

康滇古陆东缘筇竹寺组沉积物源的风化特征

杨永祯,郭岭,方泽鑫,徐凯,张寰萌,师宇翔,武芳芳,陶威

引用本文:

杨永祯, 郭岭, 方泽鑫, 徐凯, 张寰萌, 师宇翔, 武芳芳, 陶威. 康滇古陆东缘筇竹寺组沉积物源的风化特征[J]. 沉积学报, 2024, 42(1): 324-341.

YANG YongZhen, GUO Ling, FANG ZeXin, et al. Weathering Characteristics of Sedimentary Source Area of Qiongzhusi Formation, Eastern Margin of Ancient Kangding-Yunnan Land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China[J]. Acta Sedimentologica Sinica, 2024, 42(1): 324-341.

相似文章推荐(请使用火狐或IE浏览器查看文章)

Similar articles recommended (Please use Firefox or IE to view the article)

下扬子地区下寒武统幕府山组黑色岩系地球化学特征及其地质意义

Geochemical Characteristics and Geological Significance of the Black Rock Series at the Bottom of the Mufushan Formation in the Lower Cambrian, Lower Yangtze Area

沉积学报. 2020, 38(4): 886-897 https://doi.org/10.14027/j.issn.1000-0550.2019.076

寒武系第二统仙女洞组混合沉积特征及古环境意义——以川北旺苍唐家河剖面为例

Characteristics and Paleoenvironmental Significance of Mixed Siliciclastic?Carbonate Sedimentation in the Xiann ü dong Formation, Cambrian (Series 2): A case study from the Tangjiahe Section, Wangcang, northern Sichuan 沉积学报. 2020, 38(1): 166–181 https://doi.org/10.14027/j.issn.1000–0550.2019.015

鄂尔多斯盆地北部侏罗系泥岩地球化学特征:物源与古沉积环境恢复

Element Geochemical Characteristics of the Jurassic Mudstones in the Northern Ordos Basin: Implications for tracing sediment sources and paleoenvironment restoration

沉积学报. 2017, 35(3): 621-636 https://doi.org/10.14027/j.cnki.cjxb.2017.03.019

上扬子E-C转换期古地理格局及其地球动力学机制探讨

Paleogeographic Patterns of E-C Transition Period in the Upper Yangtze and the Geodynamic Mechanism 沉积学报. 2017, 35(5): 902-917 https://doi.org/10.14027/j.cnki.cjxb.2017.05.004

川北地区下寒武统筇竹寺组钙质结核特征及成因机制

Characteristics and Genetic Mechanism of Calcareous Concretions in the Early Cambrian Qiongzhusi Formation of Northern Sichuan Basin

沉积学报. 2017, 35(4): 681-690 https://doi.org/10.14027/j.cnki.cjxb.2017.04.003

文章编号:1000-0550(2024)01-0324-18

DOI: 10.14027/j.issn.1000-0550.2022.073

康滇古陆东缘筇竹寺组沉积物源的风化特征 ——以云南省楚雄市武定县乌龙村剖面为例

杨永祯^{1,2},郭岭^{1,2},方泽鑫^{1,2},徐凯^{1,2},张寰萌^{1,2},师宇翔^{1,2},武芳芳^{1,2},陶威^{1,2} 1.西北大学大陆动力学国家重点实验室,西安 710069 2.西北大学地质学系,西安 710069

摘 要 【目的】扬子地区筇竹寺组是目前页岩气勘探的重要层位,为了揭示康滇古陆东缘筇竹寺组沉积岩的风化程度、古气 候、构造背景以及物源等。【**方法**】选择位于康滇古陆东缘的武定县乌龙村剖面进行采样,并对样品的主量元素和微量元素进行 分析,研究了康滇古陆东缘乌龙村剖面筇竹寺组沉积岩的风化程度、源区古气候、构造背景以及物源特征。【**结果与结论**】(1)筇 竹寺组沉积岩的母岩经历了强烈的化学风化作用,物源区在该时期处于温暖湿润的气候;(2)筇竹寺组沉积岩主要形成于被动 大陆边缘环境,沉积岩源岩形成于大陆岛弧环境;(3)筇竹寺组沉积岩主要来自康滇古陆元古界东川群、会理群和汤丹群的凝灰 岩、凝灰质砂岩、凝灰质板岩、花岗岩以及基性岩。

关键词 康滇古陆;筇竹寺组;风化程度;古气候;物源特征;构造背景

第一作者简介 杨永祯,男,1997年出生,硕士研究生,沉积学及地球化学,E-mail: 1210587374@qq.com

通信作者 郭岭,男,副教授,E-mail: guoling@nwu.edu.cn

中图分类号 P595 文献标志码 A

0 引言

陆源碎屑沉积岩的元素化学特征主要受源岩矿 物和源岩风化条件的控制,因此陆源沉积岩的多元 素化学特征已被广泛用于揭示物源、构造、风化过 程、气候变化和大陆地壳演化的性质凹。扬子地区下 寒武统筇竹寺组是目前页岩气勘探的重要层位,其 中包含的黑色岩系是地球岩石圈、水圈、气圈以及生 物圈共同作用的结果,能够反映地球演化中特定的 地质环境,尤其是沉积时古海洋的环境[23]。前人对 筇竹寺组的研究主要集中在黑色岩系,因为油气田 的生油、生气母岩均来自黑色岩系,而且许多金属矿 床的形成与黑色岩系有关[3-6]。目前四川盆地下寒武 统筇竹寺组已经发现了良好的天然气显示,展现出 巨大的勘探前景,但是对筇竹寺组开展的研究主要 集中在黑色岩系的烃源岩评价,储层生、储能力以及 沉积环境上[5.7-10],而对于筇竹寺组沉积岩的物质来 源、母岩特征、沉积构造背景以及风化程度还缺乏较 为深入的认识[3,11]。

因此,以滇东地区乌龙村剖面筇竹寺组为研究

对象,利用主量元素和微量元素解析了筇竹寺组沉 积岩源区的风化程度和古气候,分析了筇竹寺组沉 积岩的物质来源和沉积构造背景。旨在补充筇竹寺 组的研究工作,加强筇竹寺组的基础地球化学研究, 期望能对滇东地区筇竹寺组的矿产资源选区提供一 定的基础参数和地质依据。

1 地质概况

1.1 构造背景

滇东地区位于上扬子地区南缘,印度板块与欧 亚板块的碰撞接触地带东侧(图 1a),属于环太平洋 构造域与特提斯构造域的交接复合带。在地史发展 中,经过欧亚板块与冈瓦纳板块中的印度、兰坪—思 茅、保山、扬子、腾冲等板块相互拼接,形成了如今复 杂的大地构造格局^[3,7]。早寒武世,该区处于康滇古 陆、牛首山古陆以及泸冕古陆三大古陆之间,武定县 乌龙村剖面具体位于滇东地区的西侧、康滇古陆的 东侧,其沉积时以浅水陆棚相为优势相带(图 1b)。 该剖面靠近康滇古陆,且出露完整,因此研究该剖面

收稿日期:2022-03-03;修回日期:2022-06-22;录用日期:2022-07-11;网络出版日期:2022-07-11 基金项目:国家自然科学基金项目(42130206)[Foundation: National Natural Science Foundation of China, No. 42130206]

in Lower Cambrian Qiongzhusi Formation, eastern Yunnan province

可以揭示筇竹寺组沉积岩物源区特征以及气候变 化。剖面起点坐标为25°34′55″N、102°22′49″E, 海拔1849.5 m;终点坐标为25°35′44″N、102° 23′49″E,海拔1890 m。

1.2 沉积特征

武定县乌龙村剖面筇竹寺组地层出露完整(图 2),底部与下寒武统渔户村组大海段灰色灰岩呈整合 接触,顶部与下寒武统沧浪铺组厚层灰色粗砂岩呈整 合接触。乌龙村剖面共分13层,2~12层发育筇竹寺 组,其中2~5层为筇竹寺组石岩头段,厚46.25 m,岩 性以灰褐色—灰色粉砂岩、细砂岩为主,为滨岸相沉 积;6~12层为筇竹寺组玉案山段,厚90.75 m,玉案山 段沉积时期,海平面上升,岩性以灰绿色页岩、灰色粉 砂质页岩为主,为陆棚相中浅水陆棚相沉积。

2 样品分析方法

2.1 样品处理过程

在乌龙村剖面筇竹寺组共采集了38件样品,并 对其中的10件样品进行测试分析。样品的主量元素 分析在西北大学大陆动力学国家重点实验室完成。 首先在小型颚式破碎机对样品进行破碎,然后将破碎后的碎石放在碳化钨研钵托盘中,再放进振动式碎样机中碎至200目以下。主量元素采用XRF法完成,分析精度一般优于5%。样品的微量元素和稀土元素分析在核工业北京地质研究所分析测试研究中心完成,利用ELEMENT XR等离子体质谱仪进行分析,测试方法和依据符合GB/T14506.30—2010《碳酸盐岩石化学分析方法第30部分:44个元素含量测定》。主量元素、微量元素及稀土元素的分析结果分别见表1~3。

2.2 研究方法

化学蚀变指数(CIA)是定量分析源区风化程度 和古气候条件的重要指标。相关计算公式如下¹¹⁴:

$$CIA = [Al_2O_3/(Al_2O_3 + CaO^* + Na_2O + K_2O)] \times 100$$
(1)

