

原油中痕量金属卟啉分子组成分析新方法

朱光有,王萌

引用本文:

朱光有,王萌. 原油中痕量金属卟啉分子组成分析新方法[J]. 沉积学报, 2023, 41(2): 610-618. ZHU GuangYou, WANG Meng. Novel Approach for Molecular Characterization of Trace Metalloporphyrins in Crude Oils[J]. Acta Sedimentologica Sinica, 2023, 41(2): 610-618.

相似文章推荐(请使用火狐或IE浏览器查看文章)

Similar articles recommended (Please use Firefox or IE to view the article)

沉积有机质中苯基菲成熟度参数及其化学机理

Maturity Parameter of Phenylphenanthrene in Sedimentary Organic Matter and Its Chemical Mechanism Based on Geochemical Data and Quantum Chemical Calculation

沉积学报. 2023, 41(2): 601-609 https://doi.org/10.14027/j.issn.1000-0550.2021.107

松辽盆地梨树断陷原油高碳数三环萜烷分布特征及主控因素

Distribution and Main Controlling Factors of High Carbon Tricyclic Terpanes in Crude Oils in the Lishu Fault Depression, Songliao Basin, China

沉积学报. 2023, 41(2): 569-583 https://doi.org/10.14027/j.issn.1000-0550.2022.071

川北中、下侏罗统烃源岩重排藿烷组成变化与油源对比

Compositional Variations and Oil-source Implication of Rearranged Hopanes from the Middle-Lower Jurassic Source Rocks in the Northern Sichuan Basin

沉积学报. 2022, 40(4): 1137-1150 https://doi.org/10.14027/j.issn.1000-0550.2020.118

东海盆地西湖凹陷轻质原油芳烃地球化学特征

Characteristics of Aromatic Geochemistry in Light Oils from Xihu Sag in East China Sea Basin 沉积学报. 2017, 35(1): 182–192 https://doi.org/10.14027/j.cnki.cjxb.2017.01.018

四环聚异戊二烯类化合物:中国东部断陷湖盆新分子化石

Tetracyclic Polyprenoids: A New Biomarker in the Rifted Lacustrine Basin in East China

沉积学报. 2017, 35(4): 834-842 https://doi.org/10.14027/j.cnki.cjxb.2017.04.017

文章编号:1000-0550(2023)02-0610-09

DOI: 10.14027/j.issn.1000-0550.2021.079

原油中痕量金属卟啉分子组成分析新方法

朱光有,王萌

中国石油勘探开发研究院,北京 100083

摘 要 原油金属卟啉化合物对于揭示古环境变化过程中有机—无机相互作用及海洋缺氧事件具有重要意义。目前关于金属 含量低于10 mg/kg的高成熟原油金属卟啉的分子组成研究鲜见报导。针对基质辅助激光解吸电离源(MALDI),合成了比金属卟 啉电离能高出1.3 eV的新型电离基质,用于促进金属卟啉电离。通过液液萃取富集了塔里木盆地高成熟原油(等效R,为1.79~ 2.42%)中的金属卟啉。利用MALDI结合傅里叶变换离子回旋共振质谱(FT-ICR MS)实现了金属含量小于4.0 mg/kg的高成熟原 油中痕量金属卟啉的分子组成分析。新发现并鉴定了10个含有1个氧原子的钒卟啉,7个含有2个氧原子的钒卟啉和1个同时 含有1个氧原子和1个硫原子的钒卟啉,实现了在痕量钒卟啉和镍卟啉的同步分析,证实了在高成熟原油中存在金属卟啉化合 物。并对新发现的金属卟啉的形成机理进行了讨论。

关键词 金属卟啉;分子组成分析;原油;塔里木盆地

第一作者简介 朱光有, 男, 1973年出生, 教授级高级工程师, 深层油气地质与地化成藏, E-mail: zhuguangyou@petrochina.com.cn 通信作者 王萌,男,高级工程师,E-mail: wangmeng85@petrochina.com.cn.

中图分类号 P618.13 文献标志码 A

引言 0

原油是一种复杂的有机集合体,不仅包括碳氢化 合物,还包括含硫,含氮,含氧化合物以及多达45种金 属化合物。金属卟啉是一类广泛分布在原油、沥青 和油页岩中的生物标志化合物^[2]。Treibs最早在页岩 和原油发现了钒(VO,IV)卟啉和镍(Ni,II)卟啉^[3-4],自 此研究人员开始对这类化合物进行了较为广泛研究。 其中初卟啉(etioporphyrins,简称ETIO)和脱氧叶红初 卟啉 (deoxophylloerythroetiop-orphyrins, 简称 DPEP)

