpha(H)$, $21S-C_{30}$ 四环聚异戊二 烯类化合物($18\alpha(H)$, $21S-C_{30}$ TPP)(表 1)。

一般而言,淡水/咸水湖相烃源岩及其生成原油 具有较低的甾烷丰度和较高的藿烷/甾烷比值^[9-10]。 相对于甾烷丰度而言,四环聚异戊二烯类化合物通常

收稿日期: 2016-03-31; 收修改稿日期: 2016-07-27

基金项目:国家科技重大专项项目(2016ZX05024-002);中国海洋石油有限公司勘探综合研究项目(2012-KT-11,2013-KT-09-05)[Foundation: National Science and Technology Major Project, No. 2016ZX05024-002; Exploration Project of China National Offshore Oil Corporation, No. 2012-KT-11, 2013-KT-09-05]

表 1 四环聚异戊二烯类化合物(TPP)鉴定表 Table 1 Identification of the C₂₀ Tetracyclic polyprenoids (TPP)

峰号	分子式	分子量	化合物名称	化合物简称
А	$C_{30}H_{54}$	414	18α(H), 21R-C ₃₀ 四环聚异戊二烯类化合物	C ₃₀ TPP 18α(H), 21R
В	$C_{30}H_{54}$	414	18α(H), 21S-C ₃₀ 四环聚异戊二烯类化合物	C_{30} TPP $18\alpha(\mathrm{H})$, $21\mathrm{S}$

具有更高的丰度。由于 27-降胆甾烷在非海相烃源 岩及其生成的原油的丰度较低,而在海相烃源岩及其 生成的原油的丰度则普遍较高。因此,用四环聚异戊 二烯类化合物与 27-降胆甾烷来构建参数,可以用于 定量评价非海相/海相有机质的生源输入特征。因 此,Holba *et al.*^[7-8]提出四环聚异戊二烯类化合物 (TPP)比值计算方法,即:

TPP 比值 = (2×18α(H), 21R-C₃₀TPP)/[(2× 18α(H), 21S-C₃₀TPP) +(Σ27-降胆甾烷)]

Holba et al.^[7-8]运用四环聚异戊二烯类化合物比 值和 C₃₀重排胆甾烷建立了区分湖相、海相和三角洲 相三类烃源岩及其生成原油的图版,在判识湖相/海 相原油的油源研究上获得了很好的效果。因此,四环 聚异戊二烯类化合物对湖相烃源岩沉积有机质输入 具有很强的专属性^[7-8,10]。

四环聚异戊二烯类化合物(TPP)在渤海湾盆地 歧口凹陷湖相烃源岩和原油中亦获得检出和发现,本 文尝试运用气相色谱/质谱(GC/MS)和气相色谱/质 谱/质谱(GC/MS/MS),对其沉积环境、热演化程度及 油源对比等地质—地球化学意义给予探讨和报道。

1 样品与实验方法

1.1 样品及其地质背景

所选 41 个原油样品分别采集于渤海湾盆地歧口 凹陷中国海油探区 10 口探井和 31 个开发井;泥岩样 品采自 8 口探井 27 个岩芯、岩屑样品,层位涵盖了沙 三段(Es₃)、沙一段(Es₁)和东三段(Ed₃)泥岩。

渤海湾盆地歧口凹陷位于渤海海域西部,横跨中 国海油探区与中国石油大港探区,主要发育古近系沙 三段(Es₃)、沙一段(Es₁)和东三段(Ed₃)三套湖相烃 源岩^[10-14]。

歧口凹陷烃源岩的发育与渤海湾盆地陆地区域 既有相同点,均发育沙三段(Es₃)、沙一段(Es₁)烃源 岩;亦存在差异^[11],前者目前尚未揭示沙四段湖相烃 源岩,后者则不发育东三段湖相烃源岩^[15-17]。

