Advanced Search
Volume 42 Issue 2
Feb.  2024
Turn off MathJax
Article Contents

YU LeDan, PENG Jun, XU TianYu, HAN HaoDong, YANG YiMing. Analysis of Organic Matter Enrichment and Influences in Fine-grained Sedimentary Strata in Saline Lacustrine Basins of Continental Fault Depressions: Case study of the upper sub-section of the upper 4th member of the Shahejie Formation in the Dongying Sag[J]. Acta Sedimentologica Sinica, 2024, 42(2): 701-722. doi: 10.14027/j.issn.1000-0550.2022.096
Citation: YU LeDan, PENG Jun, XU TianYu, HAN HaoDong, YANG YiMing. Analysis of Organic Matter Enrichment and Influences in Fine-grained Sedimentary Strata in Saline Lacustrine Basins of Continental Fault Depressions: Case study of the upper sub-section of the upper 4th member of the Shahejie Formation in the Dongying Sag[J]. Acta Sedimentologica Sinica, 2024, 42(2): 701-722. doi: 10.14027/j.issn.1000-0550.2022.096

Analysis of Organic Matter Enrichment and Influences in Fine-grained Sedimentary Strata in Saline Lacustrine Basins of Continental Fault Depressions: Case study of the upper sub-section of the upper 4th member of the Shahejie Formation in the Dongying Sag

doi: 10.14027/j.issn.1000-0550.2022.096
Funds:

National Natural Science Foundation of China 41872166

  • Received Date: 2022-05-23
  • Accepted Date: 2022-10-27
  • Rev Recd Date: 2022-07-29
  • Available Online: 2022-10-27
  • Publish Date: 2024-02-04
  • Objective The development of the “sweet spot” in lacustrine fine-grained sedimentary shale reservoirs is closely related to the enrichment of organic matter (OM). However, few studies on the causes of OM enrichment and the establishment of enrichment models of shale in faulted saline lacustrine basins have been reported. A typical continental rifted saline lake basin was developed for the upper sub-segment of the upper 4th member of the Shahejie Formation (Es4scs) in the Dongying Sag. To further understand the OM enrichment in fine-grained sedimentary shale during this period, Methods This study used thin slice identification, scanning electron microscopy, X-ray diffraction, sporopollenin identification, biomarker chromatography-mass spectrometry and other techniques. The controlling factors of organic matter enrichment were explored in detail by using each index, and the organic matter enrichment model suitable for each stage of environmental evolution of the study area was established. Results (1) OM occurs at the microscopic level as strips, infills and dispersions. The OM source was mainly lower aquatic organisms such as algae, with evidence of small amounts of terrestrial higher plant material in the middle and upper strata. (2) The sedimentary environment evolved in three stages: A shallow-water semi-arid low-oxygen environment, a deepwater semi-humid reducing environment, and a sub-deepwater semi-arid low-oxygen environment. (3) OM enrichment was mainly influenced by climate, salinity, redox condition, productivity and deposition rate. Water depth, terrestrial input, volcanism and hydrothermal activity were secondary influences. Conclusions A model of OM enrichment in fine-grained sedimentary strata of the continental rifted saline lake basin was established, which may be highly significant for the exploration and development of continental shale oil and gas in China. To summarize: high OM enrichment in the studied interval was dominated by very productive conditions, a reducing environment for preservation, suitable salinity and suitable deposition rate.
  • [1] Hao F, Zhou X H, Zhu Y M, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42(4): 323-339.
    [2] Hu T, Pang X Q, Jiang S, et al. Impact of paleosalinity, dilution, redox, and paleoproductivity on organic matter enrichment in a saline lacustrine rift basin: A case study of Paleogene organic-rich shale in Dongpu Depression, Bohai Bay Basin, eastern China[J]. Energy & Fuels, 2018, 32(4): 5045-5061.
    [3] 彭丽,陆永潮,彭鹏,等. 渤海湾盆地渤南洼陷沙三下亚段泥页岩非均质性特征及演化模式:以罗69井为例[J]. 石油与天然气地质,2017,38(2):219-229.

    Peng Li, Lu Yongchao, Peng Peng, et al. Heterogeneity and evolution model of the lower Shahejie member 3 mud-shale in the Bonan subsag, Bohai Bay Basin: An example from well Luo 69[J]. Oil & Gas Geology, 2017, 38(2): 219-229.
    [4] 刁帆,邹华耀,郝芳,等. 渤海湾盆地廊固凹陷烃源岩特征及其发育模式[J]. 石油与天然气地质,2014,35(3):326-335.

    Diao Fan, Zou Huayao, Hao Fang, et al. Characteristics and depositional models of source rocks in Langgu Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2014, 35(3): 326-335.
    [5] 殷杰,王权,郝芳,等. 渤海湾盆地饶阳凹陷沙一下亚段古湖泊环境与烃源岩发育模式[J]. 地球科学,2017,42(7):1209-1222.

    Yin Jie, Wang Quan, Hao Fang, et al. Palaeolake environment and depositional model of source rocks of the Lower submember of Sha1 in Raoyang Sag, Bohai Bay Basin[J]. Earth Science, 2017, 42(7): 1209-1222.
    [6] 邱振,卢斌,陈振宏,等. 火山灰沉积与页岩有机质富集关系探讨:以五峰组—龙马溪组含气页岩为例[J]. 沉积学报,2019,37(6):1296-1308.

    Qiu Zhen, Lu Bin, Chen Zhenhong, et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1296-1308.
    [7] Arthur M A, Sageman B B. Marine black Shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 499-551.
    [8] Ding J H, Zhang J C, Tang X, et al. Elemental geochemical evidence for depositional conditions and organic matter enrichment of black rock series strata in an inter-platform basin: The Lower Carboniferous Datang Formation, southern Guizhou, Southwest China[J]. Minerals, 2018, 8(11): 509.
    [9] 王鹏万,张磊,李昌,等. 黑色页岩氧化还原条件与有机质富集机制:以昭通页岩气示范区A井五峰组—龙马溪组下段为例[J]. 石油与天然气地质,2017,38(5):933-943.

    Wang Pengwan, Zhang Lei, Li Chang, et al. Redox conditions and organic enrichment mechanisms of black shale: A case from the Wufeng-lower Longmaxi Formations in well A in Zhaotong shale gas demonstration area[J]. Oil & Gas Geology, 2017, 38(5): 933-943.
    [10] Wei H Y, Chen D Z, Wang J G, et al. Organic accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355: 73-86.
    [11] 袁伟,柳广弟,徐黎明,等. 鄂尔多斯盆地延长组7段有机质富集主控因素[J]. 石油与天然气地质,2019,40(2):326-334.

    Yuan Wei, Liu Guangdi, Xu Liming, et al. Main controlling factors for organic matter enrichment in Chang 7 member of the Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2019, 40(2): 326-334.
    [12] 张玉玺,陈建文,周江羽. 苏北地区早寒武世黑色页岩地球化学特征与有机质富集模式[J]. 石油与天然气地质,2020,41(4):838-851.

    Zhang Yuxi, Chen Jianwen, Zhou Jiangyu. Geochemical features and organic matter enrichment in the Early Cambrian black shale, northern Jiangsu area[J]. Oil & Gas Geology, 2020, 41(4): 838-851.
    [13] Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
    [14] Gallego-Torres D, Martínez-Ruiz F, Paytan A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/3/4): 424-439.
    [15] 曹婷婷,姚威,李志明,等. 渤海湾盆地沾化凹陷湖相泥页岩地球化学特征及有机质富集规律[J]. 石油实验地质,2020,42(4):558-564.

    Cao Tingting, Yao Wei, Li Zhiming, et al. Geochemical characteristics of lacustrine shale and enrichment mechanism of organic matter in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 558-564.
    [16] 方正,蒲秀刚,陈世悦,等. 沧东凹陷孔二段页岩有机质富集特征研究[J]. 中国矿业大学学报,2021,50(2):304-317.

    Fang Zheng, Pu Xiugang, Chen Shiyue, et al. Investigation of enrichment characteristics of organic matter in shale of the 2nd member of Kongdian Formation in Cangdong Sag[J]. Journal of China University of Mining & Technology, 2021, 50(2): 304-317.
    [17] 胡涛,庞雄奇,姜福杰,等. 陆相断陷咸化湖盆有机质差异富集因素探讨:以东濮凹陷古近系沙三段泥页岩为例[J]. 沉积学报,2021,39(1):140-152.

    Hu Tao, Pang Xiongqi, Jiang Fujie, et al. Factors controlling differential enrichment of organic matter in saline lacustrine rift basin: A case study of Third member Shahejie Fm in Dongpu Depression[J]. Acta Sedimentologica Sinica, 2021, 39(1): 140-152.
    [18] Mort H, Jacquat O, Adatte T, et al. The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain: Enhanced productivity and/or better preservation?[J]. Cretaceous Research, 2007, 28(4): 597-612.
    [19] 曹竣锋,王昀颀,郭阳,等. 滇东北地区下石炭统万寿山组烃源岩生物标志物特征及沉积环境分析[J]. 矿物岩石,2019,39(2):99-109.

    Cao Junfeng, Wang Yunqi, Guo Yang, et al. Study on characteristics of biomarkers and sedimentary environment of Lower Carboniferous Wanshoushan Formation source rocks, northeast Yunnan[J]. Mineralogy and Petrology, 2019, 39(2): 99-109.
    [20] Murphy A E, Sageman B B, Hollander D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography, 2000, 15(3): 280-291.
    [21] Ibach L E J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J]. AAPG Bulletin, 1982, 66(2): 170-188.
    [22] 马义权,刘惠民,张守鹏,等. 济阳坳陷细粒混积岩类型与湖盆演化的耦合关系[J]. 地球科学,2020,45(10):3633-3644.

    Ma Yiquan, Liu Huimin, Zhang Shoupeng, et al. Types of fine-grained mixed sedimentary rocks of Shahejie Formation and evolution of lake basin in Jiyang Depression, eastern China[J]. Earth Science, 2020, 45(10): 3633-3644.
    [23] 丁修建,柳广弟,查明,等. 沉积速率与烃源岩有机质丰度关系:以二连盆地为例[J]. 天然气地球科学,2015,26(6):1076-1085.

    Ding Xiujian, Liu Guangdi, Zha Ming, et al. Relationship between sedimentation rate and organic matter abundance of source rocks: A case study of Erlian Basin[J]. Natural Gas Geoscience, 2015, 26(6): 1076-1085.
    [24] 吴诗情,郭建华,王玺凯,等. 湘中地区早寒武世牛蹄塘组黑色岩系地球化学特征与有机质富集机理[J]. 中南大学学报(自然科学版),2020,51(8):2049-2060.

    Wu Shiqing, Guo Jianhua, Wang Xikai, et al. Geochemical characteristics and organic matter enrichment mechanism of the Lower Cambrian Niutitang Formation black rock series in central Hunan[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2049-2060.
    [25] 丁江辉,张金川,石刚,等. 皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理[J]. 石油与天然气地质,2021,42(1):158-172.

    Ding Jianghui, Zhang Jinchuan, Shi Gang, et al. Sedimentary environment and organic matter enrichment mechanisms of the Upper Permian Dalong Formation shale, southern Anhui province, China[J]. Oil & Gas Geology, 2021, 42(1): 158-172.
    [26] 久凯,丁文龙,黄文辉,等. 上扬子地区下寒武统海相富有机质页岩形成环境与主控因素分析[J]. 现代地质,2012,26(3):547-554.

    Kai Jiu, Ding Wenlong, Huang Wenhui, et al. Formation environment and controlling factors of organic-rich shale of Lower Cambrian in Upper Yangtze region[J]. Geoscience, 2012, 26(3): 547-554.
    [27] 夏威,于炳松,王运海,等. 黔北牛蹄塘组和龙马溪组沉积环境及有机质富集机理:以RY1井和XY1井为例[J]. 矿物岩石,2017,37(3):77-89.

    Xia Wei, Yu Bingsong, Wang Yunhai, et al. Study on the depositional environment and organic accumulation mechanism in the Niutitang and Longmaxi Formation, north Guizhou province: A case study of well Renye 1 and well Xiye 1[J]. Journal of Mineralogy and Petrology, 2017, 37(3): 77-89.
    [28] 梁钰,侯读杰,张金川,等. 海底热液活动与富有机质烃源岩发育的关系:以黔西北地区下寒武统牛蹄塘组为例[J]. 油气地质与采收率,2014,21(4):28-32.

    Liang Yu, Hou Dujie, Zhang Jinchuan, et al. Hydrothermal activities on the seafloor and evidence of organic-rich source rock from the Lower Cambrian Niutitang Formation, northwestern Guizhou[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(4): 28-32.
    [29] 李登华,李建忠,黄金亮,等. 火山灰对页岩油气成藏的重要作用及其启示[J]. 天然气工业,2014,34(5):56-65.

    Li Denghua, Li Jianzhong, Huang Jinliang, et al. An important role of volcanic ash in the formation of shale plays and its inspiration[J]. Natural Gas Industry, 2014, 34(5): 56-65.
    [30] 吴蓝宇,陆永潮,蒋恕,等. 上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J]. 石油勘探与开发,2018,45(5):806-816.

    Wu Lanyu, Lu Yongchao, Jiang Shu, et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2018, 45(5): 806-816.
    [31] 卢贤志,沈俊,郭伟,等. 中上扬子地区奥陶纪—志留纪之交火山作用对有机质富集的影响[J]. 地球科学,2021,46(7):2329-2340.

    Lu Xianzhi, Shen Jun, Guo Wei, et al. Influence of mercury geochemistry and volcanism on the enrichment of organic matter near the Ordovician Silurian transition in the Middle and Upper Yangtze[J]. Earth Science, 2021, 46(7): 2329-2340.
    [32] 梁新平,金之钧,刘全有,等. 火山灰对富有机质页岩形成的影响:以西西伯利亚盆地中生界巴热诺夫组为例[J]. 石油与天然气地质,2021,42(1):201-211.

    Liang Xinping, Jin Zhijun, Liu Quanyou, et al. Impact of volcanic ash on the formation of organic-rich shale: A case study on the Mesozoic Bazhenov Formation, West Siberian Basin[J]. Oil & Gas Geology, 2021, 42(1): 201-211.
    [33] 王书荣,宋到福,何登发. 三塘湖盆地火山灰对沉积有机质的富集效应及凝灰质烃源岩发育模式[J]. 石油学报,2013,34(6):1077-1087.

    Wang Shurong, Song Daofu, He Dengfa. The enrichment effect of organic materials by volcanic ash in sediments of the Santanghu Basin and the evolutionary pattern of tuffaceous source rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1077-1087.
    [34] 李森,朱如凯,崔景伟,等. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境:以铜川地区瑶页1井为例[J]. 沉积学报,2020,38(3):554-570.

    Li Sen, Zhu Rukai, Cui Jingwei, et al. