Advanced Search
Volume 42 Issue 2
Feb.  2024
Turn off MathJax
Article Contents

CHEN QingYao, WANG WenQiang, CHENG DingSheng, XIAO Hong, RAN ZiChao. Geochemical Characteristics and Origins of Crude Oil in the North Slope, Bongor Basin, Chad[J]. Acta Sedimentologica Sinica, 2024, 42(2): 675-687. doi: 10.14027/j.issn.1000-0550.2022.067
Citation: CHEN QingYao, WANG WenQiang, CHENG DingSheng, XIAO Hong, RAN ZiChao. Geochemical Characteristics and Origins of Crude Oil in the North Slope, Bongor Basin, Chad[J]. Acta Sedimentologica Sinica, 2024, 42(2): 675-687. doi: 10.14027/j.issn.1000-0550.2022.067

Geochemical Characteristics and Origins of Crude Oil in the North Slope, Bongor Basin, Chad

doi: 10.14027/j.issn.1000-0550.2022.067
Funds:

National Science and Technology Major Project 2016ZX05029

  • Received Date: 2022-03-28
  • Accepted Date: 2022-08-12
  • Rev Recd Date: 2022-06-12
  • Available Online: 2022-08-12
  • Publish Date: 2024-02-04
  • Objective The physical properties and geochemical characteristics of oil found in the Northern slope, Bongor Basin, Chad, are clearly different. This paper aims to determine their differences and the influences on their properties and provide practical guidance for the assessment and prediction of oil quality in future oil exploration in this region. Methods The physical properties and molecular marker compounds of 41 crude oil samples from the northern slope belt were analyzed by oil family separation, gas chromatography, gas chromatography-mass spectrometry. [ Results and Conclusions ]It was found that the degree of biodegradation is responsible for the differences. Non-, slightly- or heavily degraded oils were classified according to the relative content and distribution pattern of normal alkanes and acyclic isoprenoids, as well as the baseline characteristics of gas chromatograms. Burial depth is evidently the most important factor constraining the degree of biodegradation. No biodegraded oil was found deeper than 1 300 m; the most heavily biodegraded oil occurs shallower than 800 m. In reservoirs between these depths, the degree of biodegradation is associated with distance from main faults, thickness of local caprock and type of trap.
  • [1] Hunt J M. Petroleum geochemistry and geology[M]. San Francisco: Freeman, 1979: 617.
    [2] Tissot B P, Welte D H. Geochemical fossils and their significance in petroleum formation[M]//Tissot B P, Welte D H. Petroleum formation and occurrence. Berlin: Springer, 1984: 93-130.
    [3] Connan J. Biodegradation of crude oils in reservoirs[M]//Brooks J, Welte D. Advances in petroleum geochemistry. Amsterdam: Elsevier, 1984: 299-335.
    [4] Volkman J K, Alexander R, Kagi R I, et al. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow sub-basin of western Australia[J]. Organic Geochemistry, 1984, 6: 619-632.
    [5] England W A, Mackenzie A S, Mann D M, et al. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of the Geological Society, 1987, 144(2): 327-347.
    [6] Seifert W K, Moldowan J M. The effect of biodegradation on steranes and terpanes in crude oils[J]. Geochimica et Cosmochimica Acta, 1979, 43(1): 111-126.
    [7] Lafargue E, Barker C. Effect of water washing on crude oil compositions[J]. AAPG Bulletin, 1988, 72(3): 263-276.
    [8] Peters K E, Walters C C, Moldowan J M. The biomarker guide: Biomarkers and isotopes in petroleum systems and Earth history[M]. 2nd ed. New York: Cambridge University Press, 2005: 490.
    [9] Demaison G J. Tar sands and supergiant oil fields[J]. AAPG Bulletin, 1977, 61(11): 1950-1961.
    [10] Volkman J K, Alexander R, Kagi R I, et al. Demethylated hopanes in crude oils and their applications in petroleum geochemistry[J]. Geochimica et Cosmochimica Acta, 1983, 47(4): 785-794.
    [11] Wenger L M, Davis C L, Isaksen G H. Multiple controls on petroleum biodegradation and impact on oil quality[J]. SPE Reservoir Evaluation & Engineering, 2002, 5(5): 375-383.
    [12] Larter S, Huang H P, Adams J, et al. A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils[J]. Organic Geochemistry, 2012, 45: 66-76.
    [13] Watson J S, Jones D M, Swannell R P J, et al. Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes[J]. Organic Geochemistry, 2002, 33(10): 1153-1169.
    [14] 窦启龙,陈践发,薛燕芬,等. 实验室条件下微生物降解原油的地球化学特征研究[J]. 沉积学报,2005,23(3):542-547.

    Dou Qilong, Chen Jianfa, Xue Yanfen, et al. A comparative study of the geochemical characters of crude oil after microbe degradation in laboratory[J]. Acta Sedimentologica Sinica, 2005, 23(3): 542-547.
    [15] Genik G J. Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic[J]. AAPG Bulletin, 1993, 77(8): 1405-1434.
    [16] 闫林辉,常毓文,田中元,等. 乍得Bongor盆地潜山基岩储集层特征[J]. 地质科技情报,2019,38(6):60-68.

    Yan Linhui, Chang Yuwen, Tian Zhongyuan, et al. Characteristics of basement rock reservoirs in Bongor Basin, Chad[J]. Geological Science and Technology Information, 2019, 38(6): 60-68.
    [17] 余朝华,杜业波,肖坤叶,等. 乍得Bongor盆地基岩潜山储层特征与影响因素研究[J]. 岩石学报,2019,35(4):1279-1290.

    Yu Zhaohua, Du Yebo, Xiao Kunye, et al. Characteristics and influence factors of basement buried-hill reservoir in Bongor Basin, Chad[J]. Acta Petrologica Sinica, 2019, 35(4): 1279-1290.
    [18] Dou L R, Cheng D S, Wang J C, et al. Petroleum systems of the Bongor Basin and the Great Baobab oilfield, southern Chad[J]. Journal of Petroleum Geology, 2020, 43(3): 301-321.
    [19] 窦立荣,肖坤叶,胡勇,等. 乍得Bongor盆地石油地质特征及成藏模式[J]. 石油学报,2011,32(3):379-386.