1.2 实验方法

吸附剂中性氧化铝的粒径为 0.149~0.074 mm (100~200 目),粗孔硅胶的粒径为 0.177~0.149 mm

(80~100 目),使用前均抽提至无荧光。氧化铝、硅胶的活化温度分别为 400℃和 180℃,活化时间分别为 4 h 和 6 h。

岩石用二氯甲烷抽提 24 h,干燥称重。准确称取 20 mg 左右的岩石抽提物或原油,用 30 cm³(1 cm³=1 mL)正己烷溶解,静置过夜,沉淀出沥青质。滤液用 旋转蒸发器蒸至 2~3 cm³,分别称取 2g 氧化铝、3g 硅 胶,以上部硅胶、下部氧化铝(3:2,重量比)方式装 入分离柱中,该柱色谱分离方法对于饱和烃与芳烃吸 附性最优^[18]。滤液放入分离柱中,分别以正己烷、二 氯甲烷:正己烷(2:1,体积比)、三氯甲烷:乙醇(1 :1,体积比)为淋洗剂,分离出饱和烃、芳烃、非烃。 用称量法进行族组成定量。试剂使用前均蒸馏纯化。

对岩石抽提物或原油的饱和烃做色谱/质谱 (GC/MS)和色谱/质谱/质谱(GC/MS/MS)。在 Agilent7890-5975C 气相色谱质谱联用仪上进行色谱/质 谱(GC/MS)。气相色谱分析条件:60 m×0.25 mm× 0.25 µm HP-5MS 弹性石英毛细管柱,初温 50℃,恒 温1 min,以 20 ℃/min 升至 120℃,以4 ℃/min 升到 250℃,再以 3 ℃/min 升到 310℃,恒温 30 min;载气 用氦气,纯度为 99.999%,流速为1 cm³/min。质谱分 析条件:采用 EI 源,电子轰击能量 70 eV;做选择性离 子检测,质量数 50~500 aum。

在 Bruker SCION TQ 451 气相色谱双质谱联用仪 上进行色谱/质谱/质谱(GC/MS/MS)。气相色谱分 析条件:30 m×0.25 mm×0.25 μm HP-5MS 弹性石英 毛细管柱,初温 80℃,恒温 1 min,以 5 ℃/min 升至 220℃,再以 3 ℃/min 升到 300℃,恒温 20 min;载气 用氦气,纯度为 99.999%,流速为 1 cm³/min。质谱分 析条件:采用 EI 源,电子轰击能量 70 eV;采用母离 子—子离子模式,Q1 与 Q3 质量范围均 0.7 amu,碰撞 气(氦气)压力为 0.60 mTorr,碰撞电压为 12 eV。

2 结果与讨论

2.1 四环聚异戊二烯类化合物(TPP)鉴定特征

歧口凹陷原油和烃源岩均检测出丰富的四环聚 异戊二烯类化合物(TPP)(图2,3),该化合物由两个 C₃₀四环聚异戊二烯类化合物异构体构成,分子式为

a. QK18-1 井, Es₃, 砂岩储层原油; b. QK18-P2 井, Es₂砂岩储层原油; c. QK18-9 井, Es₃, 烃源岩, 2 848 m; d. QK17-3S 井, Es₁, 烃 源岩, 2 155 m。

图 3 歧口凹陷 QK18-P2 井沙二段原油四环聚异戊二烯类化合物(TPP)气相色谱/质谱/质谱选择性离子图 Fig.3 GC/MS/MS mass chromatograms of the C₃₀ tetracyclic polyprenoids (TPP) of the crude oils in Sha-2 Member in the Well QK18-P2 in Qikou sag

C₃₀H₅₄,分子量为414(表1),其分子结构见图1。各 峰详细鉴定结果见表1。D环开裂,由[A+B+C]环碎 片离子形成基峰 *m/z* 259;C 环断裂形成碎片离子峰 *m/z* 191;B 环断裂则形成另一个特征性碎片离子峰 *m/z* 123(图4)。

歧口凹陷烃源岩四环聚异戊二烯类化合物 (TPP)的丰度存在显著的差异(图 2c,d),其中,沙三 段(Es₃)烃源岩四环聚异戊二烯类化合物(TPP)丰度 较低(图 2c);沙一段(Es₁)烃源岩四环聚异戊二烯类 化合物(TPP)丰度较高(图 2d)。