式中:氧化物的含量都是摩尔含量,CaO^{*}指硅酸盐矿物中的CaO,在无法独立获得硅酸盐矿物中的CaO含量时,要对CaO含量进行校正。CaO^{*}的间接计算公式如下¹¹⁵¹:

$$CaO_{residual} = CaO - P_2O_5 \times \frac{10}{3}$$
(2)

	地层		层旦	厚度	累计厚度	岩性柱	状图	岩性描述		沉积相	
系	组	段	5	/m	/m				微相	亚相	相
	沧	红	13	7.67	153.04			灰色中厚层粗砂岩			
	浪 铺 组	开哨段	12	24.35	145.37	00	★WLC-10 ★WLC-09	灰色粉砂质页岩	砂泥 质陆 棚		陆
			11	10.59	121.02		★WLC-08	灰色页岩	泥质 陆棚	浅	114
寒			10	4.06	110.43	•• — — — — ••		灰色粉砂质页岩		水	
		玉	9	3.57	106.37			灰色页岩,页岩中含有三叶虫化石	ていた		棚
	筇	案山	8	17.36	102.80		★WLC-07	灰色粉砂质页岩	砂 成 間	陆棚	相
武	竹	段	7	11.65	85.44		★WLC-06	灰色页岩	泥质 陆棚		
X	寺组		6	19.17	73.79	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	★WLC-05	灰色粉砂质页岩	砂泥 质陆 棚		
<i>ж</i>		石岩头段	5	27.65	54.62		*WLC-04	黄褐色中厚层含砾细砂 岩,具平行层理	砂质滨岸	临	滨岸
			4	5.87	26.97	• • • •	★WLC-02	灰褐色薄层含砾细砂岩		浜	作日
	渔	*	3	4.91	21.10	•• •• •• — — •• •• ••		灰色薄层泥质粉砂岩	砂泥质 滨岸		
	户村	八海段	2	7.82	16.19	•• •• ••	★WLC-01	灰色薄层粉砂岩	砂质 滨岸		
	纽		1	8.37	8.37			灰色中薄层含硅质条 带白云岩,风化严重			
•• •• ••	● ● ● ● ?岩			·····································	页岩	•••• ••• 细砂岩	 泥质粉砂岩	**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****	••• ••• ••• 乐细砂岩		★ 取样点

图2 乌龙村剖面筇竹寺组沉积相分析图

Fig.2 Sedimentary facies analysis in Wulongcun profile of the Qiongzhusi Formation

若计算后的CaO_{residual}<Na₂O,则认为CaO^{*} = CaO_{residual};若计算后的CaO_{residual}>Na₂O,则认为CaO^{*} = Na₂O。若计算后的CaO_{residual}<O,则比较CaO和Na₂O的含量,当样品的CaO<Na₂O时,则CaO^{*} = CaO;当样品的CaO>Na,O时,则CaO^{*} = Na₂O。

沉积岩在成岩过程中会存在K交代作用,K交代作用增加了沉积岩中的K含量,从而导致了低的CIA值。因此需要计算无K交代作用下的CIA值,采用了Panahi *et al.*¹¹⁶提出的修正CIA(即CIA_{cor})的方法:

$$CIA_{corr} = [Al_2O_3/(Al_2O_3 + CaO^* + Na_2O + CaO^* + CaO$$

$$\mathbf{K}_2 \mathbf{O}_{\rm corr})] \times 100 \tag{3}$$

$$K_2O_{corr} = [m \cdot Al_2O_3 + m \cdot (CaO^* + Na_2O)]/(1 - m)$$
(4)

 $m = K_2O/(Al_2O_3 + CaO^* + Na_2O + K_2O)$ (5) 式中: K_2O_{corr} 是无K交代作用的岩石中 K_2O 的含量, m 代表母岩中 K_2O 的比例,本文m的取值参考文献 [17],其研究的地层是位于扬子板块的埃迪卡拉纪地 层和早寒武纪地层,并对CIA进行了校正,利用了m 值。因此,利用其校正后的CIA值和相关数据反推 出m值,m值为0.109 889 19,并运用在了本文中(之 后所有的讨论都基于校正后的CIA值)。

另外温度作为评估古气候的关键指标,是通过 CIA值计算出来的,计算公式为¹¹⁸:

T = $0.56 \times \text{CIA} - 25.7(R^2 = 0.5)$ (6) 式中:T的单位为℃。 Table 1 Contents of main elements in sedimentary rock of the Qiongzhusi Formation in Wulongcun profile,

eastern Yunnan province (%)

主量	WI C-01	WI C-02	WLC-03	WI C-04	WI C-05	WI C-06	WI C-07	WI C-08	WI C-09	WI C-10	UCC
元素	WLC-01	WLC-02	WLC-05	WLC-04	wLC-05	WLC-00	wLC-07	WLC-00	WLC-09	WLC-10	UCC
SiO_2	65.03	79.31	66.53	65.87	62.89	57.04	49.68	57.21	45.05	49.81	65.89
${\rm TiO}_2$	0.65	0.50	0.64	0.87	0.87	0.73	0.64	0.74	0.59	0.64	0.50
Al_2O_3	13.74	8.62	12.68	14.96	15.94	18.97	16.01	18.96	14.09	14.80	15.17
$\mathrm{TFe_2O_3}$	4.76	2.89	3.48	4.61	5.50	7.33	6.30	7.13	5.68	5.62	4.49
MnO	0.06	0.10	0.07	0.01	0.05	0.05	0.12	0.04	0.15	0.08	0.07
MgO	3.61	1.21	3.46	3.07	3.90	4.32	6.49	4.17	7.96	7.07	2.20
CaO	1.27	0.38	1.99	0.03	0.36	0.48	4.64	0.43	7.43	5.40	4.19
Na ₂ O	0.10	0.08	0.11	0.11	0.09	0.08	0.07	0.08	0.10	0.09	3.89
K_2O	5.54	4.08	5.42	4.46	4.69	4.96	4.23	4.97	3.72	4.00	3.19
P_2O_5	0.29	0.39	0.56	0.23	0.25	0.28	0.31	0.27	0.37	0.27	0.20
LOI	4.81	2.26	4.96	5.36	5.14	5.56	11.30	5.67	14.66	12.08	
TOTAL	99.86	99.82	99.90	99.58	99.68	99.80	99.79	99.67	99.80	99.86	
K_2O_{corr}	1.60	1.01	1.49	1.73	1.84	2.19	1.85	2.19	1.64	1.72	
$\operatorname{CIA}_{\operatorname{corr}}$	86.93	86.37	86.54	87.63	87.89	87.79	87.75	87.79	86.98	87.27	

注:UCC含量参考文献[12]。

3 分析结果

3.1 地球化学

3.1.1 主量元素特征

乌龙村剖面沉积岩样品主量元素含量见表1。 样品SiO₂的含量为45.05%~79.31%(平均值为 59.84%); TiO₂的含量为0.50%~0.87%(平均值为 0.69%); Al₂O₃的含量为8.62%~18.97%(平均值为 14.88%); TFe₂O₃(TFe₂O₃表示以Fe₂O₃表示全铁含量) 的含量为2.89%~7.33%(平均值为5.33%); MnO的含 量为0.01%~0.15%(平均值为0.073%); MgO的含量 为1.21%~7.96%(平均值为4.53%); CaO的含量为 0.03%~7.43%(平均值为2.24%); Na₂O的含量为 0.07%~0.11%(平均值为0.09%); K₂O的含量为 3.72%~5.54%(平均值为4.61%); P₂O₅的含量为 0.23%~0.56%(平均值为0.32%)。

将样品主量元素与Taylor et al.^[12]提出的上地壳 元素含量(UCC)进行对比,并做标准化处理。图3显 示,Ti、Fe、Mg、K、P元素明显富集,Si、Na、Ca元素具 有亏损的现象。特别是TFe₂O₃含量平均值高于UCC 含量4.49%,可能与铁元素在该地区的富集有关。相 对富集的K₂O含量总体高于UCC含量3.19%,其相对 高含量可能与成岩过程中K交代作用有关^[17]。

样品主量元素之间的相关性分析表明(表4), TFe₂O₃和Al₂O₃具有较好的正相关关系(相关系数为 0.871 6),SiO₂和MgO具有很好的负相关关系(相关 系数为-0.937 9)。铝通常被认为是陆源物质的代表,因此Fe元素也主要由陆源输入^[19]。SiO₂与TFe₂O₃、MgO和MnO呈负相关,说明具有一定的粒度效应特征^[20],而MgO、CaO和MnO彼此呈正相关,MgO与MnO的相关系数为0.3110;CaO和MnO的相关系数为0.6464;MgO和CaO的相关系数为0.8014;P₂O₅与其他主量元素没有很好的相关性。

3.1.2 微量元素特征

乌龙村地区筇竹寺组沉积岩微量元素在地层纵向序列上变化较大(表2、图4),将微量元素与上地壳元素含量(UCC)进行标准化处理(图4)。相比上地壳元素含量,元素Sr、Mo、Tl、Pb、Nb、Hf出现亏损,其中喜干型元素Sr呈现明显的亏损,Sr的含量为48.80×10⁶~95.00×10⁶,明显低于上地壳的含量(350.00×10⁶),Sr的亏损与其沉积水体环境有关,说明沉积期武定县乌龙村地区气候整体较为湿润^[21]。元素Li、Sc、V、Cr、Co、Y、Sb、Cs、Bi、U整体上呈现正异常,其中元素Bi呈现明显的富集,Bi的含量为0.15×10⁶~4.83×10⁶,明显大于上地壳的含量(0.13×10⁶),由于Bi元素通常被认为来源于成矿高温热液,因此乌龙村地区在沉积时可能存在热液活动^[22]。