    Dou Lirong, Xiao Kunye, Hu Yong, et al. Petroleum geology and a model of hydrocarbon accumulations in the Bongor Basin, The Republic of Chad[J]. Acta Petrolei Sinica, 2011, 32(3): 379-386.
    [20] 史玉玲,侯读杰,窦立荣,等. 乍得H区块Bongor盆地原油母质生源特征[J]. 石油地质与工程,2011,25(1):5-9.

    Shi Yuling, Hou Dujie, Dou Lirong, et al. Crude oil geochemical characteristics of Bongor Basin in block H of Chad[J]. Petroleum Geology and Engineering, 2011, 25(1): 5-9.
    [21] 文志刚,王登,宋换新,等. Bongor盆地北部斜坡带稠油地球化学特征及成因[J]. 石油天然气学报,2013,35(4):17-21.

    Wen Zhigang, Wang Deng, Song Huanxin, et al. Geochemical characteristics and origin of heavy oil in the northern slope of Bongor Basin[J]. Journal of Oil and Gas Technology, 2013, 35(4): 17-21.
    [22] 文志刚,窦立荣,程顶胜,等. 乍得Bongor盆地南部坳陷油气特征与成因[J]. 天然气地球科学,2021,32(2):205-214.

    Wen Zhigang, Dou Lirong, Cheng Dingsheng, et al. Hydrocarbon characteristics and genesis in the southern depression of Bongor Basin, Chad[J]. Natural Gas Geoscience, 2021, 32(2): 205-214.
    [23] 程顶胜,窦立荣,王景春,等. 乍得Bongor盆地天然气地球化学特征及成因[J]. 地学前缘,2018,25(2):112-120.

    Cheng Dingsheng, Dou Lirong, Wang Jingchun, et al. Geochemical characteristics and genesis of natural gas in the Bongor Basin[J]. Earth Science Frontiers, 2018, 25(2): 112-120.
    [24] Chen L, Ji H C, Dou L R, et al. The characteristics of source rock and hydrocarbon charging time of Precambrian granite reservoirs in the Bongor Basin, Chad[J]. Marine and Petroleum Geology, 2018, 97: 323-338.
    [25] Dou L R, Li W, Cheng D S. Hydrocarbon accumulation period and process in Baobab area of Bongor Basin[J]. Journal of African Earth Sciences, 2020, 161: 103673.
    [26] 窦立荣,肖坤叶,王景春. 强反转裂谷盆地石油地质与勘探实践[M]. 北京:石油工业出版社,2018.

    Dou Lirong, Xiao Kunye, Wang Jingchun, et al. Petroleum geology and exploration practice of strongly-inverted rift basin[M]. Beijing: Petroleum Industry Press, 2018.
    [27] 程顶胜,窦立荣,肖坤叶,等. 乍得Bongor强反转裂谷盆地高酸值原油成因[J]. 岩石学报,2014,30(3):789-800.

    Cheng Dingsheng, Dou Lirong, Xiao Kunye, et al. Origin of high acidity oils in the intensively inversed rift basin, Bongor Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 789-800.
    [28] Genik G J. Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and The Central African Republic (C. A. R.)[J]. Tectonophysics, 1992, 213(1/2): 169-185.
    [29] 肖坤叶,赵健,余朝华,等. 中非裂谷系Bongor盆地强反转裂谷构造特征及其对油气成藏的影响[J]. 地学前缘,2014,21(3):172-180.

    Xiao Kunye, Zhao Jian, Yu Zhaohua, et al. Structural characteristics of intensively inversed Bongor Basin in CARS and their impacts on hydrocarbon accumulation[J]. Earth Science Frontiers, 21(3): 172-180.
    [30] 文志刚,李威,窦立荣,等. Bongor盆地Baobab地区潜山油气成藏期次[J]. 石油学报,2018,39(8):869-875.

    Wen Zhigang, Li Wei, Dou Lirong, et al. Buried-hill hydrocarbon accumulation stage of Baobab area in Bongor Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 869-875.
    [31] 段传丽,陈践发. 生物降解原油的地球化学特征及其意义[J]. 天然气地球科学,2007,18(2):278-283.

    Duan Chuanli, Chen Jianfa. Geochemical characteristics of biodegraded crude oil and their significances[J]. Natural Gas Geoscience, 2007, 18(2): 278-283.
    [32] 王海峰,刘俊强,包木太. 原油生物降解过程研究[J]. 油田化学,2011,28(4):451-453,471.

    Wang Haifeng, Liu Junqiang, Bao Mutai. Studies on the biodegradation process of the crude oil[J]. Oilfield Chemistry, 2011, 28(4): 451-453, 471.
    [33] Kuo L C. An experimental study of crude oil alteration in reservoir rocks by water washing[J]. Organic Geochemistry, 1994, 21(5): 465-479.
    [34] Palmer S E. Effect of biodegradation and water washing on crude oil composition[M]//Engel M H, Macko S A. Organic geochemistry. Boston: Springer, 1993: 511-533.
    [35] Bailey N J L, Krouse H R, Evans C R, et al. Alteration of crude oil by waters and bacteria-evidence from geochemical and isotope studies[J]. AAPG Bulletin, 1973, 57(7): 1276-1290.
    [36] Palmer S E. Effect of water washing on C15+ hydrocarbon fraction of crude oils from Northwest Palawan, Philippines[J]. AAPG Bulletin, 1984, 68(2): 137-149.
    [37] de Hemptinne J C, Peumery R, Ruffier-Meray V, et al. Compositional changes resulting from the water-washing of a petroleum fluid[J]. Journal of Petroleum Science and Engineering, 2001, 29(1): 39-51.
    [38] 常象春,孙婷婷,王悦,等. 水驱原油组分蚀变的地球化学响应及控制因素[J]. 地球科学与环境学报,2017,39(6):807-825.