2.2 油源对比

在前人研究的基础上,王培荣等^[11]和李友川

等^[12]提出了伽马蜡烷/ C_{31} 升藿烷(S+R)、4-甲基甾 烷/ C_{29} 规则甾烷、三芳甾烷/三芳甲藻甾烷、 C_{19}/C_{23} 三 环萜烷和 C_{24} 四环萜烷/ C_{26} 三环萜烷等生物标志物地 球化学参数组合,有效地区分了渤海海域的古近系沙 三段(Es_3)、沙一段(Es_1)和东三段(Ed_3)等三套主要 烃源岩。

研究表明,渤海湾盆地的沙三段(Es₃)、沙一段 (Es₁)和东三段(Ed₃)各具不同的生标组合特征。沙 一段(Es₁)烃源岩伽马蜡烷丰度较高;东三段(Ed₃) 和沙三段(Es₃)烃源岩伽马蜡烷丰度较低,但东三段 (Ed₃)烃源岩 C₂₄四环萜烷/C₂₆三环萜烷比值较高,稳 定碳同位素值偏轻,沙三段(Es₃)烃源岩 4-甲基甾烷

丰度较高,碳同位素值偏重[11-12]。

东三段(Ed₃) 烃源岩及其典型油样的碳同位素 组成偏轻,即 δ^{13} C 一般小于-29%(PDB,下同);而沙 三段(Es₃) 烃源岩及其典型油样的碳同位素组成一 般偏重,即 δ^{13} C 一般大于-29%^[11]。歧口凹陷原油 δ^{13} C 介于-25.5~-28.9%⁶,歧口凹陷原油碳同位素值 明显重于东三段(Ed₃) 烃源岩及其原油碳同位素值, 表明歧口凹陷原油与东三段(Ed₃) 烃源岩的亲缘关 系较差。

歧口凹陷原油含有较高丰度的 C₂₃三环萜烷和 C₂₆三环萜烷,其 C₁₉/C₂₃三环萜烷比值介于 0.14~ 0.37,C₂₄四环萜烷/C₂₆三环萜烷比值介于 0.25~0.88, 这两个比值均较低(图 5),因此,歧口凹陷原油亦主 要来源于沙河街组烃源岩。

通过4-甲基甾烷/∑C₂₉规则甾烷比值和伽马蜡 烷指数(G/C₃₀藿烷)对比分析,可将歧口凹陷原油划 分为三类(图6):

第一类为沙三段(Es_3) 烃源岩生成的原油:4-甲 基甾烷/ ΣC_{29} 规则甾烷比值介于 0.76~0.86, G/ C_{30} 藿 烷比值介于 0.09~0.11, 主要分布于 QK18-1 井 Es_3 、

图 5 歧口凹陷原油及烃源岩的 C₁₉/C₂₃三环萜烷与 C₂₄四环 萜烷/C₂₆三环萜烷相关图

Fig.5 Plot of the C_{19}/C_{23} tricyclic trepane versus C_{24} tetracyclic terpane/ C_{26} tricyclic trepanes of the crude oils and the source rocks in Qikou sag

QK18-2 井 Es₃等储层。

第二类是沙一段(Es_1) 烃源岩生成的原油:4-甲 基甾烷/ ΣC_{29} 规则甾烷比值为 0.15, G/ C_{30} 藿烷比值 为 0.24, 主要分布于 QK18-2 井 Es_1 等储层。

第三类是沙三段(Es_3) 烃源岩和沙一段(Es_1) 烃 源岩形成的混源油,其4-甲基甾烷/ $\sum C_{29}$ 规则甾烷比 值介于 0.45~1.13, G/C₃₀ 藿烷比值介于 0.15~0.50, 主要分布于 CFD1-6 井前寒武系(Pre-Camb)、CFD7-3 井古近系东三段(Ed_3)、QK17-2S 井新近系明化镇组 (Nm)、QK17-9 井古近系沙二段(Es_2)、QK18-2SA 井 古近系沙一段(Es_1)、QK18-P2 井古近系沙二段 (Es_2)、QK18-8 井新近系馆陶组(Ng)、QK17-2 井新 近系明化镇组(Nm)、QK17-3 井新近系馆陶组(Ng)、 QK18-P2 井古近系沙二段(Es_2)等储层。

其中,4-甲基甾烷/C₂₉规则甾烷是可以鉴别沙三 段(Es₃)烃源岩和沙一段(Es₁)烃源岩的油源重要指 标;但渤海海域沙三段(Es₃)烃源岩的4-甲基甾烷丰 度存在显著的差异变化特征,尤其是在歧口凹陷沙三 段(Es₃)烃源岩的4-甲基甾烷丰度则较低,尚需进一 步完善渤海海域混源原油的油源的鉴别研究。