是原油中结构最简单,含量最丰富的两种金属卟啉 化合物(图1)。ETIO和DPEP的等效双键数(double bonds equivalent,简称DBE)分别为17和和18。DBE 是用于衡量化合物不饱和度的参数,可利用式(1) 计算。

DBE =
$$c + 1 - \frac{h}{2} - \frac{x}{2} + \frac{n}{2}$$
 (1)

式中:c,h,x,n分别为分子式中碳原子,氢原子,卤素 原子,氮原子的数量。研究人员还利用紫外—可见 (UV-Vis)光谱和质谱(MS)表征了低成熟度地层和重

M = Ni or V=O

图1 原油中常见初卟啉(RITO)和脱氧叶红初卟啉(DPEP)分子结构式 Fig.1 Molecular structural formula of etioporphyrin and deoxophylloerythroetioporphyrin common in crude oil

收稿日期:2021-03-11;修回日期:2022-01-29;录用日期:2022-03-11;网络出版日期:2022-03-11

基金项目:中国石油集团公司前瞻性基础性战略性技术攻关项目(2021DJ0504)「Foundation: China National Petroleum Corporation Forward-looking Basic Strategic Technology Project, No. 2021DJ0504]

质原油中二环脱氧叶红初卟啉(dicyclic-deoxophyllo erythroetioporphyrins, di-DPEP),苯并初卟啉(rhodoetioporphyrins, rhodo-ETIO),苯并脱氧叶红初卟啉 (rhodo-deoxophylloerythroetioporphyrins, rhodo-DPEP) 和苯并二环脱氧叶红初卟啉(rhodo-dicyclicdeoxophy lloerythroetioporphyrins, rhodo-di-DPEP)^[5-7]。金属卟 啉化合物作为一类稳定的生物标志物,记录了原油 的来源与演化信息。除了DPEP与ETIO卟啉的相对 含量用于衡量原油成熟度以外,地质样品中卟啉的 分子组成信息,对于进一步揭示古环境变化过程中 有机一无机相互作用及海洋缺氧事件具有重要 意义^[8]。

紫外一可见光谱是一种常用的卟啉鉴定和定量 分析方法,该方法对金属卟啉具有较高敏感性。但 是由于原油是一种极其复杂的混合物,很难表征低 浓度的金属卟啉。因此,原油样品需要进行分离和 浓缩预处理,以减少样品中其他化合物的干扰。研 究人员开发了多种表征金属卟啉的方法,包括溶解 度分级分离与索氏抽提法^[9],真空升华法^[10-11],以及包 括高压液相色谱(HPLC)和薄层色谱(TLC)在内的色 谱法^[12-15]。但是,这些方法的共同不足之处是流程繁 琐,耗时较长,重复性差。

近年来,傅里叶变换离子回旋共振质谱(FT-ICR MS)被逐步用于分析复杂原油的分子组成。FT-ICR MS具有很高的分辨率和分析精确度,能够确定质谱 中每个峰的元素组成和分子式[16-19]。Rodgers et al.[20] 利用正离子电喷雾电离源(+ESI)FT-ICR MS针对智 利塞罗内格罗超重原油中镍卟啉和矾卟啉进行分子 组成分析, McKenna et al.¹⁷利用大气压光电离源 (APPI)FT-ICR MS对加拿大阿萨巴斯卡油砂沥青中 的钒卟啉进行了鉴定。Qian et al.[21-22]通过 APPI FT-ICR MS对某减压渣油的沥青组分(钒金属含量为 2020 mg/kg)和加利福尼亚陆上石油的沥青组分(镍 金属含量 497 mg/kg, 钒金属含量 734 mg/kg) 中的镍 卟啉和钒卟啉进行了鉴定。Zhao et al.[23-24]利用索氏 抽提法和固相色谱法富集了委内瑞拉重质原油 (20 ℃下密度为1.03 g/cm³, 钒金属含量 513 mg/kg)中 的钒卟啉,随后利用+ESIFT-ICR MS鉴定了多达11 种新型钒卟啉化合物。上述这些研究均认为,即便 使用超高分辨率质谱对金属含量高达200×10°的重 油及其沥青组分中的卟啉化合物进行分析,也需要 事先花费大量时间和流程对金属卟啉进行分离富