其他元素都是部分样品出现亏损,部分样品出 现富集,其中Zr有部分样品出现正异常,说明锆石可 能出现了沉积分异^[23]。虽然个别样品的微量元素含 量有所差别,但是标准化之后的整体趋势却很一致,

Table 2 Contents of trace elements in sedimentary rock of the Qiongzhusi Formation in Wulongcun profile,												
				easter	n Yunnan	province	(×10 ⁻⁶)					
微量元素	WLC-01	WLC-02	WLC-03	WLC-04	WLC-05	WLC-06	WLC-07	WLC-08	WLC-09	WLC-10	UCC	
Li	51.70	48.90	48.90	85.40	120.00	74.40	78.20	87.80	80.30	75.80	20.00	
Be	3.10	2.54	2.91	2.47	3.45	4.08	3.70	5.08	4.16	3.40	3.00	
Sc	16.30	8.87	14.10	21.40	21.80	23.40	19.60	24.30	17.40	16.90	11.00	
V	103.00	52.50	68.60	107.00	76.50	103.00	87.70	75.60	150.00	135.00	60.00	
Cr	75.70	38.00	49.60	85.90	76.30	73.90	86.20	72.90	86.30	86.20	35.00	
Co	25.50	68.30	18.10	27.40	82.40	19.40	27.90	22.40	21.80	28.60	10.00	
Ni	44.10	40.40	22.20	43.70	45.30	54.50	49.60	59.20	47.50	48.80	40.00	
Cu	33.30	5.87	9.29	24.30	25.90	81.30	48.00	77.10	28.30	22.30	25.00	
Zn	63.70	34.20	39.90	65.10	82.80	103.00	87.20	121.00	118.00	87.70	71.00	
Ga	20.60	13.10	15.90	17.70	20.00	25.00	20.80	25.90	23.90	22.50	17.00	
Rb	136.00	95.80	107.00	112.00	128.00	162.00	135.00	178.00	141.00	131.00	112.00	
\mathbf{Sr}	48.80	51.50	50.70	63.00	95.00	61.90	68.70	56.10	60.50	53.50	350.00	
Y	30.40	36.90	33.40	42.10	36.00	34.40	33.50	43.40	35.90	28.90	22.00	
Mo	1.07	0.34	0.43	2.38	0.78	0.49	1.04	0.46	0.49	0.64	1.50	
Cd	0.18	0.12	0.11	0.15	0.06	0.08	0.08	0.08	0.11	0.14	0.10	
In	0.06	0.07	0.06	0.04	0.04	0.07	0.07	0.10	0.10	0.06	0.05	
\mathbf{Sb}	0.79	0.32	0.33	0.50	0.33	0.43	0.48	0.28	0.60	0.82	0.20	
Cs	8.06	3.22	5.89	5.92	7.47	11.00	10.90	10.20	8.97	8.97	3.70	
Ba	555.00	456.00	490.00	520.00	548.00	420.00	325.00	414.00	344.00	360.00	550.00	

表2 滇东地区乌龙村剖面筇竹寺组沉积岩微量元素含量表(×10⁻⁶)

注:UCC含量参考文献[12]。

说明筇竹寺组沉积岩具有相似的源区以及大地构造 背景^[24]。

3.1.3 稀土元素特征

乌龙村剖面样品稀土元素浓度显示(表3),样品稀土元素总量介于161.86×10⁶~250.57×10⁶,平均值为196.08×10⁶。其中轻稀土元素含量介于144.12×10⁶~226.02×10⁶,重稀土元素含量介于17.74×10⁶~24.99×10⁶,轻、重稀土元素比值(∑LREE/∑HREE)介于6.56~9.21,平均值为8.06,反映研究区筇竹寺组沉积岩的轻稀土元素相对富集,而重稀土元素相对亏损,这种LREE富集可能是黏土矿物中稀土元素吸附/解吸分馏的结果^[25]。

利用球粒陨石标准值对筇竹寺组样品的稀土 元素含量进行了标准化处理(图5)。稀土元素配分 模式呈现右倾的趋势,也反映了筇竹寺组轻稀土元 素相对富集,而重稀土元素相对亏损。(La/Yb)_n(下 角的n指采用北美页岩标准化)比值反映的是稀土 元素之间的分异程度,筇竹寺组样品的(La/Yb)_n比 值介于1.03~1.48,平均值为1.22,反映了稀土元素 分异程度不明显,说明沉积物源相对稳定^[26]。位于 乌龙村剖面东侧的朱家箐剖面的(La/Yb)_n比值介于 0.82~2.09,平均值为1.27,平均值较乌龙村剖面增 大^[27],沉积速率有减小的趋势,说明物源来自于西 侧^[28],因此物源区可能为康滇古陆。当(La/Sm)_N>1

Τl

Pb

Bi

Th

U

Nb

Та

Zr

Hf

Th/U

Th/Sc

Zr/Sc

0.73

20.60

4.83

9.41

2.69

15.70

1.22

139.00

3.74

3.49

0.58

8.52

0.88

5.37

0.48

12.40

3.05

9.94

1.20

154.00

4.31

4.06

1.40

17.36

0.50

7.86

0.18

11.20

2.80

13.10

1.05

159.00

3.99

4.00

0.79

11.27

0.77

14.10

3.11

11.10

8 27

15.00

1.01

210.00

4.67

1.34

0.52

9.81

0.21

8.01

0.15

11.30

2.57

16.90

1.21

191.00

4.46

4.39

0.52

8.76

0.62

5.46

0.30

13.70

3 64

17.00

1.14

159.00

4.86

3.76

0.59

6.79

0.56

7.13

0.38

10.50

3.82

14.30

0.96

145.00

3.48

2.75

0.54

7.39

0.61

5.08

0.35

16.00

3.06

19.40

1.16

181.00

4.10

5.23

0.66

7.44

0.65

4.66

0.72

10.50

3 63

13.80

0.97

133.00

3.05

2.89

0.60

7.64

0.68

4.60

0.44

10.20

2.85

14.50

0.90

138.00

2.87

3.57

0.60

8.16

0.75

20.00

0.13

10.70

2.80

25.00

1.00

190.00

5 80

表3 滇东地区乌龙村剖面筇竹寺组沉积岩稀土元素含量表(×10⁻⁶)

Table 3 Contents of rare earth elements in sedimentary rock of the Qiongzhusi Formation in Wulongcun profile, eastern Yunnan province $(\times 10^{-6})$

稀土元素	WLC-01	WLC-02	WLC-03	WLC-04	WLC-05	WLC-06	WLC-07	WLC-08	WLC-09	WLC-10	球粒陨石	
La	36.80	33.90	34.20	43.80	45.00	49.80	43.10	53.00	38.40	41.20	0.30	
Ce	60.10	70.20	66.10	74.20	83.40	86.30	85.50	103.00	72.00	75.40	0.80	
Pr	8.56	8.19	8.55	11.30	11.40	10.80	10.40	12.00	9.38	8.85	0.12	
Nd	31.70	33.60	30.20	40.80	39.90	39.00	39.20	48.70	32.90	31.70	0.60	
Sm	5.66	7.59	5.99	7.40	6.69	7.37	6.07	7.88	7.45	5.43	0.19	
Eu	1.30	1.71	1.32	1.59	1.36	1.26	1.17	1.44	1.46	1.03	0.07	
Gd	5.04	7.05	5.53	7.13	6.00	6.25	6.10	7.11	7.28	5.25	0.26	
Tb	0.87	1.32	1.03	1.15	1.01	1.02	0.98	1.08	1.10	0.88	0.05	
Dy	4.54	6.38	5.06	5.81	5.42	6.91	5.15	6.48	5.02	4.43	0.32	
Ho	0.88	1.29	1.10	1.34	1.17	1.13	1.17	1.44	1.23	1.10	0.07	
Er	2.66	3.39	2.95	4.33	3.13	3.79	3.49	3.57	3.44	2.98	0.21	
Tm	0.40	0.55	0.48	0.58	0.53	0.56	0.50	0.54	0.44	0.43	0.03	
Yb	2.95	3.17	3.04	4.04	3.57	3.64	3.21	3.80	3.27	2.69	0.21	
Lu	0.39	0.49	0.46	0.60	0.45	0.49	0.44	0.53	0.45	0.40	0.03	
$\sum \text{REE}$	161.86	178.83	166.02	204.08	209.03	218.32	206.49	250.57	183.83	181.77		
\sum LREE	144.12	155.19	146.36	179.09	187.75	194.53	185.44	226.02	161.59	163.61		
\sum HREE	17.74	23.64	19.66	24.99	21.28	23.79	21.05	24.55	22.24	18.16		
(La /Yb) "	1.21	1.04	1.09	1.05	1.22	1.33	1.30	1.35	1.14	1.48		
$(La/Sm)_N$	4.12	2.83	3.62	3.75	4.26	4.28	4.50	4.26	3.26	4.80		
Y/Ho	34.55	28.60	30.36	31.42	30.77	30.44	28.63	30.14	29.19	26.27		
δEu	0.87	0.83	0.82	0.78	0.76	0.66	0.68	0.68	0.71	0.69		
δCe	0.70	0.86	0.79	0.68	0.76	0.76	0.83	0.84	0.78	0.81		