根据 TPP/C₂₇ 重排甾烷与 G/C₃₀ 藿烷的变化特征,亦可将歧口凹陷原油划分为三个油族(图7):

(1) 沙三段(Es₃) 烃源岩生成原油,其 TPP/C₂₇
 重排甾烷主要介于 0.52~0.64,G/C₃₀ 藿烷比值介于
 0.09~0.11,主要分布于 QK18-1 井 Es₃等储层。

(2) 沙一段(Es₁) 烃源岩生成原油,其 TPP/C₂₇ 重排甾烷主要介于 1.07~1.76, G/C₃₀ 藿烷比值介于 0.24~0.45,主要分布于 QK18-P2 井 Es₂等储层。 (3) 沙三段(Es₃) 烃源岩和沙一段(Es₁) 烃源岩 形成的混源油,其TPP/C₂₇重排甾烷主要介于 0.77~ 0.98,G/C₃₀ 藿烷比值介于 0.15~0.40,主要分布于 CFD1-6 井 Pre-Camb、CFD7-3 井 Ed₃、QK17-2S 井 Nm、QK17-9 井 Es₂、QK18-2SA 井 Es₁、QK18-8 井 Ng、 QK17-2 井 Nm、QK17-3 井 Ng、QK18-P2 井 Es₂ 等 储层。

图 6 歧口凹陷原油及烃源岩的 4-甲基甾烷/ΣC₂₉甾烷与 伽马蜡烷/C₃₀藿烷相关图

Ⅰ.沙一段(Es₁)烃源岩生成的原油;Ⅱ1.沙一段(Es₁)烃源岩为主, 沙三段(Es₃)烃源岩为辅的混源油;Ⅱ2.沙三段(Es₃)烃源岩为主, 沙一段(Es₁)烃源岩为辅的混源油;Ⅲ.沙一段(Es₃)烃源岩生成的 原油。

Fig.6 Plot of the 4-methylsteranes/ $\sum C_{29}$ steranes versus gammacerane/ C_{30} hopanes of the crude oils and the source rocks in Qikou sag

TPP/C₂₇重排甾烷划分三类油族结果及其分布 特征与4-甲基甾烷等其他生物标志物划分结果基本 相一致。二者在沙一段(Es₁)烃源岩形成的端元原 油划分结果存在一些差异,QK18-P2 井 Es₂储层原油 在 TPP/C₂₇重排甾烷图版划分结果属于沙一段(Es₁) 烃源岩生成的原油,而在4-甲基甾烷/ΣC₂₉规则甾烷 图版则属于沙一段(Es₁)烃源岩和沙三段(Es₃)烃源 岩形成的混源原油。造成这种差异原因可能为沙一 段(Es₁)烃源岩形成环境存在较大的变化或沙一段 (Es₁)烃源岩样品及其生成的原油样品均较少,且不 具有代表性。

四环聚异戊二烯类化合物(TPP)能够有效地区 分渤海海域歧口凹陷沙三段(Es₃)烃源岩以及沙三 段烃源岩和沙一段(Es₁)烃源岩生成混源原油,是中 国东部断陷湖相盆地湖相混源原油的油源对比的新 指标,但在甄别沙一段(Es₁)烃源岩形成原油方面尚 需进一步证实。

2.3 沉积环境

初步研究表明,湖相沉积环境的烃源岩和原油具 有较高的四环聚异戊二烯类化合物(TPP)丰度,而海 相和三角洲相环境形成的烃源岩和原油四环聚异戊 二烯类化合物(TPP)丰度则较低^[5-7]。

湖相沉积环境烃源岩和原油四环聚异戊二烯类 化合物(TPP)丰度亦存在一些变化^[6,8],研究表明四 环聚异戊二烯类化合物(TPP)丰度除了受藻类生源 输入之外,其丰度的变化与沉积环境密切相关。这反 映湖相沉积环境四环聚异戊二烯类化合物(TPP)组 成与分布可能受控于水体的古沉积环境。