    Chang Xiangchun, Sun Tingting, Wang Yue, et al. Geochemical alteration of waterflooded oils and the controlling factors[J]. Journal of Earth Sciences and Environment, 2017, 39(6): 807-825.
    [39] Peters K E, Moldowan J M. The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments[M]. Englewood Cliffs: Prentice Hall, 1993.
    [40] Bennett B, Fustic M, Farrimond P, et al. 25-Norhopanes: Formation during biodegradation of petroleum in the subsurface[J]. Organic Geochemistry, 2006, 37(7): 787-797.
    [41] Moldowan J M, McCaffrey M A. A novel microbial hydrocarbon degradation pathway revealed by hopane demethylation in a petroleum reservoir[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1891-1894.
    [42] Neto F R A, Trendel J M, Restle A, et al. Occurrence and formation of tricyclic terpanes in sediments and petroleums[M]//Bjorøy M. Advances in organic geochemistry. Chichester: John Wiley & Sons Ltd., 1983: 659-667.
    [43] Ekweozor C M, Okogun J I, Ekong D E U, et al. C24-C27 degraded triterpanes in Nigerian petroleum: Novel molecular markers of source/input or organic maturation?[J]. Developments in Economic Geology, 1981, 15: 653-662.
    [44] Connan J, Bouroullec J, Dessort D, et al. The microbial input in carbonate-anhydrite facies of a sabkha palaeoenvironment from Guatemala: A molecular approach[J]. Organic Geochemistry, 1986, 10(1/2/3): 29-50.
    [45] 包建平,朱翠山,陈希文,等. 珠江口盆地珠一坳陷原油和烃源岩中C24四环萜烷及其成因[J]. 地球化学,2018,47(2):122-133.

    Bao Jianping, Zhu Cuishan, Chen Xiwen, et al. C24 tetracyclic terpanes and their origin in crude oils and source rocks from the Zhu 1 depression, Pearl River Mouth Basin[J]. Geochimica, 2018, 47(2): 122-133.
    [46] Trendel J M, Restle A, Connan J, et al. Identification of a novel series of tetracyclic terpene hydrocarbons (C24-C27) in sediments and petroleums[J]. Journal of the Chemical Society, Chemical Communications, 1982(5): 304-306.
    [47] 陈腾水,徐忠辉,刘菊,等. 晋县凹陷未熟蒸发岩沉积物中C22-C27甾烯和C24-C30四环萜烷的检出[J]. 地球化学,2009,38(3):289-298.

    Chen Tengshui, Xu Zhonghui, Liu Ju, et al. Occurrence of C22-C27 sterenes and C24-C30 tetracyclic terpanes in an immature evaporitic sediment from the Jinxian Sag, North China[J]. Geochimica, 2009, 38(3): 289-298.
    [48] Yang F, Wang T, Li M. The distribution of triaromatic steroids and oil group classfication of Ordovician petroleum systems in the cratonic region of the Tarim Basin, NW China[J]. Petroleum Science and Technology, 2015, 33(21/22): 1794-1800.
    [49] 张宝收,李美俊,赵青,等. 原油中C26-C28三芳甾烷相对含量计算方法及其应用[J]. 石油实验地质,2016,38(5):692-697.

    Zhang Baoshou, Li Meijun, Zhao Qing, et al. Determining the relative abundance of C26-C28 triaromatic steroids in crude oils and its application in petroleum geochemistry[J]. Petroleum Geology & Experiment, 2016, 38(5): 692-697.
    [50] Wang G L, Wang T G, Simoneit B R T, et al. The distribution of molecular fossils derived from dinoflagellates in Paleogene lacustrine sediments (Bohai Bay Basin, China)[J]. Organic Geochemistry, 2008, 39(11): 1512-1521.
    [51] Moldowan J M, Dahl J, Jacobson S R, et al. Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors[J]. Geology, 1996, 24(2): 159-162.
    [52] 包建平,倪春华,朱翠山,等. 高演化地质样品中三芳甾类标志物及其地球化学意义[J]. 沉积学报,2020,38(4):898-911.

    Bao Jianping, Ni Chunhua, Zhu Cuishan, et al. Triaromatic steroids and their geochemical significance in highly mature geological samples in the North Guizhou Depression[J]. Acta Sedimentologica Sinica, 2020, 38(4): 898-911.
    [53] 刘卫民. 生物降解和热蚀变叠加作用对原油组成及生烃行为的影响[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所),2020.

    Liu Weimin. Changes in the compositions and the secondary hydrocarbon generation behavior of crude oils under the influences of superimposed secondary alterations[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2020.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(1)

Article Metrics

Article views(24) PDF downloads(0) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-03-28
  • Revised:  2022-06-12
  • Accepted:  2022-08-12
  • Published:  2024-02-04

Geochemical Characteristics and Origins of Crude Oil in the North Slope, Bongor Basin, Chad

doi: 10.14027/j.issn.1000-0550.2022.067
Funds:

National Science and Technology Major Project 2016ZX05029

Abstract: Objective The physical properties and geochemical characteristics of oil found in the Northern slope, Bongor Basin, Chad, are clearly different. This paper aims to determine their differences and the influences on their properties and provide practical guidance for the assessment and prediction of oil quality in future oil exploration in this region. Methods The physical properties and molecular marker compounds of 41 crude oil samples from the northern slope belt were analyzed by oil family separation, gas chromatography, gas chromatography-mass spectrometry. [ Results and Conclusions ]It was found that the degree of biodegradation is responsible for the differences. Non-, slightly- or heavily degraded oils were classified according to the relative content and distribution pattern of normal alkanes and acyclic isoprenoids, as well as the baseline characteristics of gas chromatograms. Burial depth is evidently the most important factor constraining the degree of biodegradation. No biodegraded oil was found deeper than 1 300 m; the most heavily biodegraded oil occurs shallower than 800 m. In reservoirs between these depths, the degree of biodegradation is associated with distance from main faults, thickness of local caprock and type of trap.