集。此外, Bonnett et al. [25-26]还在澳大利亚维多利亚 州、美国蒙大拿州、巴基斯坦Makerwal地区以及土耳 其Canakkale-Can 地区的褐煤中分离并发现了铁叶 啉。另外, Woltering et al.¹⁸利用制备型HPLC在澳大 利亚 Eromanga 盆地的早白垩世的低成熟 II 型烃源岩 露头和 Bight 盆地的侏罗纪一白垩纪海相黑色页岩 中分离富集了金属卟啉,随后用离子阱质谱 (Orbitrap MS)同时鉴定了镍卟啉、钒卟啉、铜卟啉、 锌卟啉和锰卟啉等5种金属卟啉。Zheng et al.[27]利用 索氏抽提从得克萨斯州 Maverick 盆地的鹰滩组低成 熟海相黑色页岩中分离富集了富含金属卟啉的沥青 组分(铁金属含量634.2 mg/kg,钒金属含量270.1 mg/ kg, 镍金属含量 257.7 mg/kg, 镓金属含量 29.3 mg/ kg),然后通过+ESIFT-ICR MS同时鉴定了钒卟啉、 镍卟啉、铁卟啉和镓卟啉等4种金属卟啉。综上所 述,目前鉴定的绝大部分金属卟啉化合物集中于重 油(及其沥青组分)和低成熟的泥页岩中,在分析前 大多需要经过一种甚至数种分离方法将样品中的金 属含量富集至200×10°以上,才能够利用先进的高分 辨质谱技术揭示地质样品中金属卟啉化合物的分子 层次信息。目前,在金属卟啉化合物分析领域困扰 研究人员主要有4个难题:1)在高成熟原油中有无金 属卟啉化合物;2)在轻质原油(密度小于1.0 g/cm³)中 有无金属卟啉化合物;3)怎样在金属含量小于10 mg/ kg地质样品实现金属卟啉的分子组成分析;4)如何 有效提高分离富集金属卟啉的效率。

基于上述4个难题,针对基质辅助激光解吸电离 源(matrix assisted laser desorption ionization, MALDI) FT-ICR MS研发了新型电子转移基质α-CNPV-CH₃, 大幅提高了金属卟啉的电离效率,简化了金属卟啉 的富集流程,并成功应用于塔里木轻质高成熟原油 中痕量金属卟啉化合物的分子组成分析。

1 材料与方法

1.1 试剂与基质的合成

乙腈、二甲基甲酰胺(DMF)、三乙胺(TEA)、双二 亚苄基丙酮钯(Pd(dba)₂)、亚磷酸三苯酯(P(OPh)₃)、 1-溴-4-甲基苯、2,2'-(1,4-亚苯基)二丙烯腈苯、乙酸 乙酯、八乙基镍卟啉、四苯基钒卟啉等试剂均购自 Sigma-Aldrich(纯度均大于99.9%)。如图2所示,通 过 Mizoroki-Heck 偶联反应^[28]合成α-CNPV-CH₃(图 2c),在N₂气氛下向干燥DMF中,分别加入0.1 mmol

Fig.2 Synthesis route of the matrix α -CNPV-CH₃

的1-溴-4-甲基苯(图2a),0.05 mol的2,2'-(1,4-亚苯基)二丙烯腈(图2b),0.05 mol的Pd(dba)2,1mol的亚磷酸三苯酯和0.5 mol的三乙胺,所得混合物在120°C下搅拌反应2h。将反应产物倒入50 mL浓度为5%的盐酸中,得到淡黄色沉淀物。收集沉淀物后在乙酸乙酯中重结晶得到α-CNPV-CH₃(图2c)纯品。利用Gaussian软件(2009版)对α-CNPV-CH3、八乙基镍卟啉、四苯基钒卟啉的电离能进行计算,具体细节参考文献[29-30]。

1.2 原油的金属含量测定

原油的金属含量是通过电感耦合等离子体质谱 (ICP-MS, Thermo 公司的 XSERIES 型)进行测定的, 称量 1.0 mg 原油,利用硝酸进行硝解处理后得到的 产物然后溶于水,配制成水溶液按照文献中方法进 行金属含量测定^[27]。

1.3 MALDI FT-ICR MS分析

将 1.0 mL 原油与 2.0 mL 乙腈混合后,在 50 ℃下充分震荡 30 min,静置分层后取乙腈相并浓缩至约 100 μL。取 50 μL浓缩液加入 10 μL 四氢呋喃和 10 μL已稀释至浓度为 5.0 mmol/L的α-CNPV-CH₃的乙腈溶液,混合均匀后滴在 MALDI-FT-ICR-MS 的钢靶上待分析。MALDI FT-ICR MS 是 Bruker 公司的Solarix型仪器,磁场强度 15.0 T,分辨率为 8 M(*m/z* 400),激光采用Nd:YAG (355 nm),光斑为中等,能量设为 35%。采集*m/z*(质核比)为 150~1 000范围内的信号,每张分析的扫描次数为 300。谱图校准及归属采用 MALDI-FT-ICR-MS 配置的 DataAnalysis 软件,金属卟啉 DBE 与碳原子数关系图采用 OriginPro 软件处理。