沙三段(Es,)沉积时期,地壳拉张加剧,凹陷迅 速沉降,各凹陷连通性较好。由于沉降速率较大,湖 盆水体较深,在温暖潮湿的热带气候条件下,有利于 形成稳定的水体分层;同时,这一时期湖泊类型为微 咸水湖,营养物质丰富,水生低等生物极其繁盛,湖相 藻类十分发育,富含渤海藻和副渤海藻(属沟鞭藻 类)^[19-20]。歧口凹陷沙三段(Es₃)烃源岩呈环带状分 布,从湖盆中心向四周依次为半深湖—深湖相、滨浅 湖相。伽马蜡烷是一个指示沉积环境盐度的可靠生 物标志物^[9-10]。沙三段(Es₃)烃源岩及其生成的原油 伽马蜡烷指数(G/C30 藿烷)普遍较低,主要介于0.04 ~0.20,反映其沉积环境水体盐度较低,其四环聚异 戊二烯类化合物(TPP)丰度则较低(图 2c、图 7);沙 三段(Es,)烃源岩的姥鲛烷/植烷比值(Pr/Ph)较高, 主要介于 0.83~2.08(图 8),指示其处于弱氧化—弱 还原沉积环境;表明在弱氧化—弱还原的淡水—微咸 水沉积环境之中,四环聚异戊二烯类化合物(TPP)丰 度较低。

沙二段(Es₂)为湖盆收缩期沉积,湖水普遍较 浅,以粗碎屑岩沉积为主,储层发育,烃源岩不发育。 沙一段(Es₁)沉积早期部分地继承了沙二段(Es₂)的 沉积特征,随着湖盆发生第二次湖侵,湖水迅速向隆 起区扩展,水域面积扩大,歧口凹陷广泛发育浅湖— 半深湖相,局部形成浅水碳酸盐台地,形成了由深灰 色泥岩、黄褐色、灰褐色油页岩、钙质页岩、泥灰岩、白 云质灰岩和生物碎屑灰岩等组成的"特殊岩性段"。 沙一段(Es₁)沉积时期,古气候属北亚热带型温湿气 候,水生生物发育,普遍出现薄球藻、棒球藻等藻类, 反映水浅、稳定和水流循环不畅的半咸水—咸水沉积 环境。

沙一段(Es1)烃源岩生成的原油伽马蜡烷/C30藿

图 7 歧口凹陷原油及烃源岩的 TPP/C₂₇重排甾烷与 伽马蜡烷/C₃₀藿烷相关图

Ⅰ.沙一段(Es₁)烃源岩生成的原油;Ⅱ.沙三段(Es₃)烃源岩和沙一段(Es₁)烃源岩生成的混源油;Ⅲ.沙一段(Es₃)烃源岩生成的原油。
 Fig.7 Plot of the TPP/∑C₂₇ diacholestanes versus the gammacerane/C₃₀ hopane of the crude oils and the source rocks in Qikou sag

烷比值主要介于 0.41~0.85,反映其沉积环境水体盐 度较高,沙一段(Es₁)沉积环境古水体盐度高于沙三 段(Es₃),其四环聚异戊二烯类化合物(TPP)丰度较 高(图 2d、图 7),表明在水体盐度较高的沉积环境 中,更易富集四环聚异戊二烯类化合物;沙一段 (Es₁)烃源岩生成的原油的 Pr/Ph 较低,主要介于 0.29~0.65(图 8),反映其处于缺氧强还原沉积环境, 其四环聚异戊二烯类化合物(TPP)丰度则高,反映在 缺氧强还原沉积环境中,更易富集四环聚异戊二烯类 化合物。