CHEN QingYao, WANG WenQiang, CHENG DingSheng, XIAO Hong, RAN ZiChao. Geochemical Characteristics and Origins of Crude Oil in the North Slope, Bongor Basin, Chad[J]. Acta Sedimentologica Sinica, 2024, 42(2): 675-687. doi: 10.14027/j.issn.1000-0550.2022.067
Citation: CHEN QingYao, WANG WenQiang, CHENG DingSheng, XIAO Hong, RAN ZiChao. Geochemical Characteristics and Origins of Crude Oil in the North Slope, Bongor Basin, Chad[J]. Acta Sedimentologica Sinica, 2024, 42(2): 675-687. doi: 10.14027/j.issn.1000-0550.2022.067
  • 生物降解是一种常见的原油次生变化过程[12],对原油物性与分子组成特征具有明显的影响[3]。以代谢烃类为能量来源的微生物需要适宜的生存条件,因此生物降解多发生于地层温度较低的浅表地层[45],尤其是古近系—新近系三角洲沉积体系及深水成藏组合中的浅部储层中[68],全球范围内生物降解原油的储量规模远超常规原油储量[9]

    原油由多类型化合物组成,不同类型化合物抗生物降解能力具有显著差别[8]。例如,短链的正构烷烃因化合物结构最为简单,所以对生物降解极为敏感,是原油中最易发生降解的组分[3,8];随着化合物结构逐渐变复杂,化合物优先降解的一般顺序依次为异构烷烃、类异戊二烯烃和烷基苯、规则甾烷和烷基化芳香族、藿烷类、芳香甾类、重排甾烷、三环萜烷[1012],目前,没有卟啉可被降解的确凿证据[8]。基于不同化合物在降解过程中蚀变顺序的差异,前人提出了多种表征生物降解强度的分级方案[8,1114]

    前人围绕Bongor盆地下白垩统含油气系统做了大量工作,包括储层发育模式与特征表征[1519],烃源岩评价与原油地球化学特征[2023];充注史、成藏史与油气运移示踪[2425]等。前人对Bongor盆地原油存在降解现象有所报道[26],通过分析原油中有机酸的组成,认为盆内部分原油总酸值异常高是由于遭受严重生物降解作用所导致[27],但并未对这些降解原油的有机地球化学特征、降解作用差异及其主控因素作出系统解释。基于盆地北部斜坡带41件原油样品系统的地球化学分析,探讨了控制生物降解原油空间分布的主要地质因素,以期为Bongor盆地及周边地区石油勘探工作中原油性质的预测提供工作思路与依据。

  • Bongor盆地位于中非裂谷系与西非裂谷系结合部,是一个经历过两期构造反转、具有复杂生烃、成藏史的典型的中—新生代陆内被动裂谷湖盆[26,2829]图1)。盆地沿NWW走向呈纺锤形发育,面积约1.8×104 km2。平面上盆地内部断陷的分布具有“南北分带、东西分块”的特点,由西向东呈现出南断北超、北断南超的交替变化。据重磁、地震等资料,盆地自南向北可划分为四个次级构造单元:南部坳陷带、南部隆起带、中央坳陷带和北部斜坡带,两个坳陷均为半地堑结构[26],其中,北部斜坡带是盆地已证实的油气富集区,发现Ronier背斜带、Mimosa-Kubla-Phoenix构造带、Baobab-Raphia构造带、Daniela背斜带、Lanea构造带等数个含油气构造带[30]

    Figure 1.  Map of geographical location, schematic structures and stratigraphy of the Bongor Basin

    Bongor盆地是在前寒武系结晶基岩基础上发育的白垩系—新生界陆相裂谷盆地,基底之上充填厚达10 km的中—新生代陆相碎屑沉积物。早白垩世,断陷活动强烈,盆地基底断层活化或产生新的断层,发育了一系列NWW—SEE走向的北倾、南倾大断裂和北东—南西向断面陡立的调节断层[24]。晚白垩世,非洲板块与欧亚板块碰撞挤压,导致Bongor盆地发生严重构造反转,整体抬升剥蚀,并表现为北部、西部剥蚀强度较大,东南部剥蚀强度稍弱的特点,剥蚀厚度达1 200~1 500 m,上白垩统几乎全盆缺失[26]。经“两升三降”多期地层沉降及构造抬升,至古近纪,盆地成型。综合岩石学、电测特征、生物地层学特征及年代地层学分析,盆地内下白垩统自下而上划分为Prosopis组(P组)、Mimosa组(M组)、Kubla组(K组)、Ronier组(R组)和Baobab组(B组)。其中P组和M组为盆地主力烃源层,早白垩世P组—M组沉积期,盆地处于裂陷湖盆快速伸展发育阶段,P组沉积期末,水体基本没过盆内断垒,形成统一湖盆。因此,P组和M组大套暗色泥岩中夹P组厚层中—粗粒砂岩,砂岩段中所夹的薄层泥岩仍为深色还原泥岩,砂岩粒度粗、分选差,指示沉积物近源、深水、粗屑、重力流为主、持续水进的沉积特征。K组沉积于盆地断坳转换期,此期沉积速率降低,盆地整体进入缓慢沉降阶段。R组—B组沉积期为稳定沉降的坳陷期,沉积中心逐渐向盆内迁移,多数浊积岩储层在该时期形成。K组—B组沉积期,盆地处于裂陷后期,统一湖盆经历扩张到逐渐向坳陷盆地发育以致消亡的过程,发育多个水进—水退旋回。此时盆地内物源虽仍具有近物源特征,但逐渐趋于稳定,物源供给丰富。盆地储层条件较好,下白垩统各组均有储层发育。Bongor盆地共发育四套区域性盖层,自下而上分别为P组页岩、M组页岩(同时为烃源岩,其中夹少量泥岩)、K组上部泥页岩与R组下部厚层泥岩。

    Bongor盆地圈闭的形成及改造均受到晚白垩世末“桑顿挤压”影响:地层反转形成大量反转背斜构造,全盆均有发育;此外,早期形成的圈闭受挤压而破坏,圈闭条件变得十分复杂[19]。盆地下白垩统顶部主要发育由B—R—K组组成的、受构造控制的“下生上储”型成藏组合,以较低充注度的断背斜或断块圈闭为特征;下白垩统底部主要发育由M—P组组成的“自生自储”型成藏组合,以反转背斜圈闭为主。地层岩性岩相和反转构造共同控制着油气的分布。