注:稀土元素含量∑REE=La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;轻稀土元素含量∑LREE=La+Ce+Pr+Nd+Sm+Eu;重稀 土元素含量∑HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;(La/Yb)_n为经北美页岩标准化的比值;δEu=Eu_N/(Sm_N×Gd_N)^{1/2}, \deltaCe=Ce_N/(La_N×Pr_N)^{1/2},此处的N代表经球粒陨石标准化的比值;球粒陨石稀土元素含量参考文献[13]。

Fig.3 Major element distribution in Qiongzhusi Formation sedimentary rock, Wulongcun profile

时,表明成岩物质来源有地幔柱或异常物质的加入,筇竹寺组样品的(La/Sm),比值介于2.83~4.80,都大于1,表明岩石中可能有深部物质的加入^[29],可能以上升洋流的方式使深部物质加入沉积岩。筇竹 寺组样品的 Y/Ho 比值介于 26.27~34.55,平均为

30.04,表明硅质碎屑对两个剖面的稀土元素组成有 强烈影响^[30]。微量元素配分曲线在Eu元素处呈一 个较明显的"V"型,说明Eu亏损,呈负异常(δEu平 均为0.75);Ce元素是地球表面条件下可以表现出 价态变化的稀土元素,因此可以作为氧化还原条件

表4 滇东地区乌龙村剖面筇竹寺组沉积岩主量元素相关系数

Table 4 Correlation coefficients for major elements in Qiongzhusi Formation sedimentary rock,

Wulongcun profile, eastern Yunnan province

	SiO ₂	TiO ₂	Al_2O_3	TFe_2O_3	MnO	MgO	CaO	Na ₂ O	K20	P205
SiO ₂	1.000 0									
${\rm TiO}_2$	-0.001 1	1.000 0								
Al_2O_3	-0.335 3	0.372 9	1.000 0							
TFe_2O_3	-0.518 0	0.131 8	0.871 6	1.000 0						
MnO	-0.168 6	-0.574 2	-0.137 9	-0.006 3	1.000 0					
MgO	-0.937 9	-0.013 3	0.134 5	0.291 3	0.311 0	1.000 0				
CaO	-0.592 6	-0.216 4	-0.005 1	0.022 6	0.646 4	0.801 4	1.000 0			
Na ₂ O	0.031 0	0.049 8	-0.077 4	-0.238 1	-0.068 8	-0.010 4	0	1.000 0		
K_2O	0.132 5	0.077 7	0.051 3	-0.000 2	-0.336 8	-0.222 9	-0.357 4	0.065 9	1.000 0	
P ₂ O ₅	0.058 6	-0.327 4	-0.291 5	-0.326 5	0.160 2	-0.017 0	0.031 4	0.088 6	0.031 2	1.000 0

的指标^[31]。当δCe<0.95时,沉积岩在沉积时处于氧 化环境,而研究区样品的δCe平均值为0.78,表明Ce 元素相对亏损,且在沉积时整体处于弱氧化环境, 其中最小值0.68,对应于WLC-04,表明该样品在沉 积时沉积环境氧化性较强^[2]。

3.2 沉积物分类和成熟度

Lg(SiO₂/Al₂O₃)与Lg(TFe₂O₃/K₂O)投影图表明(图

WLC-01

WLC-02

1 0 0 0

6)¹³²¹,筇竹寺组沉积岩样品落入长石砂岩、杂砂岩和 页岩的范围,反映了沉积岩矿物成熟度较低的特征, 其中镁铁质矿物不稳定。导致沉积岩岩性类型、化 学组成发生明显变化的因素即是表征沉积岩粒度特 征的SiO₂/Al₂O₃值,即沉积岩类型由长石砂岩向页岩 变化,是沉积岩粒度变细的结果¹²⁰¹,与对乌龙村剖面 筇竹寺组岩性的划分相一致。

Fig.4 Trace element distribution in Qiongzhusi Formation sedimentary rock, Wulongcun profile

Fig.5 Rare earth element distribution in Qiongzhusi Formation sedimentary rock, Wulongcun profile

(base map after reference [32])

4 讨论

4.1 风化与古气候

4.1.1 沉积岩源岩风化与沉积再循环

根据研究区主量元素的特征,可以反映源区风 化的强度。A-CN-K图解(图7a)^[33:34]显示,样品的风 化趋势与A-K边平行,但理想风化趋势下,风化趋势 线应与A-CN边平行,且样品点与UCC进行比较,发 现存在K富集的现象。表明沉积岩在成岩过程中存 在K交代作用,K交代作用增加了沉积岩中的K含 量,从而导致了低的CIA值。因此,对样品的K₂O含 量用公式(1~5)进行校正后,筇竹寺组所有的沉积岩 样品在A-CN-K图解中都落入强烈化学风化的范围 内(图7b),样品均落于A-K线上。说明相较于钾长 石,斜长石基本上已经完全被风化,强烈的化学风化 使Na元素强烈流失,符合钠比钾更容易遭受风化的 特征^[35],化学风化的加剧与更高的温度、更多的酸沉 降和更快的成土反应速率有关^[36-38],或者这些过程的 组合。沉积岩可能来自玄武岩和花岗岩混合的上地 壳源岩。

样品的成分成熟度和分选程度可以用Th/Se-Zr/Se 图解来反映。筇竹寺组沉积岩样品的Th/Se 比 值为0.52~1.40,而Zr/Se 比值为6.79~17.36,分布在长 英质区域附近,说明筇竹寺组沉积岩主要来自长英 质基岩。沉积岩具有较低的Zr/Se 比率(有9个样品 <17),表明沉积岩成分主要受源岩成分控制,而不是 沉积物质的循环改造^[23]。

4.1.2 古气候

CIA值可以用来反映古气候。强烈的化学风化 与温暖和潮湿的条件有关,而弱的化学风化则表示 寒冷和干旱的条件。若CIA<50则代表母岩未风化; 若50<CIA<65则代表弱风化;若65<CIA<85则代表 中等风化,风化产物含有蒙脱石、伊利石和白云母; 若85<CIA<100则代表强烈风化,风化产物中含有黏 土矿物如三水铝石和高岭石等^[39]。尽管沉积物供应 变化或水力分选等其他非风化因素增加了黏土矿 物,但CIA仍然是反映源区古气候最可靠的指标^[4041]。 乌龙村剖面筇竹寺组沉积岩的CIA_{cor}值均大于80,结 合岩相古地理图^[11],反映了亚热带温暖湿润的古气候 条件。根据公式(6)计算出的古温度为22.67 ℃~ 23.52 ℃,也说明乌龙村地区在早寒武世处于相对温 暖的环境。

Fig.7 A-CN-K diagram for Qiongzhusi Formation sedimentary rock, Wulongcun profile (base map after references [33-34])

4.2 物源特征

微量元素在沉积岩中的含量及其组合关系研究 沉积岩源区母岩的性质已经被广泛应用,例如元素 Th、Co、Sc、Hf、Zr、Y、Ho等不活泼元素和REE就可以 用来判别物源^[24]。Y-La图解显示(图8),筇竹寺组样 品与上地壳的成分非常吻合:Y/Ho-ΣREE图解显示 (图8),筇竹寺组样品主要落在陆源沉积物附近。硅 质碎屑主要以黏土矿物和重矿物的形式向海洋沉积 物提供大量稀土元素,这些稀土元素通常被释放到 沉积物孔隙水中。由于稀土元素含量高,即使是少 量的硅质碎屑(即岩体的百分之几)也足以赋予沉积 岩陆源稀土元素特征,硅质碎屑组分的Y/Ho比值大 多介于25~30,因此沉积岩的源岩可能为富含硅质成 分的陆源沉积岩[25,30]。Th/Sc-Zr/Sc图解显示(图 9a)[42],筇竹寺组样品主要来自长英质源岩,有一个样 品可能经历了沉积物再循环。La/Yb-ΣREE图解显 示(图9b),筇竹寺组样品主要落入沉积岩—钙质泥 岩、花岗岩和碱性玄武岩相交的区域,花岗岩的代入 可能是沉积物K,O含量较高的原因。在地球表面环 境中,Eu异常最有助于追踪稀土元素的来源,从而可 能区分碎屑、风成、火山和热液输入^[25,43-46]。负 Eu 异 常(即δEu<1.0)通常与晚期贫Eu岩浆沉淀的长英质 矿物有关[25]。Zhao et al.[30]分析了梅山和大峡口剖面 PTB的稀土元素分布,证明其大多数样品的稀土元素 组成具有强烈的硅质碎屑特征,并得出结论,火山物 质的输入可能是Eu负异常的原因。因此, 筇竹寺组 沉积岩的物源来自大陆上地壳源,可能也存在与火 山相关的长英质矿物的加入。

元素La、Th常赋存于酸性岩,Zr主要存在于锆石中,而Sc、Cr、Co富集于基性岩中。因此,La/Th、

La/Sc、Co/Th的比值能反映沉积源岩区镁铁质与长英质物质的相对比例^[17,23-24]。La/Th-Hf图解显示(图9c),样品主要落入长英质源区和长英质与基性混合源区,长英质主要是指硅酸盐矿物,说明沉积岩源区含有硅含量较高的沉积岩。Co/Th-La/Sc图解显示(图9d)^[47],样品主要落入安山岩、花岗岩与TTG平均成分区,大多数样品都非常靠近TTG成分,TTG由英云闪长岩、花岗闪长岩和奥长花岗岩组成^[48],说明样品主要来自酸性岩,并且有基性岩的混入。Co/Th比值变化较大,说明筇竹寺组沉积岩可能存在不同的物源。