2 基质与卟啉的电离能

MALDI的电离机理是电子转移^[31-32]。该机理分为两步(图3),首先基质(M)吸收光电子(*hv*)生成阳

离子自由基(M⁺),然后进行待分析分子(A)反应生成 阳离子自由基(A⁺)。经过理论计算,本文合成的基 质α-CNPV-CH₃的电离能约为8.42 eV,八乙基镍卟啉 和四苯基钒卟啉的电离能分别6.50 eV 和7.03 eV。 McCarley *et al.*^[31]的理论计算、实验结果和机理解析 (图3)表明,MALDI有效电离待测分子的条件是基质 电离能比待测分子高出0.5 eV。基质α-CNPV-CH₃较 2种常见金属卟啉高出1.39 eV,为高效电离痕量金 属卟啉奠定了良好的基础。

3 典型原油中痕量金属卟啉分析

塔里木原油TZ12-4的金属钒和镍的含量分别为 3.30 mg/kg 和 2.37 mg/kg, 原油密度为 0.906 g/cm3,等 效镜质体反射率(Easy %R。)为2.27,属于高成熟度原 油^[33]。本文利用开发的基质α-CNPV-CH₃和 MALDI FT-ICR MS,结合液液萃取方法对TZ12-4原油中的金 属卟啉分子组成分析。TZ12-4原油的m/z=200~600 范围内的 FT-ICR 质谱图及选取的 m/z=557.15~ 557.26范围内放大图显示,在m/z=557.15~557.26范 围内检测到3个钒卟啉化合物(图4),分别是DBE= 24 的 C₃₄H₂₆N₄VO, DBE=18 的 C₃₂H₃₄N₄VO₂和 DBE=17 的C₂₂H₂₂N₄VO₂(图中分子式为分子离子形式)。3个 化合物质谱峰的信噪比(S/N)为4.1~9.7,检测误差 (error)为-0.260~-0.449,均小于±1 mg/kg,说明利用 MALDI FT-ICR MS确定化合物分子质量具有极高的 精确度和分辨率。根据得到的分子式,图中还给出 了推测的分子结构式,从左到右分别为钒二苯并脱 氧叶红初卟啉、氧化钒卟啉和钒初卟啉。

图 4 TZ12-4 原油的 m/z=200~600 范围内的 FT-ICR 质谱图及选取的 m/z=557.15~557.26 范围内放大图 Fig.4 MALDI FT-ICR MS broadband mass spectrum at m/z = 200 to 600 for TZ12-4 crude oil (insert shows enlarged selected mass spectrum at m/z = 557.15 to 557.26)

在TZ12-4原油中检测到的40个钒卟啉化合物 和2个镍卟啉化合物(表1)。钒卟啉化合物包括 DBE=17~25的含有1个氧原子的钒卟啉(简写为 O_1 钒卟啉),DBE=17~21的含有2个氧原子的钒卟啉 (简写为 O_2 钒卟啉),DBE=18~21的含有3个氧原子 钒卟啉(简写为 O_3 钒卟啉),DBE=25的含有1个氧原 子和1个硫原子的钒卟啉(简写为 O_1S_1 钒卟啉)和 DBE=19~20的镍卟啉。

图5展示了在TZ12-4原油中检测到的4类钒卟 啉和镍卟啉的碳原子数与DBE的关系图,图中实心 圆点的面积大小代表了化合物离子信号强弱,面积 最大圆点的无因次相对强度为40,面积最小圆点的 无因次相对强度为1。各自选取一个典型化合物推 测其分子式(图5a~e),其他化合物的结构式未全部 列举。可明显看出,钒卟啉以DBE=17(ETIO)和DBE =18(DPEP)的小类占优,O₂钒卟啉同样以DBE=17和 DBE=18的小类占优,而O₃钒卟啉,O₁S₁钒卟啉和镍 卟啉无明显含量占优势的小类。在TZ12-4原油中检 测到的4类钒卟啉和镍卟啉,均有碳原子数不连续分 布现象,这是由于样品中金属卟啉丰度低、检测信号 弱导致的。

4 塔里木原油中痕量金属卟啉分析

将该方法用于塔里木盆地其他10个高成熟原油 (密度为0.856~0.970 g/cm³,等效*R*。为1.79~2.42)痕量 金属卟啉的分子组成分析。虽然这些原油的金属钒仅 为0.35~2.60 mg/kg,金属镍含量仅为0.26~1.65 mg/kg, 但新方法成功实现了金属卟啉的分子组成分析。 每个原油中检测出的金属卟啉的种类及其数量列于 表2。与TZ12-4原油类似,19个原油中O₁钒卟啉种 类最多,其次为O₂钒卟啉,O₁S₁钒卟啉和O₃钒卟啉较 少;钒卟啉的数量普遍多于镍卟啉,这与原油中金属 镍含量整体低于金属钒含量有关,也与镍卟啉比钒 卟啉更难电离有关^[21,23]。该结果证实高成熟度原油 仍然存在金属卟啉生物标志物。 614