  • 分析了来自Bongor盆地29口井共41件原油样品,主要分布于北斜坡带(图1)。样品前处理与测试分析均在中国石油大学(北京)油气资源与探测国家重点实验室完成,实验方法为:取30 mg原油,用石油醚溶解、沉淀、过滤以脱去沥青质,而后,以硅胶/氧化铝(3∶2)固相层析柱依次使用石油醚、石油醚+二氯甲烷(2∶1)、二氯甲烷+甲醇(93∶7)洗脱饱和烃、芳香烃和非烃组分。饱和烃色谱分析由Shimadzu GC—2010完成;色谱柱为HP-5MS 弹性石英柱(30 m×0.25 mm×0.25 μm),FID检测,载气为氦气,初温100 ℃,保持1 min,以4 ℃/min升温至300 ℃,而后保持25 min。饱和烃及芳香烃组分GC-MS分析以Aglient 6890GC/5975i MS色谱—质谱联用仪完成;色谱柱为HP-5MS弹性石英毛细柱(60 m×0.25 mm×0.25 μm)。升温程序:进样口温度300 ℃,传输线温度300 ℃;初温50 ℃,保持1 min,以20 ℃/min升至120 ℃,再以3 ℃/min升至310 ℃,保持25 min。质谱仪离子源采用电子轰击方式,电离电压为70 eV,发射电流300 μA,扫描范围为m/z 50~570。

  • 原油物性与族组分组成受成熟度与次生改造控制[1,6,8]。通常,饱和烃与芳烃的含量随成熟度的增加而上升,随水洗、生物降解等次生作用强度的增加而降低[8]。Bongor盆地原油总体具有高凝点、高含蜡的陆相原油特征[26]。原油重度介于13.9°~37.3° API,平均为24.3° API,总体随埋深增大而增大。平面上,北斜坡东部Raphia S油田原油总体为常规稀油,API平均为30.1°,中部Baobab C-2、Baobab C-5井区原油API度较小,平均为16.1°。Bongor盆地下白垩统各组均有高酸值原油产出,尤其集中于R组与B组[26]。前人基于傅里叶变换离子回旋共振质谱分析对高酸值原油成因进行研究,认为生物降解作用导致残油羧基类化合物相对富集,羧酸含量显著增加[27],从而控制着原油总酸值(Total Acid Number,TAN)。

    一般来说,原油次生变化造成饱和烃含量相对下降、非烃+沥青质含量相对增加,由此导致密度与黏度的上升[3132]。Bongor盆地原油饱和烃含量介于14.47%~65.77%,平均为47.12%,芳烃含量介于6.68%~46.2%,平均为16.96%,饱芳比介于0.36~9.84,平均为3.23,非烃+沥青质含量介于2.40%~33.45%,平均为18.16%(表1)。结合研究区原油饱和烃气相色谱特征发现,绝大部分非烃含量超过15%,且非烃+沥青质含量超过20%的原油样品其饱和烃气相色谱基线抬升较为明显,正构烷烃系列出现缺失,且原油颜色较深,黏度较大,表明其可能受到次生改造,这一现象在Baobab井区表现尤为明显,该区原油非烃+沥青质含量平均达到了22.74%。高饱芳比原油主要分布于北斜坡P组和M组,指示较大的埋深可能控制原油族组分特征。

    井号深度/m层位饱和烃/%芳香烃/%非烃/%沥青质/%饱芳比API生物降解等级[11]
    Daniela 1-171 363.9~1 380.052.2813.377.297.903.9132.2未降解
    Laniea 2-3922.5~1 002.140.8012.166.483.863.36轻微
    Mimosa N-1866.0~873.0K49.1920.2910.887.312.4217.3严重
    Mimosa-91 600.0~1 660.0M57.2812.977.916.334.41轻微
    Raphia S-1811.7~826.6K57.7611.787.762.164.9028.6未降解
    Raphia S-111 412.0~1 474.9M-P56.5612.345.471.724.5835.5未降解
    Raphia-1526.0~532.0K37.7420.7017.3610.351.8218.8严重
    Ronier CN-11 014.4~1 024.0R32.1415.2910.285.392.1019.0严重
    Ronier D-12 183.0~2 188.8P65.776.681.500.909.8437.3未降解
    Ronier 4-191 538.7~1 572.1M-P33.657.273.344.074.63未降解
    Prosopis 1-11 565.9~1 647.234.029.176.213.403.7132.5未降解
    Baobab 1-31 182.5~1 253.1P44.8919.6717.125.562.28轻微
    Baobab N 1-211 162.1~1 247.8M49.3716.9311.294.752.92轻微
    BNE-181 742.0~1 856.1P50.4816.9810.162.222.97未降解
    Baobab S 1-81 533.5~1 685.6P55.6915.569.314.173.58未降解
    Baobab C-2650.0P38.8924.8517.444.321.57严重
    Baobab C-21 106.0P37.1823.4019.398.171.59严重
    Baobab C 1-151 370.0~1 638.0基底46.7815.5912.547.453.0023.5严重
    Baobab N-81 678.3~1 692.8K35.3010.307.0626.393.4318.2轻微
    Baobab N-81 751.8~1 765.0P44.328.739.2815.375.0819.8轻微
    Baobab S-62 216.1~2 219.1P43.9412.587.145.903.4926.0未降解
    Baobab-1542.0~554.0P36.5718.2814.5512.692.0016.2严重
    Mimson N-2896.7~976.2K14.4746.2017.464.210.3617.7严重
    Raphia SW-2969.0~1 038.8K54.5714.4510.068.593.7832.1未降解
    Raphia SW-2969.0~1 038.8(脱水)基底54.5014.719.907.103.7032.1未降解
    Raphia S-1980.9~990.5基底50.4612.2911.697.664.1127.6轻微
    Raphia-11 051.0~1 053.0K61.2412.5713.113.874.8724.5轻微
    Ronier-11 012.0~1 070.8M49.7416.7615.625.082.9720.8轻微
    Baobab N 1-51 089.5~1 145.5R55.2017.5313.484.283.15轻微
    Baobab N 1-241 431.1~1 485.8P54.1316.9714.132.643.19轻微
    Baobab N-141 267.0~1 303.7P52.7723.0513.963.692.29轻微
    BNE-111 362.0~1 534.4P52.7021.1514.663.912.49轻微
    Baobab S-11 385.6~1 530.6M-P54.6116.0610.803.233.40轻微
    Baobab C-2532.0~810.0M-P42.7623.1816.124.261.8416.1严重
    Baobab C-2550.0P40.7521.2519.455.291.9216.2严重
    Baobab C-21 002.0基底42.8523.0919.372.851.86严重
    Baobab C-21 267.0基底42.1122.5419.343.611.87严重
    Baobab C-51 306.9~2 100.0P52.2513.9616.602.243.7428.8轻微
    Baobab N-81 388.0~1 407.7P52.0814.0217.943.683.7129.8轻微
    Baobab S-62 276.6~2 278.7P52.4915.4712.3711.893.3933.9未降解
    Baobab-11 096.0~1 107.0P51.7725.3217.103.112.0428.0轻微