前人研究表明,康滇古陆广泛发育1500~1700 Ma中元古代的地层,元古代以上的地层可能由于沉 积剥蚀或沉积缺失,现今都已不存在。楚雄地区典 型的元古代地层有东川群、会理群以及汤丹群,发 育大量的灰黑色板岩、凝灰岩、灰色凝灰质板岩、浊 流成因的灰色块状变凝灰质砾岩与含砾凝灰质砂 岩、球颗玄武岩以及大量的花岗岩。其中东川群被 揭示含有大量的S型花岗岩源区,表明扬子陆块西 南缘存在较早的酸性成分的大陆地壳。球颗玄武 岩显示为大陆板内低钛拉斑海相玄武岩,形成于伸 展构造环境,这可能是沉积岩中显示有深部物质的 来源。花岗岩大多来自格林威尔造山期的岩浆活 动,因此东川群、会理群以及汤丹群被认为是古元 古代末期康滇地区陆内裂谷拉张事件和扬子陆块 周缘中元古代末期 Rodinia 汇聚过程的产物[11,49-52]。 因此,基于筇竹寺组沉积岩物源示踪以及上述分析 来看,康滇古陆石英沉积物源区的(长英质基岩)东 川群、会理群以及汤丹群很可能为康滇古陆东侧的 武定乌龙村地区筇竹寺组提供滨岸沉积和浅水陆

图 8 乌龙村剖面筇竹寺组沉积岩 Y-La 图解和 Y/Ho-ΣREE 判别图解(底图据文献[30]) Fig.8 Y vs. La and Y/Ho vs. ΣREE discriminant diagrams for Qiongzhusi Formation sedimentary rock, Wulongcun profile (base map after reference [30])

10

Th/Sc

0.1

成分变化

沉积物再循环

棚沉积的砂泥岩,其中沉积岩 K₂O 含量较高可能来 自花岗岩和凝灰岩的代入,基性岩的混入可能来自 源区的球颗玄武岩^[11]。同时结合野外的岩石学特 征,发现滨岸沉积的砂岩粒度较粗,颜色一般为氧 化色,且石英含量较高,说明搬运距离短,成分成熟 度相对较低;浅水陆棚相沉积的页岩和粉砂质页岩 石英含量也较高,搬运距离也相对较短,成分成熟 度也相对较低。

综上,筇竹寺组沉积岩主要来自康滇古陆东川 群、会理群和汤丹群中的花岗岩和富含长英质矿物 的沉积岩等上地壳长英质岩石,存在基性岩的混入。 滨岸相沉积岩主要来自东川群、会理群以及汤丹群 颗粒较粗的凝灰质砂岩、凝灰岩、石英含量高的花岗 岩以及一些基性岩;浅水陆棚相沉积岩主要来自东 川群、会理群以及汤丹群颗粒较细的凝灰质板岩、凝 灰岩、石英含量高的花岗岩以及一些基性岩。因此, 利用地球化学分析以及岩石学分析,可以反映该区 筇竹寺组砂泥岩的物源特征。

4.3 构造背景

4.3.1 成岩构造背景

根据沉积岩的主量元素,可以对沉积岩形成时的构造背景进行判别。Sugisaki et al.^[53]提出 MnO/TiO₂可以用来判别沉积岩的沉积环境;当 MnO/TiO₂< 0.5时,表明沉积岩形成于大陆坡或边缘海环境;当 MnO/TiO₂比值介于0.5~3.5时,表明沉积岩形成于大洋底环境。乌龙村剖面筇竹寺组沉积岩样品 MnO/TiO₂比值介于0.01~0.25,表明沉积岩形成于大陆坡或边缘海环境。

Murray et al.^[54-55]认为(Al₂O₃)_N/(Al₂O₃+Fe₂O₃)_N比 值可以作为构造环境的判别指标。当(Al₂O₃)_N/(Al₂O₃+Fe₂O₃)_N的比值介于0.6~0.9时,表明沉积岩形 成于大陆边缘环境;当(Al₂O₃)_N/(Al₂O₃+Fe₂O₃)_N的比 值介于0.4~0.7时,表明沉积岩形成于远洋深海环境; 当(Al₂O₃)_N/(Al₂O₃+Fe₂O₃)_N的比值介于0.1~0.4时,表 明沉积岩形成于洋脊海岭环境。乌龙村剖面筇竹寺 组沉积岩样品(Al₂O₃)_N/(Al₂O₃+Fe₂O₃)_N的比值介于 0.79~0.85,说明沉积岩形成于大陆边缘环境。Al₂O₄/ (Al₂O₃+Fe₂O₃)-Fe₂O₃/TiO₂图解显示(图10),样品基本 都落在大陆边缘环境,部分样品落在与远洋沉积环 境的过渡区域^[56],表明沉积水体加深,海平面上升。 4.3.2 源区构造背景

Roser et al.^[57]提出了K₂O+Na₂O-SiO₂构造背景判 别图(图11a),在该图中可以看出沉积岩源区构造背 景为被动大陆边缘环境。McLennan et al.^[42]通过对不 同构造背景下沉积岩的研究,提出了SiO₂/Al₂O₃-K₂O/ Na₂O构造背景判别图^[42](图11b),投点后发现样品点 均落在被动大陆边缘区域。Bhatia^[58]提出了TiO₂-TFe₂O₃+MgO判别图(图11c),投点后发现样品点大 部分都落在被动大陆边缘范围内,个别样品也落在 被动大陆边缘附近,说明沉积岩主要来源于被动大 陆边缘构造环境。以上三个判别图均表明滇东地区 筇竹寺组沉积岩源区构造背景为被动大陆边缘 环境。

稀土元素在不同构造环境的沉积岩中具有不同 的特征。若沉积岩表现为轻稀土元素富集且Eu元 素呈负异常,说明沉积岩源岩来源于被动大陆边缘; 若沉积岩表现为重稀土元素富集且无Eu元素亏损, 则说明沉积岩源岩来源于活动大陆边缘^[23]。筇竹寺 组沉积岩样品稀土元素特征表现为轻稀土元素相对 富集,重稀土元素相对亏损,且Eu元素呈明显的负 异常,因此可以推断滇东地区下寒武统筇竹寺组沉 积岩物源区构造背景为被动大陆边缘环境。

profile (base map after reference [56])

微量元素的含量也可以用来指示构造环境,例

如La、Ce、Nd、Th、Zr、Hf、Nb、Ti等元素比主量元素具 有更强的稳定性,在水体中不活泼,并且滞留时间较 短,在经历了初次风化便可进入沉积物中。因此笔 者利用 Bhatia et al.^[59]提出的 La-Th-Sc、Th-Sc-Zr/10 图 解判别源区构造背景^[59]。La-Th-Sc和Th-Sc-Zr/10图 解显示,样品均落在大陆岛弧的区域内(图12),说明 筇竹寺组沉积岩的成因与大陆岛弧构造背景有关。 由于源区含有大量的凝灰质岩石,筇竹寺组沉积岩 中可能含有这些凝灰质岩石的成分,因此微量元素 投点落在大陆岛弧范围内是合理的[24]。源区构造背 景不同,沉积岩稀土元素的特征也有所不同。 Bhatia^[58]通过研究认为稀土元素的特征值可以用来鉴 别不同沉积盆地构造背景的杂砂岩[58],该方法被前人 广泛应用[60-63]。由于乌龙村剖面筇竹寺组沉积岩样 品包括泥页岩,考虑在相同构造背景下,泥页岩中稀 土元素的质量分数要比同时期沉积的杂砂岩高20% 左右[58],所以将样品泥页岩中的稀土元素含量除以 1.2,计算了新的相关参数,再与不同构造背景的杂砂 岩稀土元素特征值进行对比(表5),结果显示,沉积 岩物源区具有与大陆岛弧构造背景几乎完全一致的 属性,也说明筇竹寺组沉积岩的成因与大陆岛弧构 造背景有关。

久凯等55研究认为,上扬子地区在早寒武世,盆 地类型以克拉通盆地、克拉通边缘盆地和被动大陆 边缘盆地为主,整体表现出古斜坡背景5%。许效松 等阿研究认为,扬子西部的康滇古陆为克拉通边缘 古隆起,在寒武纪沉积时其东缘均有边缘相沉积物。 在主量元素分析的基础上,确定康滇古陆东缘筇竹 寺组沉积岩主要形成于被动大陆边缘环境。被动大 陆边缘又称稳定大陆边缘,是由于大洋岩石圈的扩 张造成的由拉伸断裂所控制的宽阔大陆边缘,其邻 接的大陆和洋盆属同一板块,由大陆架大陆坡和陆 隆所构成,无海沟发育[65]。扬子地区自新元古代青 白口纪以来,一直处于Rodinia大陆的西北边缘位 置,受Rodinia大陆裂解影响,扬子地区广泛发育以 北东向一近东西向为主的裂谷。进入震旦纪后,扬 子地区盆地原型由裂谷盆地向被动陆源坳陷或克拉 通内裂陷型盆地演变。直到早古生代晚期 Gondwana 大陆聚合之前,扬子地块一直处于被动大 陆边缘的板块构造背景⁶⁶¹,这与本文得出的滇东地 区位于被动大陆边缘的构造背景是一致的。另外在 筇竹寺组沉积期,上扬子地区发生的构造运动是兴

(a) base map after reference [57]; (b) base map after reference [42]; (c) base map after reference [58]