图 8 歧口凹陷原油及烃源岩的 TPP/C₂₇重排甾烷 与 Pr/Ph 相关图

渤海海域歧口凹陷古近系为湖相沉积环境,沙三 段(Es₃)烃源岩、沙一段(Es₁)烃源岩生成的原油 C₂₄ 四环萜烷/C₂₆三环萜烷比值较低,均小于 1.0(图 9), 反映其形成环境属于典型的湖相沉积环境。沙三段 (Es₃)烃源岩与沙一段(Es₁)烃源岩的形成环境的水 体盐度和氧化—还原性存在差异。沙一段(Es₁)烃 源岩伽马蜡烷指数普遍较高,Pr/Ph 比值较低,为半 咸水—咸水强还原湖相沉积环境,其四环聚异戊二烯 类化合物(TPP)丰度则较高(图6)。这就是造成沙 一段(Es₁)烃源岩的四环聚异戊二烯类化合物(TPP) 丰度高于沙三段(Es₃)烃源岩的佐证。表明四环聚 异戊二烯类化合物(TPP)的前躯物可能更适合于在 咸化沉积环境生长。这种特点对于研究湖相沉积环 境之中不同水体介质条件烃源岩的形成机理及成烃 特征具有重要地质意义。

oils and the source rocks in Qikou sag

2.4 热演化规律

热成熟度参数 C₂₉ 甾烷 ββ/(αα+ββ)能有效地
描述烃源岩或原油的热成熟度,其热平衡点为 0.67~
0.71,对应于镜质体反射率 R₀约为 0.8%~0.9%^[9,21]。
随着 C₂₉ 甾烷 ββ/(αα+ββ)增大,歧口凹陷原油的四
环聚 异戊二烯类化合物(TPP)丰度逐渐降低(图 10)。

同样,岐口凹陷原油的四环聚异戊二烯类化合物 (TPP)丰度亦随着热成熟度参数 Ts/(Ts+Tm)增大 而逐渐降低(图 11)。表明随着其热演化程度增大, 导致四环聚异戊二烯类化合物(TPP)丰度逐渐降低。

从图 7 至图 11 来看,除了 QK18-P2 井 Es₂储层 一个原油样品离散外,TPP/C₂₇重排甾烷与 G/C30 藿 烷呈正相关性,而与 C₂₄四环萜烷/C₂₆三环萜烷、Ts/ (Ts+Tm)、C₂₉甾烷 ββ/(αα+ββ)呈负相关性,表明该 参数可指示与水体盐度、样品成熟度的差异,而可用

于区分沙一段(Es₁)与沙三段(Es₃)湖相烃源岩及其 生成原油的地球化学特征。而与 Pr/Ph 相关性很弱, 也可能是因为 Pr/Ph 同时也受成熟度的影响,导致相 关性差,对于指示氧化还原性的认识可信度要低一 些,尚需结合其他的指标进一步研究。

QK18-P2 井沙二段(Es₂)储层原油为开发井原 油样品,存在多个油层混采的情况,该离散原油样品 不能代表单油层的真实地质特征。

3 结论

四环聚异戊二烯类化合物(TPP)包括 21R 和 21S 两个异构体,具有湖相有机质输入的很强专属 性。在中国东部渤海湾盆地歧口凹陷湖相沉积环境 的烃源岩和原油之中发现并检测、鉴定丰富的四环聚 异戊二烯类化合物。

四环聚异戊二烯类化合物(TPP)能够有效区分

渤海海域歧口凹陷沙三段(Es₃)烃源岩以及沙三段(Es₃)烃源岩和沙一段(Es₁)烃源岩生成混源原油,
 ^{**} 是中国东部断陷湖相盆地湖相混源原油的油源对比的新分子化石。

渤海海域歧口凹陷古近系为湖相沉积环境,沙三 段烃源岩(Es₃)、沙一段烃源岩(Es₁)形成环境均属 于典型的湖相沉积环境。沙三段(Es₃)烃源岩与沙 一段(Es₁)烃源岩的形成环境的水体盐度和氧化— 还原性存在差异。沙一段烃源岩(Es₁)伽马蜡烷指 数普遍较高,Pr/Ph 比值较低,为半咸水—咸水强还 原湖相沉积环境,其四环聚异戊二烯类化合物(TPP) 丰度则较高。这表明四环聚异戊二烯类化合物的前 躯物可能更适合于在咸化沉积环境生长。

随着热成熟度参数 C₂₉甾烷 ββ/(αα+ββ)增大, 歧口凹陷原油的四环聚异戊二烯类化合物(TPP)丰 度逐渐降低,表明热成熟度增大将导致四环聚异戊二 烯类化合物(TPP)丰度逐渐降低。