    Table 1.  Sample information, physical properties and bulk compositions of oils from the Bongor Basin

    水洗作用是地下水溶解并带走原油中相对分子质量较小、溶解度较高的化合物,从而改变残油的化学组成[3338],在温度高于80 ℃且有地下水活动的地区或温度低于80 ℃但地下水中不含溶解氧的情况下,水洗作用才可能在油气次生变化中占主导地位[7]。水洗作用与生物降解作用都是常见的原油次生改造过程,但区别在于水洗作用通常会导致低碳数正构烷烃,尤其是nC15-严重损失[38],饱芳比急剧增大,而TAN基本不受水洗作用影响[3537]。Bongor盆地原油未出现低碳数正构烷烃相对中—高碳数正构烷烃损失的现象(图2a,b),同时部分原油TAN值较高,例如Mimosa-3井506.3~516.2 m井段,TAN为8.29 mgKOH/g,因此推测水洗作用对Bonogr盆地原油影响有限,生物降解作用是Bongor盆地原油主要的次生变化过程。

    Figure 2.  Gas chromatograms showing distribution of normal alkanes and acyclic isoprenoids in representative oil samples from the Bongor Basin

    据前人研究,Bongor盆地原油均属于同一原油族群,甾烷成熟度参数C29ββ/(αα+ββ)与αααC2920S/(20S+20R)值分别介于0.28~0.51与0.31~0.53,多处于成熟阶段,属烃源岩成熟阶段排烃产物,仅部分地区可能存在低熟原油[26]

  • 生物降解作用是一个准阶梯式过程[8]。分子结构相对简单的正构烷烃首先遭受微生物降解作用,支链烷烃因甲基团对微生物具有一定屏蔽作用,因而相对正构烷烃具有较强的抗降解能力[3,11]。基于谱图中正构烷烃、类异戊二烯烃及色谱基线特征(图2),参考Peters et al.[39]总结的经典标尺法(PM level),使用Wenger et al.[11]提出的表征生物标志物蚀变剧烈程度的术语,将Bongor盆地所有原油划分为未降解原油(相当于PM≤1)、轻微降解原油(相当于PM 1~4)与严重降解原油(相当于PM 5~7)三类。

    未降解原油(图2a,b)饱和烃色谱显示其正构烷烃系列分布完整,丰度具绝对优势,碳数分布区间为nC7~nC33,色谱基线较平直,常用于判识原油生物降解强度的生标参数Pr/nC17(姥鲛烷/正碳十七烷)与Ph/nC18(植烷/正碳十八烷)值均相对较小。轻微生物降解原油(图2c,d)的气相色谱显示其正构烷烃表现出较为明显的损失,尤其低碳数正构烷烃,碳数分布范围变小,并向高碳数偏移,相对丰度相较于无环类异戊二烯烃下降,因此Pr/nC17与Ph/nC18相对增大,同时色谱基线有所抬升。严重降解原油(图2e,f)中色谱基线进一步抬升,正构烷烃、无环类异戊二烯烃均已损失殆尽,部分甾藿类化合物也遭受降解,Pr/nC17与Ph/nC18普遍失效,需要结合其他生物标志物参数对原油遭受的生物降解等级进行标定。

  • 藿烷类化合物是一系列具有重要地球化学意义的生物标志化合物,广泛应用于原油族群划分、油源对比、沉积环境判识等方面[8,10]。其中,25-降藿烷系列是一类具有特殊地球化学意义的分子标志物,严重生物降解作用导致藿烷系列化合物C-10位上失去甲基团,基峰由m/z 191变成m/z 177,例如C30-17α(H),21β(H)-藿烷遭受严重降解时失去C-10位上的甲基团,分子量减少14,变为C2925-降17α(H),21β(H)-藿烷。因此,25-降藿烷系列的产生是原油遭受严重生物降解的证据[8,4041](PM≥6)。Bongor盆地部分原油检测出了完整的25-降藿烷系列(图3),Baobab C-2 (650 m)原油C2925-降藿烷/C30藿烷为0.23,Ronier CN-1(1 014.4~1 024.0 m)原油C2925-降藿烷丰度甚至高于C30藿烷,指示该原油遭受剧烈的生物降解作用,这一认识与前人对Bongor盆地高酸值原油成因的研究结论相符[27]。轻微降解原油(Riphia S-1,811.7~826.6 m;Baobab 1-3,1 182.5~1 253.1 m)中,藿烷类化合物均以C30藿烷为主峰,C29-降藿烷次之(图3a,b)。综上,Bongor盆地严重降解原油的物性及分子标志化合物应具有以下特征:API总体小于20°,饱芳比总体小于2.0,正构烷烃、无环类异戊二烯烃(尤其是姥鲛烷、植烷)基本完全降解,25-降藿烷系列化合物分布较为完整(Bongor盆地尚未发现25-降藿烷系列被降解的报道)。

    Figure 3.  Mass chromatograms (m/z 191 and m/z 177) showing distribution of hopanes and 25⁃norhopanes in oils from Bongor Basin