Table	1 Molecular co	mpositions of va	rious vanad	lium porphyrins	and nickel porp	hyrins in TZ12-4 ci	ude oil
序号	分子式	卟啉种类	DBE	实测质量数	理论质量数	质量误差/(mg/kg)	信噪比
1	$\mathrm{C_{25}H_{22}N_4VO}$		17	445.122 43	445.122 77	-0.764	4.1
2	$\mathrm{C_{32}H_{36}N_4VO}$		17	543.232 16	543.232 32	-0.295	21.9
3	$\mathrm{C_{33}H_{38}N_4VO}$		17	557.247 79	557.247 97	-0.323	9.7
4	$\mathrm{C_{35}H_{42}N_4VO}$		17	585.279 29	585.279 27	0.034	6.7
5	$\mathrm{C_{36}H_{44}N_4VO}$		17	599.294 69	599.294 92	-0.384	6.3
6	$\mathrm{C_{47}H_{66}N_4VO}$		17	753.467 15	753.467 07	0.106	4.4
7	$\mathrm{C_{27}H_{24}N_4VO}$		18	471.138 19	471.138 42	-0.488	11.8
8	$\mathrm{C_{28}H_{26}N_4VO}$		18	485.153 86	485.154 07	-0.433	11.4
9	$\mathrm{C_{29}H_{28}N_4VO}$		18	499.169 6	499.169 72	-0.240	13.8
10	$\mathrm{C_{30}H_{30}N_{4}VO}$		18	513.185 17	513.185 37	-0.390	13.9
11	$C_{31}H_{32}N_4VO$		18	527.200 86	527.201 02	-0.303	9.1
12	$C_{32}H_{34}N_4VO$	の。秋中、林	18	541.216 67	541.216 67	0.000	4.6
13	$C_{27}H_{22}N_4VO$		19	469.122 62	469.122 77	-0.320	4.7
14	C ₂₇ H ₂₀ N ₄ VO		20	467.107 33	467.107 12	0.450	4.6
15	C ₃₀ H ₂₆ N ₄ VO		20	509.153 90	509.154 07	-0.334	6.9
16	C ₃₁ H ₂₈ N ₄ VO		20	523.169 61	523.169 72	-0.210	9.8
17	$C_{33}H_{32}N_4VO$		20	551.200 52	551.201 02	-0.907	4.9
18	C ₃₈ H ₃₆ N ₄ VO		23	615.232 16	615.232 32	-0.260	5.5
19	C ₃₄ H ₂₆ N ₄ VO		24	557.153 82	557.154 07	-0.449	4.1
20	C ₃₆ H ₃₀ N ₄ VO		24	585.185 47	585.185 37	0.171	4.1
21	$C_{41}H_{40}N_4VO$		24	655.264 20	655.263 62	0.885	5.2
22	C ₃₅ H ₂₆ N ₄ VO		25	569.154 45	569.154 07	0.668	4
23	C ₂₇ H ₂₆ N ₄ VO ₂		17	489.148 84	489.148 985	-0.296	5.7
24	$C_{28}H_{28}N_4VO_2$		17	503.164 51	503.164 635	-0.248	10.3
25	C29H30N4VO2		17	517.180 18	517.180 285	-0.203	7.4
26	C ₃₀ H ₃₂ N ₄ VO ₂		17	531.195 77	531.195 935	-0.311	6.8
27	$C_{28}H_{26}N_4VO_2$		18	501.148 99	501.148 985	0.010	4.4
28	C ₂₉ H ₂₈ N ₄ VO ₂	O ₂ 钒卟啉	18	515.164 49	515.164 635	-0.281	7.7
29	$C_{30}H_{30}N_4VO_2$		18	529.180 06	529.180 285	-0.425	9.1
30	C ₂₂ H ₂₄ N ₄ VO ₂		18	557.211 44	557.211 585	-0.260	6.9
31	$C_{20}H_{24}N_4VO_2$		20	511.133 79	511.133 335	0.890	5.4
32	$C_{28}H_{20}N_4VO_2$		21	495.101 60	495.102 035	-0.879	4.7
33	C ₃₀ H ₃₀ N ₄ VO ₃		18	545.175 05	545.175 199	-0.273	4.3
34	$C_{34}H_{38}N_4VO_2$		18	585.242 60	585.242 885	-0.487	4.1
35	$C_{40}H_{50}N_4VO_2$	O ₃ 钒卟啉	18	685.332 27	685.331 699	0.833	4.6
36	$C_{30}H_{44}N_{4}VO_{5}$		19	669.299 76	669.300 399	-0.955	4.2
37	$C_{41}H_{60}N_{c}VO_{5}$		19	697.332 15	697.331 699	0.647	4.4
38	$C_{22}H_{22}N_4VO_2$		20	583.191 21	583.190 849	0.619	4.9
39	$C_{38}H_{40}N_4VO_5$		21	651.253 22	651.253 449	-0.352	4.8
40	C ₄₆ H ₄₀ N.VOS	0,S.钒卟啉	25	755.298 12	755.298 291	-0.226	5.9
41	C ₂₀ H ₂₀ N.Ni	-1-1 ** 1 11	19	502.166 13	502.166 191	-0.121	4.5
	~	镍卟啉	20	444.088.27	444.087.041	0.741	4.1

表1 TZ12-4原油中检测到的各类钒卟啉和镍卟啉的分子组成信息

图 5 TZ12-4 原油中检测到的 4 类钒卟啉和镍卟啉的碳数与 DBE 的关系图及推测的典型化合物分子式 (a)O₁钒卟啉;(b)O₂钒卟啉;(c)O₃钒卟啉;(d)O₁S₁钒卟啉;(e)镍卟啉

Fig.5 Relative ion abundance plots (DBE vs. carbon number) of (a) O_1 vanadium porphyrins; (b) O_2 vanadium porphyrins; (c) O_3 vanadium porphyrins; (d) O_1S_1 vanadium porphyrins; and (e) nickel porphyrins, as well as the speculative molecular structures of the selected porphyrins in each type

and their the types and numbers of porphyrins detected in them												
编号	原油样品	密度/(g/cm ³)	等效 <i>R</i> 。/%	金属钒 含量/ mg/kg	金属镍 含量/mg/kg	金属卟啉种类						
						O ₁ 钒卟啉	02钒卟啉	O ₃ 钒卟啉	O ₁ S1钒卟啉	镍卟啉	种类合计	
1	TZ14-2	0.906	2.27	3.30	2.37	22	11	6	1	2	42	
2	LN14-KH	0.962	1.99	1.91	1.12	14	4	0	1	5	24	
3	LN57	0.965	1.79	1.49	0.93	11	1	3	3	4	22	
4	RP3013	0.925	2.31	1.35	0.78	10	3	1	3	2	19	
5	XK4-3	0.936	2.15	2.01	1.06	6	3	1	4	4	18	
6	XK8-1	0.942	2.19	2.60	1.65	11	1	2	0	4	18	
7	FY101	0.923	2.25	1.02	0.66	4	4	1	2	5	16	
8	TZ4-6-10	0.856	2.42	1.67	1.52	6	4	0	4	2	16	
9	Ha6c	0.970	1.87	0.35	0.26	8	1	1	2	3	15	
10	HD25-1	0.947	1.97	0.86	0.77	10	0	0	1	3	14	
11	LN2-34-5	0.966	1.85	0.87	0.57	4	4	0	2	1	11	

表 2 塔里木盆地 11 个高成熟原油的密度、R_o、钒镍含量及检测出的金属卟啉种类与数量 Table 2 Density, R_o, vanadium and nickel content of 11 high maturity crude oils from the Tarim Basin, and their the types and numbers of porphyrins detected in them

5 塔里木原油中痕量金属卟啉分析

如图6所示,笔者推测上述新发现的钒卟啉和 镍卟啉,均是在早期沉积、成岩与成烃过程中,无机 矿物中的镍钒离子对输入有机质中的原始生物标志 物(如叶绿素,血红素)进行地球化学修饰的结果^[34]。 叶绿素、血红素等原始生物标志物的结构在成烃过 程中,发生失去植醇、脱羧、芳构化、金属交换和烷基 转移等物理化学反应,并最终生成了O₂钒卟啉、O₃钒 卟啉、O₁S₁钒卟啉及镍卟啉^[34-35]。这些金属卟啉化合 物代表的其他地球化学与地质意义还在进一步 研究。

Fig.6 Speculative geochemical formation process of oxidized O_2 vanadium porphyrins, O_3 vanadium porphyrins, O_1S_1 vanadium porphyrins and Ni porphyrins

6 结论

针对MALDI FT-ICR MS开发了一种新型电离基 质α-CNPV-CH₃,电离能高达8.42 eV,能够有效促进 原油金属卟啉的电离。使用简单的液液萃取方法富 集了塔里木盆地的11个原油中的金属卟啉。基于 MALDI FT-ICR MS和α-CNPV-CH₃实现了塔里木盆 地原油(金属钒含量小于4.0 mg/kg,金属镍含量小于 3.0 mg/kg)中的痕量金属卟啉的分子组成分析。除 常见的钒卟啉 ETIO外,鉴定了10个 O₂钒卟啉化合 物,7个O₃钒卟啉化合物和1个O₂S₁钒卟啉化合物,并 实现了痕量钒卟啉和镍卟啉的同时分析,证实了在 塔里木高成熟原油中存在金属卟啉化合物。本文还 推测了 O₂钒卟啉、O₂钒卟啉化合物和O₂S₁钒卟啉化 合物及镍卟啉的地化形成机理。

致谢 感谢中国科学院大连化学物理所李海洋 研究员和谢圆圆副研究员对样品分析的帮助。

参考文献(References)

Speight J G. The chemistry and technology of petroleum [M].
 5th ed. Boca Raton: CRC Press, 2014: 123-125.