四环聚异戊二烯类化合物对于湖相烃源岩及生 成原油的油源对比、沉积环境及热演化规律研究均具 有重要地质—地球化学意义。

致谢 样品采集过程中,得到了中国海洋石油 (中国)有限公司天津分公司勘探部、开发生产部、渤 海石油研究院和岩芯库的大力协助;中国石油大学 (北京)史权、朱雷、何俊辉以及长江大学陈奇等专家 在样品实验分析方面提供了众多支持和慷慨帮助;审 稿专家对初稿进行了悉心评审,提出诸多宝贵建议。 在此,一并深表谢忱。

参考文献(References)

- [1] Schaeffer P, Poinsot J, Hauke V, et al. Novel optically active hydrocarbons in sediments: evidence for an extensive biological cyclization of higher regular polyprenols[J]. Angewandte Chemie International Edition, 1994, 33(11): 1166-1169.
- [2] Li Maowen, Riediger C L, Fowler M G, et al. Unusual polycyclic alkanes in Lower Cretaceous ostracode sediments and related oils of the Western Canada Sedimentary Basin[J]. Organic Geochemistry, 1996, 25(3/4): 199-209.
- [3] Poinsot J, Schneckenburger P, Adam P, et al. Novel polycyclic sulfides derived from regular polyprenoids in sediments: characterization, distribution, and geochemical significance [J]. Geochimica et Cosmochimica Acta, 1998, 62(5): 805-814.
- [4] Schiefelbein C F, Zumberge J E, Brown S W. Petroleum systems in the far east[C]//Proceedings of An International Conference on Petroleum Systems of SE Asia and Australasia. Jakarta, Indonesia: Indonesian Petroleum Association, 1997: 101-113.

- [5] Schiefelbein C F, Zumberge J E, Cameron N R, et al. Petroleum systems in the South Atlantic margins[M]//Cameron N R, Bate R H, Clure V S. The Oil and Gas Habitats of the South Atlantic. Geological Society, London, Special Publications, 1999, 153: 169-179.
- [6] Schiefelbein C F, Zumberge J E, Cameron N C, et al. Geochemical comparison of crude oil along the South Atlantic margins[M]//Mello M R, Katz B J. Petroleum Systems of South Atlantic Margins. Tulsa, OK: AAPG, 2000, 73: 15-26.
- Holba A G, Tegelaar E, Ellis L, et al. Tetracyclic polyprenoids: indicators of freshwater (lacustrine) algal input [J]. Geology, 2000, 28(3): 251-254.
- [8] Holba A G, Dzou L I, Wood G D, et al. Application of tetracyclic polyprenoids as indicators of input from fresh-brackish water environments[J]. Organic Geochemistry, 2003, 34(3): 441-469.
- [9] Peters K E, Moldowan J M. The Biomarker Guide: Interpreting molecular fossils in petroleum and ancient sediments [M]. Englewood Cliffs, New Jersey: Prentice Hall Inc., 1993.
- [10] Peters K E, Walters C C, Moldowan J M. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History [M]. 2nd ed. Cambridge: Cambridge University Press, 2005: 751-963.
- [11] 王培荣,张大江,宋孚庆,等. 区分渤中坳陷三套烃源岩的地球 化学参数组合[J].中国海上油气,2004,16(3):157-160.
 [Wang Peirong, Zhang Dajiang, Song Fuqing, et al. The comprehensive geochemical parameters for distinguishing three sets of source rock in Bozhong depression [J]. China Offshore Oil and Gas, 2004, 16(3): 157-160.]
- [12] 李友川,黄正吉,张功成. 渤中坳陷东下段烃源岩评价及油源 研究[J]. 石油学报,2001,22(2):44-48. [Li Youchuan, Huang Zhengji, Zhang Gongcheng. Evaluation of the lower Dongying source and oil source research in Bozhong depression[J]. Acta Petrolei Sinica, 2001, 22(2): 44-48.]
- [13] 黄正吉,李友川. 渤海湾盆地渤中坳陷东营组烃源岩的烃源前 景[J]. 中国海上油气(地质),2002,16(2):118-124. [Huang Zhengji, Li Youchuan. Hydrocarbon source potential of Dongying Formation in Bozhong depression, Bohai Bay Basin[J]. China Offshore Oil and Gas (Geology), 2002, 16(2): 118-124.]
- [14] 于学敏,何咏梅,姜文亚,等. 黄骅坳陷歧口凹陷古近系烃源岩 主要生烃特点[J]. 天然气地球科学,2011,22(6):1001-1008.
 [Yu Xuemin, He Yongmei, Jiang Wenya, et al. Hydrocarbon gen-

eration of Paleogene source rocks in Qikou sag[J]. Natural Gas Geoscience, 2011, 22(6): 1001-1008.]