    同时,Bongor盆地原油成熟度参数C32藿烷22S/(22S+22R)分布区间为0.58~0.66,平均为0.61,超过平衡值(0.57~0.62),已进入主生油窗,为烃源岩成熟阶段产物,且成熟度差异较小,指示样品属同一族群,这一结论与前人研究结果相符[26]

  • 三环萜烷系列(Tricyclic Terpanes,TT)化合物普遍存在于原油和烃源岩抽提物中,是饱和烃的重要组成部分[8]。由于其具有较强的抗生物降解能力,三环萜烷系列化合物的相对含量及其相关地球化学参数在油—油对比、油—源对比、沉积环境判识等方面应用广泛。目前普遍认为,海相、咸水湖相烃源岩及其相关成因原油中一般具有C23三环萜烷优势,淡水湖相烃源岩及其相关成因原油则常见C21三环萜烷优势[8,42]。Bongor盆地原油饱和烃以C21三环萜烷(C21TT)优势为主,相对百分含量平均为41.2%,极少部分原油C21TT与C23TT均势(图4a~d),表现为淡水湖相烃源岩成因原油特征。C23TT/C21TT值分布于0.46~0.95,平均为0.58,(C19+C20)TT/C23TT值分布于0.75~1.08,平均为0.92,分布较为集中(图5a),指示Bongor盆地原油属同一族群。

    Figure 4.  Mass chromatograms (m/z 191 and m/z 231) showing distribution of the typical tricyclic terpanes and triaromatic steroids in oil samples from the Bongor Basin

    Figure 5.  Cross plots of (C19+C20)TT/C23TT vs. C23TT/C21TT (a) and C2620S TAS/C2820S TAS vs. C2720R TAS/C28 20R TAS (b)

    四环萜烷的成因目前有两种主流认识:源于细菌或陆源有机质输入演化而来的原生输入说[4344]与源于藿烷类化合物遭受生物降解引起C17-C21断键所形成的后生形成说[4547]。一般而言,由三萜类化合物在微生物作用下脱去E环或A环后所形成的C24四环萜烷最为常见[46],Bongor盆地原油四环萜烷丰度普遍较高,指示相关烃源岩具陆源有机质贡献(图4a~d)。

  • 三芳甾烷(Triaromatic Steroids,TAS)广泛分布于石油和沉积有机质中,由单芳甾烷进一步芳构化和脱甲基化而形成[8,4849],其分布与组成特征所提供的地球化学信息在成熟度[8,50]、有机质来源和油源研究[51]中具有广泛的应用。同时,三芳甾烷是抗生物降解能力最强的化合物之一,其分布与组成特征在25-降藿烷系列普遍存在的严重降解原油中仍保存完好,仅在生物降解作用强度达PM≥9时才会遭受实质性损失[8],因此,三芳甾烷系列化合物在生物降解原油的油—油对比研究中具有良好的应用效果[52]。Bongor盆地原油C2820(S+R)TAS占绝对优势(图4f,图5b),C2720R TAS/C2820R TAS和C2620S TAS/C2820S TAS比值分别介于0.31~0.57和0.29~0.56,组成与分布特征高度一致,指示所有原油属同一族群。

  • 原油生物降解所需要的基本条件是维持微生物的活性。与地质和地球化学作用过程相比,降解过程可视为具有瞬发性,据好氧微生物降解模拟实验结果,理想条件下原油从PM 0降解至PM≥6,这一过程可在数月内这一时间尺度上完成[53]。因此,此次不考虑时间对原油降解的影响,而重点讨论成藏后的地质条件对原油生物降解作用的控制。

    Bongor盆地北部斜坡带地温梯度稳定[26],油藏的温度取决于埋深。如前述,Pr/nC17与Ph/nC18常用于判识生物降解强度,但该参数在原油正构烷烃降解殆尽时即已失效(PM≈3),无环类异戊二烯烃(以Pr、Ph为例)由于相对较强的抗生物降解能力,在PM=4时逐渐开始降解,甚至在PM=5时仍能部分保存[10]。基于这一基本特征,结合三环萜烷这类具有很强抗生物降解能力的生物标志化合物(仅在PM≥8时发生实质性消耗),构建了(Pr+Ph)/C19-23TT参数,分析降解原油从正构烷烃基本消失至无环类异戊二烯烃基本消失这一阶段降解强度(约PM 3~5)。Bongor盆地原油(Pr+Ph)/C19-23TT比值随埋深变化关系图(图6)表明,油藏埋深大于1 300 m时,绝大部分原油均未遭受明显生物降解;油藏埋深小于800 m时,基本都遭受了严重的生物降解(Baobab-1,542.00~554.00 m,16.2° API;Baobab C-2,550.00 m,16.2° API)。这一特征证实埋深对原油生物降解具有显著的控制作用,油藏埋深的增加必然伴随着地层温度的升高,微生物活性由此降低,地层温度超过80 ℃时会出现“灭活”的现象[8];同时,埋深增大也有利于减小油藏与富含氧、氮等有机营养物质的大气淋滤水或浅层地表水接触的概率,从而降低油藏遭受严重生物降解的风险。当油藏埋深介于800~1 300 m时,原油降解强度具有明显差异,Mimson N-2 896.70~976.20 m井段原油Pr与Ph已基本完全消失,原油密度为17.7° API,遭受了严重的生物降解。但Raphia S-1 811.70~826.60 m井段的原油(Pr+Ph)/C19-23TT值为15.7,原油密度为28.6° API,仅遭受轻微生物降解。这一结果表明除埋深外,其他地质因素也控制着生物降解作用的发生。

    Figure 6.  Variations of (Pr+Ph)/C19-23TT ratios with burial depth of oil samples from the Bongor Basin