- [2] Dechaine G P, Gray M R. Chemistry and association of vanadium compounds in heavy oil and bitumen, and implications for their selective removal[J]. Energy & Fuels, 2010, 24(5): 2795-2808.
- [3] Treibs A. Chlorophyll-und Häminderivate in bituminösen gesteinen, erdölen, erdwachsen und Asphalten. ein beitrag zur entstehung des erdöls[J]. Justus Liebigs Annalen der Chemie, 1934, 510 (1): 42-62.
- [4] Treibs A. Chlorophyll- und Häminderivate in organischen Mineralstoffen[J]. Angewandte Chemie, 1936, 49(38): 682-686.
- [5] Wang X Q, Lang R C, Qi L L. Petroporphyrins in Gaosheng crude oil[J]. Geochemistry, 1983, 2(3): 251-260.
- [6] Liao Z, Huang D, Shi J. Discovery of special predominance of vanadyl porphyrin and high abundance of Di-Dpep in nonmarine strata[J]. Science in China Series B-Chemistry, Life Sciences & Earth Sciences, 1990, 33(5): 631-640.
- [7] McKenna A M, Purcell J M, Rodgers R P, et al. Identification of vanadyl porphyrins in a heavy crude oil and raw asphaltene by atmospheric pressure photoionization Fourier Transform ion cyclotron resonance (FT-ICR) mass spectrometry[J]. Energy & Fuels, 2009, 23(4): 2122-2128.
- [8] Woltering M, Tulipani S, Boreham C J, et al. Simultaneous quantitative analysis of Ni, VO, Cu, Zn and Mn geoporphyrins by liquid chromatography-high resolution multistage mass spectrometry: Method development and validation[J]. Chemical Geology, 2016, 441: 81-91.

- [9] Márquez N, Ysambertt F, De La Cruz C. Three analytical methods to isolate and characterize vanadium and nickel porphyrins from heavy crude oil [J]. Analytica Chimica Acta, 1999, 395 (3): 343-349.
- [10] Xu H, Yu D Y, Que G H. Characterization of petroporphyrins in Gudao residue by ultraviolet-visible spectrophotometry and laser desorption ionization-time of flight mass spectrometry [J]. Fuel, 2005, 84(6): 647-652.
- [11] Xu H, Que G H, Yu D Y, et al. Characterization of petroporphyrins using ultraviolet-visible spectroscopy and laser desorption ionization time-of-flight mass spectrometry [J]. Energy & Fuels, 2005, 19(2): 517-524.
- [12] Eskins K, Scholfield C R, Dutton H J. High-performance liquid chromatography of plant pigments [J]. Journal of Chromatography A, 1977, 135(1): 217-220.
- Quirke J M E, Eglinton G, Maxwell J R. Petroporphyrins. 1.
 Preliminary characterization of the porphyrins of gilsonite [J].
 Journal of the American Chemical Society, 1979, 101 (26) : 7693-7697.
- [14] Martin J, Quirke J M E, Shaw G J, et al. Petroporphyrins—II: The presence of porphyrins with extended alkyl substituents[J]. Tetrahedron, 1980, 36(22): 3261-3267.
- [15] Quirke J M E, Eglinton G, Palmer S E, et al. Highperformance liquid chromatographic and mass spectrometric analyses of porphyrins from deep-sea sediments [J]. Chemical Geology, 1982, 35(1/2): 69-85.
- [16] Senko M W, Hendrickson C L, Paša-Tolić L, et al. Electrospray ionization Fourier Transform ion cyclotron resonance at 9.4 T [J]. Rapid Communications in Mass Spectrometry, 1996, 10(14): 1824-1828.
- [17] Marshall A G, Rodgers R P. Petroleomics: The next grand challenge for chemical analysis [J]. Accounts of Chemical Research, 2004, 37(1): 53-59.
- [18] Rodgers R P, Schaub T M, Marshall A G. Petroleomics: MS returns to its roots [J]. Analytical Chemistry, 2005, 77 (1): 20A-27A.
- [19] McLafferty F W. Mass spectrometry across the sciences [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18088-18089.
- [20] Rodgers R P, Hendrickson C L, Emmett M R, et al. Molecular characterization of petroporphyrins in crude oil by electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry [J]. Canadian Journal of Chemistry, 2001, 79 (5/6) : 546-551.
- [21] Qian K N, Edwards K E, Mennito A S, et al. Enrichment, resolution, and identification of nickel porphyrins in petroleum asphaltene by cyclograph separation and atmospheric pressure photoionization Fourier Transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2010, 82(1): 413-419.
- [22] Qian K N, Mennito A S, Edwards K E, et al. Observation of

vanadyl porphyrins and sulfur-containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photonionization Fourier Transform ion cyclotron resonance mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2008, 22 (14): 2153-2160.