- [15] 张林晔,孔祥星,张春荣,等.济阳坳陷下第三系优质烃源岩的 发育及其意义[J].地球化学,2003,32(1):35-42. [Zhang Linye, Kong Xiangxing, Zhang Chunrong, et al. High-quality oilprone source rocks in Jiyang depression [J]. Geochimica, 2003, 32(1):35-42.]
- [17] 王春江,傅家谟,盛国英. 辽河西部凹陷古潜山原油及其源岩的分子碳同位素地球化学[J]. 地球化学,2006,35(1):68-80.
 [Wang Chunjiang, Fu Jiamo, Sheng Guoying. Molecular carbon isotopic geochemistry of buried-hill oils and source rocks of the west Liaohe depression, China[J]. Geochimica, 2006, 35(1):68-80.]
- [18] 朱雷,王月辉,杨永才,等.不同填充方法色谱柱分离原油及沥 青砂岩抽提物的饱和烃地球化学特征[J].地球科学与环境学 报,2008,30(4):389-395. [Zhu Lei, Wang Yuehui, Yang Yongcai, et al. Geochemical Characteristics of the saturate hydrocarbon of crude oils and bituminous sandstone extracts separated by chromatographic columns with different packed methods[J]. Journal of Earth Sciences and Environment, 2008, 30(4): 389-395.]
- [19] 李友川,邓运华,张功成. 中国近海海域烃源岩和油气的分带 性[J]. 中国海上油气,2012,24(1):6-12. [Li Youchuan, Deng Yunhua, Zhang Gongcheng. Zoned distribution of source rocks and hydrocarbon offshore China [J]. China Offshore Oil and Gas, 2012, 24(1): 6-12.]
- [20] 李友川. 中国近海湖相优质烃源岩形成的主要控制因素[J]. 中国海上油气,2015,27(3):1-9. [Li Youchuan. Main controlling factors for the development of high quality lacustrine hydrocarbon source rocks in offshore China [J]. China Offshore Oil and Gas, 2015, 27(3): 1-9.]
- [21] Justwan H, Dahl B, Isaksen G H. Geochemical characterisation and genetic origin of oils and condensates in the South Viking Graben, Norway[J]. Marine and Petroleum Geology, 2006, 23(2): 213-239.

Tetracyclic Polyprenoids: A New Biomarker in the Rifted Lacustrine Basin in East China

YANG YongCai, LI YouChuan, SUN YuMei, WU KeQiang, LIU LiFang China National Offshore Oil Corporation Research Institute, Beijing 100028, China

Abstract: The tetracyclic polyprenoid compounds are the powerful tools for recognition of the fresh/brackish water algal input into lacustrine depositional setting of hydrocarbon source rocks. The tetracyclic polyprenoid compounds (TPP) are observed in the samples derived from the Paleogene source rocks and crude oils in Qikou Sag in offshore Bohai Bay Basin in East China rifted lacustrine basins. Two isomers of the tetracyclic polyprenoids are detected based on the retention time of gas chromatography (GC), mass spectrum characteristics and compared with other literatures. Tetracyclic polyprenoid compounds are present in relatively high concentrations in oils and associated source rocks deposited under increased saline conditions and may be useful in the recognizing changes in water salinity. The tetracyclic polyprenoids are new geochemical markers of the oil-source rock correlations in Qikou sag in offshore Bohai Bay Basin in East China rifted lacustrine basins and sorting effectively out the crude oil from the hydrocarbon resource rocks of the 3^{rd} Member(Es_3) and 1^{st} Member(Es_1) of the Eocene Shahejie Formation. The tetracyclic polyprenoids are significantly useful to assessing the algal input, depositional environment and the correlations between the oils and source rocks.

Key words: tetracyclic polyprenoids; biomarkers; oil-source rock correlations; lacustrine; Shahejie Formation; rifted lacustrine basins