    Bongor盆地经历了多期强烈构造活动,发育多期NW—SE向断裂系统,控制着盆地的发育模式。裂谷盆地中,断裂可能起着沟通油源的作用,促进原油沿断裂运移大规模成藏,同时也有可能降低圈闭有效性从而破坏油藏,因此,断裂系统的发育和油藏的形成与分布具有密切关系,且在一定程度上控制着油藏后生改造[26]。Bongor盆地埋深介于800~1 300 m的油藏中,Mimosa N-1井(866.00~873.00 m)、Baobab C-2井(1 106 m)紧邻边界深大断裂,有利于富含养分的大气水/浅表地层水沿断裂进入储层,导致严重生物降解的发生(图7)。而Raphia S-1井(811.70~826.60 m)虽埋深较浅,但远离边界深大断裂,且处于断背斜圈闭中心部位,周缘断层规模小,封闭性良好[26],微生物生存所需的营养物质难以补充,因此生物降解作用较为轻微。

    Figure 7.  Distribution of major faults and location of some of the wells sampled in the Bongor Basin

    Bongor盆地晚白垩世发生构造反转,导致上白垩统遭受了剧烈剥蚀,例如,Baobab C-2地区上覆盖层K组与R组被完全剥蚀,总计剥蚀厚度超过1 000 m,而K组与R组发育多套区域性盖层,对圈闭有效性起关键作用。前人研究表明,Bongor盆地Great Baobab地区油气充注于坎潘期[2930],而后地层剧烈抬升,随后转入热沉降,于新近纪再次隆升,虽然Baobab C-2井基岩油藏现今埋深为1 267.00 m,但其在早渐新世的埋深小于800 m(图8a),上覆区域性盖层仅余P组页岩,且此时期P组埋深小于500 m,浅埋藏的储盖组合可能不利于该地区油藏品质的保存,导致该区域油藏普遍遭受严重降解。此外,前人通过流体包裹体研究发现,该处原油除白垩世末全盆范围内的两期油气充注外(分别为约80 Ma与70 Ma),在约30 Ma还发生了一次油气充注,为原生油气藏的破坏,油气二次运移并形成次生油气藏[30]。这也支持了前文构造活动可能破坏该地区圈闭封闭性的观点。

    Figure 8.  Burial histories of wells Baobab C⁃2 and Raphia S⁃1 in the Bongor Basin (modified from reference [26])

    Raphia地区埋藏史与充注史与Great Baobab地区相似,但构造强度相对较弱,在盆地晚白垩世隆升中,上白垩统剥蚀程度较小,仅R组被部分剥蚀,K组、M组与P组中三套区域性盖层保存完好。因此,虽然Raphia S-1(811.70~826.60 m)油藏埋深较Baobab C-2井基岩油藏浅约450 m(图8b),但相对较弱的构造活动(图7),厚度较大的盖层与多层系的储层组合配置,可能为该地区油藏提供了更好的保存条件,该地区未发育次生油气藏[30]

    此外,油藏类型对原油的生物降解也具有一定控制作用。Great Baobab油区面积大,油藏类型多,该油区中深度相同而类型不同的油藏所遭受生物降解的程度也具有差异(表1图9)。Baobab C油田以潜山油气藏为主[26],上覆非渗透性地层,保存条件良好,但部分油藏由于其紧邻边界深大断层,且潜山油藏自身裂缝、溶蚀孔洞发育,在埋深小于1 300 m时,大气淋滤水/浅表地层水较易通过深大断裂渗流进入这些油藏,进而造成紧邻边界深大断裂的潜山油藏次生改造严重。以反转挤压背斜圈闭为主的Baobab NE油田与Ronier油田,仅浅部油藏由于挤压断裂的发育而易遭受降解。另外,Baobab S油田中基本都是整体封闭性较好的构造—岩性油气藏,受生物降解作用较小。西部的Raphia油田中为区块完整的断背斜—潜山油气藏,且受抬升剥蚀影响小,该油田几乎不受生物降解作用影响。

    Figure 9.  Areal distribution of oilfields with various degrees of biodegradation in the Bongor Basin

  • 通过对Bongor盆地原油生物降解控制因素的研究,认为油藏的埋深是控制盆地原油生物降解的首要因素。当埋深不够大,储层微生物仍能生存时,距深大断裂的距离、上覆盖层的厚度与圈闭类型共同控制着原油发生生物降解的强度。

    Raphia油田原油因构造活动相对较弱、距离深大断裂较远、上覆盖层保存较为完整、圈闭类型多为断背斜—潜山,因而未发生明显的生物降解(图9)。Mimosa、Ronier等油田除个别毗邻深大断裂或埋藏较浅的油藏,绝大部分为未降解原油或轻微降解原油。Great Baobab地区油藏大多具有良好的保存条件[26],因此,Baobab S与Baobab N区块原油也大多为未降解或轻微降解原油。而Baobab C-2井区潜山油藏埋深相对较浅,上覆盖层剥蚀严重且邻近边界深大断裂,因此遭受生物降解较为严重,主要产出稠油。

    综上所述,对Bongor盆地未降解原油或轻微降解原油的勘探,应优先考虑埋深大于1 300 m或远离边界深大断裂的圈闭,尤其是Raphia油田可能具有较高的价值。

  • (1) Bongor盆地北部斜坡带共41件原油样品的有机地球化学分析结果表明这些原油属于同一原油族群,但其物性、族组分、分子地球化学特征均存在明显差异,且这种差异是由于不同强度的生物降解作用所导致。根据正构烷烃、无环类异戊二烯烷烃的分布特征和气相色谱基线特征,可将Bongor盆地原油划分为三类:未降解原油、轻微降解原油和严重降解原油。

    (2) 油藏埋深是生物降解强度的主控因素,距深大断裂的距离、上覆盖层的厚度及圈闭类型也制约着生物降解的发生。Bongor盆地油藏埋深小于800 m时基本都遭受了严重生物降解,大于1 300 m时则基本未遭受明显的生物降解,当油藏埋深介于800~1 300 m时,距离深大断裂较远、上覆盖层较厚、圈闭类型受构造活动影响较弱是降低原油遭受降解强度的有利条件。

    (3) 对Bongor盆地未降解原油或轻微降解原油的勘探应优先考虑埋深大于1 300 m或远离边界深大断裂的圈闭,Raphia油田原油保存完整,可能具有较高的勘探价值。

Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return