凯运动 II 幕,这一幕相当于刘树根等^[67]所称兴凯裂 陷槽的壮年期,构造运动性质以拉张裂陷为主要特 征^[68],强烈拉张的背景在华南陆块与东冈瓦纳的碰 撞中逐渐结束^[69],这也与被动大陆边缘的特点相符 合。因此在滇东地区筇竹寺组沉积期,沉积构造背 景为 Rodinia 大陆裂解形成的被动大陆边缘环境。 受兴凯运动的影响,上扬子地台进一步区域性裂解, 并沉降而导致海水侵入^[68],这与乌龙村剖面筇竹寺 组地层从滨岸沉积到浅水陆棚沉积的转变具有良好 的对应关系。

然而,微量元素分析所得出的结论是物源区位 于大陆岛弧构造背景,这与主量元素得出的被动大 陆边缘存在较大的差异。刘建清等¹¹¹通过对康滇古 陆东缘锌厂沟剖面沉积岩地球化学特征的分析,确 定了康滇古陆东缘筇竹寺组沉积岩主要形成于大陆 边缘环境,这与本文主量元素分析得出的结论是一 致的;另外,刘建清等¹¹¹还认为筇竹寺组沉积岩与海 底喷发的海相玄武岩、镁铁质岩有关(球颗玄武岩), 热液作用参与了筇竹寺组沉积岩的沉积过程,带来 了大量的微量元素。于炳松等⁷⁰对塔里木盆地布拉 克剖面下寒武统底部硅质岩的微量元素和稀土元素 进行了研究,认为大洋盆地背景中的物质被上升洋 流带到了大陆边缘陆棚环境中发生沉积,造成了处 于陆棚环境中的沉积岩保留了大洋盆地背景的地球 化学特征。另外被动大陆边缘由于物源的复杂性, 且样品没有经历强烈的沉积再循环作用,沉积岩继 承了源岩形成时的大陆岛弧型或活动大陆边缘的微 量元素信息^[47]。

因此,认为滇东地区筇竹寺组沉积岩在寒武世 早期筇竹寺组沉积时,沉积岩主要形成于被动大陆 边缘环境,沉积岩保留了其源岩形成时的大陆岛弧 地球化学特征,另外热液作用的参与带来了微量元 素(图13)^[71],并通过上升洋流将这些微量元素带到 了大陆边缘陆棚环境中进行沉积。因此利用微量元 素进行构造背景判别时,沉积岩样品落入大陆岛弧 范围内,并导致与主量元素得出的结论不同。

图 12 乌龙村剖面筇竹寺组沉积岩物源区构造背景微量元素判别图解(底图据文献[59]) (a)La-Th-Sc图解;(b)Th-Sc-Zr/10图解;ACM:活动大陆边缘;PM:被动大陆边缘;CIA:大陆岛弧;OIA:大洋岛弧;微量元素单位为10⁻⁶ Fig.12 Discriminant diagram for trace elements in tectonic setting of the provenance of Qiongzhusi Formation sedimentary rock, Wulongcun profile (base map after reference [59])

表5 筇竹寺组沉积岩样品均值与不同大地构造背景杂砂岩的 REE 特征比较

 Table 5 REE characteristics of sample mean for Qiongzhusi Formation sedimentary rock and graywackes

 from different tectonic settings

构造背景	源区类型	样品个数	w(La)/(µg/g)	w(Ce)/(µg/g)	$w(\sum \text{REE})$ (µg/g)	$w(\sum LREE)/w(\sum HREE)$	$(w(La)/w(Yb))_N$	δEu
大洋岛弧	未切割的岩浆弧	9	8.00±1.70	19.00±3.70	58.00±10.00	3.80±0.90	2.80±0.90	1.04±0.11
大陆岛弧	切割的 岩浆弧	9	27.00±4.50	59.00±8.80	146.00±20.00	7.70±1.70	7.50±2.50	0.79±0.13
活动大陆边缘	基底隆升	2	37.00	78.00	186.00	9.10	8.50	0.60
被动边缘	克拉通内构造高地	2	39.00	85.00	210.00	8.50	10.80	0.56
校正之后	的样品平均值	10	37.41	69.19	175.24	8.06	8.82	0.65

注:不同大地构造背景杂砂岩的REE数值来自文献[58]。

Fig.13 Zn-Ni-Co ternary diagram of for Qiongzhusi Formation sedimentary rock, Wulongcun profile (base map after reference [71])

5 结论

(1)校正后的 CIA 值表明乌龙村剖面筇竹寺组 沉积岩经历了强烈的化学风化作用, 沉积岩源区处 于温暖湿润的气候条件; Th/Se-Zr/Se 图解表明沉积岩 成分主要受源岩成分控制, 而不是沉积物质的循环 改造。沉积岩的地球化学特征能够较好地指示源岩 组分。

(2)通过样品在Y-La 图解、Y/Ho-ΣREE 图解、 Th/Sc-Zr/Sc 图解、La/Yb-ΣREE 图解、La/Th-Hf 图解和 Co/Th-La/Sc 图解中的投点,分析出筇竹寺组沉积岩 源岩主要是康滇古陆东川群、会理群和汤丹群中的 凝灰质岩石、花岗岩以及富含长英质矿物的沉积岩 等上地壳长英质岩石,存在基性岩的混入。K₂O含量 较高的岩石主要来自格林威尔造山期的岩浆活动带 来的花岗岩以及康滇古陆东川群、会理群和汤丹群 中的凝灰岩。 (3) 筇竹寺组沉积岩主要形成于大陆边缘环境, 主量元素特征表明筇竹寺组沉积岩物源区属于被动 大陆边缘构造背景,微量元素特征显示其为大陆岛 弧构造背景,这种异常情况主要与沉积岩未经历沉 积再循环有关。沉积岩保留了源岩形成时的地球化 学元素特征,使在大陆边缘陆棚环境中的沉积岩保 留了岛弧环境形成的物质的地球化学性质。

致谢 审稿专家和编辑老师对本文进行了严格 而细致的审理,并提出了许多建设性的意见,使得 本文质量极大地提高,在此表示衷心的感谢。

参考文献(References)

- Huyan Y Y, Yao W S. Geochemical comparisons of weathering, provenance and tectonics in the fluvial sediments from Yarlung Zangbo to Brahmaputra River[J]. Catena, 2022, 210: 105944.
- [2] 杨剑. 黔北地区下寒武统黑色岩系形成环境与地球化学研究
 [D]. 西安:长安大学,2009:5. [Yang Jian. Study on the formation environment and geochemistry of Lower Cambrian black shale series, northern Guizhou province, China [D]. Xi'an: Chang'an University, 2009: 5.]
- [3] 程涌,胡煜昭,李丕优,等. 滇东会泽地区下寒武统筇竹寺组黑 色岩系微量元素地球化学特征及其古环境演化[J]. 地质找矿 论丛, 2019, 34 (3): 416-422. [Cheng Yong, Hu Yuzhao, Li Piyou, et al. The geochemical characteristics of trace elements and paleoenvironmental evolution of black rock series in the Lower Cambrian Qiongzhusi Formation from Huize area, eastern Yunnan province [J]. Contributions to Geology and Mineral Resources Research, 2019, 34(3): 416-422.]
- [4] 黄俨然,肖正辉,余烨,等.湘西北下寒武统黑色岩系元素地球 化学特征及地质意义[J].地球化学,2020,49(5):516-527.
 [Huang Yanran, Xiao Zhenghui, Yu Ye, et al. Geological significance of the elemental geochemistry of Lower Cambrian black shales from northwestern Hunan[J]. Geochimica, 2020, 49(5): 516-527.]
- [5] 久凯,丁文龙,黄文辉,等. 上扬子地区下寒武统海相富有机质 页岩形成环境与主控因素分析[J]. 现代地质,2012,26(3): 547-554. [Jiu Kai, Ding Wenlong, Huang Wenhui, et al. Formation environment and controlling factors of organic-rich shale of Lower Cambrian in Upper Yangtze region [J]. Geoscience, 2012, 26(3): 547-554.]
- [6] 李仁泽,周正兵,万建军,等. 江西省黄坑黑色岩系钒矿床微量 元素地球化学特征及成矿背景分析[J]. 地质找矿论丛,2021, 36(4):425-438. [Li Renze, Zhou Zhengbing, Wan Jianjun, et al. Trace element geochemical characteristics and metallogenic background of V deposits in black rock series at Huangkeng area, Jiangxi provine [J]. Contributions to Geology and Mineral Resources Research, 2021, 36(4): 425-438.]
- [7] 李昂,丁文龙,张国良,等. 滇东地区马龙区块筇竹寺组海相页

岩储层特征及对比研究[J]. 地学前缘,2016,23(2):176-189. [Li Ang, Ding Wenlong, Zhang Guoliang, et al. Reservoir characteristics of marine shale in the Malong block of eastern Yunnan province and comparison analysis [J]. Earth Science Frontiers, 2016, 23(2): 176-189.]