- Zhao X, Liu Y, Xu C M, et al. Separation and characterization of vanadyl porphyrins in Venezuela Orinoco heavy crude oil[J].
 Energy & Fuels, 2013, 27(6): 2874-2882.
- [24] Zhao X, Shi Q, Gray M R, et al. New vanadium compounds in Venezuela heavy crude oil detected by positive-ion electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry[J]. Scientific Reports, 2014, 4(1):1-6.
- [25] Bonnett R, Burke P J. Iron porphyrins in coal from the United States [J]. Geochimica et Cosmochimica Acta, 1985, 49(6): 1487-1489.
- [26] Bonnett R, Burke P J, Reszka A. Metalloporphyrins in coal: 2. Iron porphyrins[J]. Fuel, 1987, 66(4): 515-520.
- [27] Zheng F, Hsu C S, Zhang Y H, et al. Simultaneous detection of vanadyl, nickel, iron, and gallium porphyrins in marine shales from the Eagle Ford Formation, south Texas[J]. Energy & Fuels, 2018, 32(10): 10382-10390.
- [28] Le Bras J, Muzart J. Intermolecular dehydrogenative heck reactions[J]. Chemical Reviews, 2011, 111(3): 1170-1214.
- [29] Ortiz J V. Electron propagator theory: An approach to prediction and interpretation in quantum chemistry[J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2013, 3 (2): 123-142.
- [30] Zakrzewski V G, Dolgounitcheva O, Ortiz J V. Ionization energies of anthracene, phenanthrene, and naphthacene [J]. The Journal of Chemical Physics, 1996, 105(19): 8748-8753.
- [31] McCarley T D, McCarley R L, Limbach P A. Electrontransfer ionization in matrix-assisted laser desorption/ionization mass spectrometry[J]. Analytical Chemistry, 1998, 70(20): 4376-4379.
- [32] Hoteling A J, Nichols W F, Giesen D J, et al. Electron transfer reactions in laser desorption/ionization and matrix-assisted laser desorption/ionization: Factors influencing matrix and analyte ion intensities [J]. European Journal of Mass Spectrometry, 2006, 12(6): 345-358.
- [33] Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics [J]. AAPG Bulletin, 1990, 74(10): 1559-1570.
- [34] Filby R H, van Berkel G J. Geochemistry of metal complexes in petroleum, source rocks, and coals: An overview [M]//Filby R H, Branthaver J F. Metal complexes in fossil fuels: Geochemistry, characterization, and processing. Washington, DC: American Chemical Society, 1987: 2-39.
- [35] Lash T D. Geochemical origins of sedimentary benzoporphyrins and tetrahydrobenzoporphyrins [J]. Energy & Fuels, 1993, 7 (2): 166-171.

Novel Approach for Molecular Characterization of Trace Metalloporphyrins in Crude Oils

ZHU GuangYou, WANG Meng

Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

Abstract: Metalloporphyrins in crude oil are of great significance since they reveal the organic/inorganic interactions and oceanic anoxic events during paleoenvironmental change. To date, few studies have been reported on the molecular composition of metalloporphyrins in high-maturity crude oils with metal content < 10 mg/kg. In this study, a new matrix with ionization energy 1.3 eV above that of metalloporphyrins was synthesized for the matrix-assisted laser/desorption ionization (MALDI) source to promote ionization of the metalloporphyrins. Metalloporphyrins in high-maturity crude oil (equivalent R_o =1.79 to 2.42) from the Tarim Basin were enriched by liquid-liquid extraction. The molecular composition of the trace metalloporphyrins in these crude oils with metal content <4.0 mg/kg was analyzed by MALDI combined with Fourier Transform ion cyclotronic resonance mass spectrometry (FT-ICR MS). A total of 10 O₂ vanadium porphyrins, seven O₃ vanadium porphyrins and one O₁S₁ vanadium porphyrins oxidized and nickel porphyrins confirmed the presence of metalloporphyrins in highly mature crude oils. The formation mechanism of the new metalloporphyrins is also discussed.

Key words: metalloporphyrins; molecular composition characterization; crude oil; Tarim Basin