- [8] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页 岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.
 [Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40 (4):701-715.]
- [9] 姜永果,郭欣,周洪瑞,等. 云南曲靖地区下寒武统黑色岩系岩 石地球化学特征与成因[J]. 矿物学报,2015,35(4):489-496.
 [Jiang Yongguo, Guo Xin, Zhou Hongrui, et al. Geochemistry and genesis of Lower Cambrian black rocks from Qujing area, Yunnan province, China [J]. Acta Mineralogica Sinica, 2015, 35(4):489-496.]
- [10] 杨帅杰,王伟锋,张道亮,等. 川东北地区筇竹寺组优质烃源 岩分布特征及形成环境[J]. 天然气地球科学,2020,31(4): 507-517. [Yang Shuaijie, Wang Weifeng, Zhang Daoliang, et al. Distribution characteristics and formation environment of high quality source rocks of Qiangzhusi Formation in northeastern Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 507-517.]
- [11] 刘建清,何利,何平,等. 康滇古陆东缘筇竹寺组地球化学特 征及意义:以云南省昭通市昭阳区锌厂沟剖面为例[J]. 沉积 学报,2021,39(5):1305-1319. [Liu Jianqing, He Li, He Ping, et al. Geochemical characteristics and significance of the Qiongzhusi Formation on the eastern margin of the Ancient Kangding-Yunnan Land: Taking the Xinchanggou section of Zhaoyang district, Zhaotong city, Yunnan province as an example[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1305-1319.]
- [12] Taylor S R, McLennan S M. The continental crust: Its composition and evolution [M]. Oxford: Blackwell Scientific Publication, 1985.
- Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies [J]. Developments in Geochemistry, 1984, 2: 63-114.
- [14] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717.
- [15] McLennan S M. Weathering and global denudation [J]. The Journal of Geology, 1993, 101(2): 295-303.
- [16] Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220.
- [17] Zhai L N, Wu C D, Ye Y T, et al. Fluctuations in chemical weathering on the Yangtze Block during the Ediacaran-Cambrian

transition: Implications for paleoclimatic conditions and the marine carbon cycle[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 280-292.

- [18] Yang J H, Cawood P A, Du Y S, et al. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high-and low-paleolatitude sedimentary records[J]. Geology, 2014, 42(10): 835-838.
- [19] 李小清. 滇东北巧家白马厂铅锌矿床地质:地球化学特征及 成因研究[D]. 昆明:昆明理工大学,2013:35. [Li Xiaoqing. The research of characteristics of ore geology-geochemistry and deposit genesis of Baimachang lead-zine deposite in Qiaojia, northeast of Yunnan[D]. Kunming: Kunming University of Science and Technology, 2013: 35.]
- [20] 陈丹婷,彭渤,方小红,等. 洞庭湖"四水"入湖河床沉积物主量元素地球化学特征及意义[J]. 第四纪研究,2021,41(5): 1267-1280. [Chen Danting, Peng Bo, Fang Xiaohong, et al. Geochemistry of major elements in bed sediments from inlets of the Four Rivers to Dongting Lake, China[J]. Quaternary Sciences, 2021, 41(5): 1267-1280.]
- [21] 曾金华,兰晓东,司晨晨.京西坳陷周口店地区洪水庄组地球 化学特征及其地质意义[J].东北石油大学学报,2021,45(6):
 52-67. [Zeng Jinhua, Lan Xiaodong, Si Chenchen, et al. Geochemical characteristics and geological significance of the Hongshuizhuang Formation in the Zhoukoudian area of Jingxi Depression [J]. Journal of Northeast Petroleum University, 2021, 45(6): 52-67.]
- [22] 胡宝群,高海东,申玉科,等.玲珑金矿大开头矿区Bi特征及指示意义[J].物探与化探,2014,38(6):1134-1139. [Hu Baoqun, Gao Haidong, Shen Yuke, et al. Bi anomaly of the Dakaitou ore district in the Linglong gold mine and its indication significance [J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1134-1139.]
- [23] 侯阳红,康志宏,赵晨君,等.下扬子地区下寒武统幕府山组 黑色岩系地球化学特征及其地质意义[J]. 沉积学报,2020,38
 (4):886-897. [Hou Yanghong, Kang Zhihong, Zhao Chenjun, et al. Geochemical characteristics and geological significance of the black rock series at the bottom of the Mufushan Formation in the Lower Cambrian, Lower Yangtze area[J]. Acta Sedimentologica Sinica, 2020, 38(4): 886-897.]
- [24] 汪彪,施立志,阮壮,等.内蒙古正镶白旗贡淖尔地区中二叠 统额里图组下段细碎屑岩地球化学特征及意义[J].地球学报,2022,43(3):569-583. [Wang Biao, Shi Lizhi, Ruan Zhuang, et al. Geochemistry and significance of siliciclastic rocks from the lowest Elitu Formation of Middle Permian in the Gongnaoer area, Zhengxiangbaiqi, Inner Mongolia [J]. Acta Geoscientica Sinica, 2022, 43(3): 569-583.]
- [25] Chen J B, Algeo T J, Zhao L S, et al. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China [J]. Earth-Science Reviews, 2015, 149: 181-202.

- [26] 王鹏万,邹辰,李娴静,等. 滇黔北地区筇竹寺组元素地球化 学特征及古环境意义[J]. 中国石油大学学报,2021,45(2):
 51-62. [Wang Pengwan, Zou Chen, Li Xianjing, et al. Geochemical characteristics of element Qiongzhusi Group in Dianqianbei area and paleoenvironmental significance[J]. Journal of China University of Petroleum, 2021, 45(2): 51-62.]
- [27] 方泽鑫. 滇东下寒武统筇竹寺组黑色页岩沉积环境及烃源岩特征[D]. 西安:西北大学,2020:49. [Fang Zexin. Sedimentary environment and source rock characteristics of black shale in the Lower Cambrian Qiongzhusi Formation, eastern Yunnan [D]. Xi'an: Northwest University, 2020: 49.]
- [28] 裴羽,何幼斌,曾艳涛,等.微量元素在华南武陵统沉积环境和物源分析中的应用[J].海相油气地质,2015,20(2):29-36.
 [Pei Yu, He Youbin, Zeng Yantao, et al. Application of trace elements in analysis of sedimentary environments and provenance of Wulingian series, South China[J]. Marine Origin Petroleum Geology, 2015, 20(2): 29-36.]
- [29] 侯东壮.黔东地区黑色岩系地球化学特征及沉积环境研究
 [D].长沙:中南大学,2011:41. [Hou Dongzhuang. Research on geochemical characteristics and sedimentary environments of black shales in the eastern Guizhou [D]. Changsha: Central South University, 2011: 41.]
- [30] Zhao L S, Chen Z Q, Algeo T J, et al. Rare-earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis?[J]. Global and Planetary Change, 2013, 105: 135-151.
- [31] Li Y, Zhao L S, Chen Z Q, et al. Oceanic environmental changes on a shallow carbonate platform (Yangou, Jiangxi province, South China) during the Permian-Triassic transition: Evidence from rare earth elements in conodont bioapatite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 6-16.
- [32] Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research, 1988, 58(5): 820-829.
- [33] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.
- [34] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles [J]. The Journal of Geology, 1989, 97 (2) : 129-147.
- [35] 郭若舜,叶思源,何磊,等.全新世以来辽河三角洲地区的化 学风化及其对气候变化的响应[J].海洋科学,2018,42(9): 38-50. [Guo Ruoshun, Ye Siyuan, He Lei, et al. Chemical weathering and its implications regarding climate changes in the Liaohe Delta since the Holocene[J]. Marine Sciences, 2018, 42 (9): 38-50.]
- [36] Sheldon N D. Abrupt chemical weathering increase across the Permian-Triassic boundary [J]. Palaeogeography, Palaeoclima-

tology, Palaeoecology, 2006, 231(3/4): 315-321.

- [37] Wignall P B. The end-Permian mass extinction-how bad did it get?[J]. Gebiology, 2007, 5(4): 303-309.
- [38] Algeo T J, Chen Z Q, Fraiser M L, et al. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 1-11.
- [39] 朱欣然,刘立,贾士琚,等.鄂尔多斯盆地白垩系洛河组风成砂岩地球化学与物源区特征:以靖边县龙洲乡露头为例[J]. 世界地质,2018,37(3):702-711. [Zhu Xinran, Liu Li, Jia Shiju, et al. Geochemical and provenance characteristics of eolian sandstone of Cretaceous Luohe Formation in Ordos Basins: An example from outcrop in Longzhou, Jingbian[J]. Global Geology, 2018, 37(3): 702-711.]
- [40] 吴素娟,张永生,邢恩袁. 桌子山地区奥陶系乌拉力克组碎屑 岩地球化学特征及其对物源的制约[J]. 地质学报,2016,90
 (8):1860-1873. [Wu Sujuan, Zhang Yongsheng, Xing Enyuan. Geochemistry of Ordovician detrital rocks and its constrains on provenance in Zhuozishan area, northwest Ordos Basin [J]. Acta Geologica Sinica, 2016, 90(8): 1860-1873.]
- [41] 吴黎军,李明龙,陈林,等.鄂西走马地区ZK701孔南华系大 塘坡组主量元素地球化学对古气候的指示[J].河南理工大学 学报(自然科学版),2019,38(6):47-54. [Wu Lijun, Li Minglong, Chen Lin, et al. Geochemistry characteristics of major elements and their indication to paleoclimate in the Datangpo Formation of Nanhua system of ZK701 drillcore in Zouma area of western Hubei province [J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(6): 47-54.]
- [42] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics [M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. Geological Society of America, 1993: 21-40.
- [43] Derry L A, Jacobsen S B. The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations
 [J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 2965-2977.
- [44] Uysal I T, Zhao J X, Golding S D, et al. Sm-Nd dating and rare-earth element tracing of calcite: Implications for fluid-flow events in the Bowen Basin, Australia [J]. Chemical Geology, 2007, 238(1/2): 63-71.
- [45] Zhu B, Jiang S Y, Yang J H, et al. Rare earth element and Sr-Nd isotope geochemistry of phosphate nodules from the Lower Cambrian Niutitang Formation, NW Hunan province, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 132-143.
- [46] Xie S C, Pancost R D, Huang J H, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis[J]. Geology, 2017, 35(12): 1083-1086.
- [47] 杨世文,楼法生,杨坤光,等. 江西南部震旦一寒武纪寻乌岩

组变沉积岩地球化学特征及构造意义[J]. 中国地质,2016,43 (1):349-364. [Yang Shiwen, Lou Fasheng, Yang Kunguang, et al. The geochemical characteristics and tectonic significance of metasedimentary rocks in Sinian-Cambrian Xunwu rock group, southern Jiangxi province[J]. Geology in China, 2016, 43(1): 349-364.]

- [48] Moyen J F, Martin H. Forty years of TTG research[J]. Lithos, 2012, 148: 312-336.
- [49] 王奖臻,李泽琴,黄从俊.康滇地轴元古代重大地质事件与拉 拉 IOCG 矿床成矿响应[J].地球科学进展,2012,27(10): 1074-1079. [Wang Jiangzhen, Li Zeqin, Huang Congjun. The main geological events of the Kangdian Proterozoic eon and response from to the La-La IOCG deposit[J]. Advances in Earth Sciences, 2012, 27(10): 1074-1079.]
- [50] 宋昊,倪师军,张成江,等.康滇地轴基底IOCG铜铁矿床中岩 浆岩的成矿及找矿指示意义[J].矿物学报,2015,35(增刊1);
 156-157. [Song Hao, Ni Shijun, Zhang Chengjiang, et al. Mineralization and mineralization indication of magmatic rocks in IOCG copper and iron ore deposit in the basement of Kangdian axial [J]. Acta Mineralogica Sinica, 2015, 35 (Suppl. 1);
 156-157.]
- [51] 刘军平,孙柏东,王晓峰,等. 滇中禄丰地区中元古代早期球颗玄武岩的锆石 U-Pb 年龄、地球化学特征及其大地构造意义
 [J]. 地质论评, 2020, 66 (1): 35-51. [Liu Junping, Sun Baidong, Wang Xiaofeng, et al. The zircon U-Pb age, geochemical characteristics and tectonic significance of the spherical basalt in the early Mesoproterozoic in Lufeng area central Yunnan[J]. Geological Review, 2020, 66(1): 35-51.]
- [52] 王生伟,廖震文,孙晓明,等. 会东菜园子花岗岩的年龄、地球 化学:扬子地台西缘格林威尔造山运动的机制探讨[J]. 地质 学报,2013,87(1):55-70. [Wang Shengwei, Liao Zhenwen, Sun Xiaoming, et al. Age and geochemistry of the Caiyuanzi granite in Sichuan, SW China: Mechanism of the Grenvillian orogenic movement in the western margin of Yangtze block[J]. Acta Geologica Sinica, 2013, 87(1): 55-70.]
- [53] Sugisaki R, Yamamoto K, Adachi M. Triassic bedded cherts in central Japan are not pelagic [J]. Nature, 1982, 298 (5875): 644-647.
- [54] Murray R W, ten Brink M R B, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3): 268-271.
- [55] Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232.
- [56] Boström K, Kraemer T, Gartner S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments [J]. Chemical Geology, 1973, 11 (2): 123-148.
- [57] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO₂ content and K₂O/Na₂O ra-

tio[J]. The Journal of Geology, 1986, 94(5): 635-650.

- [58] Bhatia M R. Plate tectonics and geochemical composition of sandstones [J]. The Journal of Geology, 1983, 91 (6) : 611-627.
- [59] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
- [60] 王腾宇,毕天卓,徐焕友,等. 基于微量元素和稀土元素的物源分析:以金湖凹陷戴一段为例[J]. 复杂油气藏,2021,14
 (4):36-46. [Wang Tengyu, Bi Tianzhuo, Xu Huanyou, et al. Source analysis based on trace elements and rare earth elements: An example from the lower Dainan Formation of Jinhu Sag[J]. Complex Hydrocarbon Reservoirs, 2021, 14(4): 36-46.]
- [61] 李利平,田军,张克信,等. 东昆仑造山带下中三叠统沉积岩 地球化学特征[J]. 同济大学学报,2002,30(8):938-943. [Li Liping, Tian Jun, Zhang Kexin, et al. Geochemical characteristics of low to Middle Triassic sedimentary rocks of eastern Kunlun orogenic belt [J]. Journal of Tongji University, 2002, 30 (8):938-943.]
- [62] 刘俊海,杨香华,于水,等.东海盆地丽水凹陷古新统沉积岩的稀土元素地球化学特征[J].现代地质,2003,17(4):421-427. [Liu Junhai, Yang Xianghua, Yu Shui, et al. The REE geochemical characteristics of Paleocene-Eocene in the Lishui Sag of the Donghai Basin [J]. Geoscience, 2003, 17 (4):421-427.]
- [63] 李双建,肖开华,沃玉进,等.湘西、黔北地区志留系稀土元素 地球化学特征及其地质意义[J].现代地质,2008,22(2):273-280. [Li Shuangjian, Xiao Kaihua, Wo Yujin, et al. REE geochemical characteristics and their geological signification in Silurian, west of Hunan province and north of Guizhou province [J]. Geoscience, 2008, 22(2): 273-280.]
- [64] 许效松,门玉澎,张海全.古陆、古隆与古地理[J]. 沉积与特提斯地质,2010,30(3):1-10. [Xu Xiaosong, Men Yupeng, Zhang Haiquan. Old land, old uplift and palaeogeography[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(3): 1-10.]
- [65] 孙珍,刘思青,庞雄,等. 被动大陆边缘伸展一破裂过程研究 进展[J]. 热带海洋学报,2016,35(1):1-16. [Sun Zhen, Liu

Siqing, Pang Xiong, et al. Recent research progress on the rifting-breakup process in passive continental margins[J]. Journal of Tropical Oceanography, 2016, 35(1): 1-16.]

- [66] 鲁国.四川盆地震旦一寒武纪关键构造期构造一沉积响应
 [D].北京:中国地质大学(北京),2021:4. [Lu Guo. Tectonic-sedimentary response in the key tectonic period of the Sinian-Cambrian in the Sichuan Basin [D]. Beijing: China University of Geosciences (Beijing), 2021:4.]
- [67] 刘树根,孙玮,罗志立,等.兴凯地裂运动与四川盆地下组合 油气勘探[J].成都理工大学学报(自然科学版),2013,40(5): 511-520. [Liu Shugen, Sun Wei, Luo Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520.]
- [68] 李伟,刘静江,邓胜徽,等.四川盆地及邻区震旦纪末—寒武 纪早期构造运动性质与作用[J].石油学报,2015,36(5):546-556,563. [Li Wei, Liu Jingjiang, Deng Shenghui, et al. The nature and role of Late Sinian-Early Cambrian tectonic movement in Sichuan Basin and its adjacent areas [J]. Acta Petrolei Sinica, 2015, 36(5): 546-556, 563.]
- [69] 王志伟,钟怡江,刘磊,等.鄂西一渝东地区早寒武世克拉通 内裂陷演化及对古地理格局的控制[J]. 沉积学报,2023,41
 (4):1110-1123. [Wang Zhiwei, Zhong Yijiang, Liu Lei, et al. Evolution of Early Cambrian intracraton rift and its influence on the paleogeographical pattern, western Hubei-eastern Chongqing [J]. Acta Sedimentologica Sinica,2023,41(4):1110-1123.]
- [70] 于炳松,陈建强,李兴武,等. 塔里木盆地肖尔布拉克剖面下 寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背 景[J]. 沉积学报,2004,22(1):59-66. [Yu Bingsong, Chen Jianqiang, Li Xingwu, et al. Rare earth and trace element patterns in bedded-cherts from the bottom of the Lower Cambrian in the northern Tarim Basin, northwest China: Implication for depositional environments [J]. Acta Sedimentologica Sinica, 2004, 22(1): 59-66.]
- [71] Choi J H, Hariya Y. Geochemistry and depositional environment of Mn oxide deposits in the Tokoro belt, northeastern Hokkaido, Japan[J]. Economic Geology, 1992, 87(5): 1265-1274.

Weathering Characteristics of Sedimentary Source Area of Qiongzhusi Formation, Eastern Margin of Ancient Kangding-Yunnan Land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China

YANG YongZhen^{1,2}, GUO Ling^{1,2}, FANG ZeXin^{1,2}, XU Kai^{1,2}, ZHANG HuanMeng^{1,2}, SHI YuXiang^{1,2}, WU FangFang^{1,2}, TAO Wei^{1,2}

State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China
 Department of Geology, Northwest University, Xi'an 710069, China

Abstract: [Objective] The Qiongzhusi Formation in the Yangtze region is an essential horizon for shale gas exploration. This study was conducted to determine the weathering degree, paleoclimate, tectonic background and provenance of the sedimentary rock in the Qiongzhusi Formation at the eastern margin of the Ancient Kangding-Yunnan Land.[Methods] Quantitative geochemical data was obtained from profile measurement, sample collection and analysis for major elements and trace elements in the Wulongcun profile.[Results and Conclusions] (1) The Qiongzhusi Formation sedimentary rock is mainly strongly weathered, and the climate of the provenance area was warm and humid during the period of deposition. (2) The rock was mainly formed in a passive continental margin environment. The source rocks were formed in a continental island-arc environment. (3) The sedimentary rocks were mainly tuff, tuffaceous sandstone, slate and granite, together with some basic rocks of the Proterozoic Dongchuan Group, Huili and Tangdan Groups in the Ancient Kangding-Yunnan Land.

Key words: Ancient Kangding-Yunnan Land; Qiongzhusi Formation; weathering degree; paleoclimate; provenance characteristics; tectonic background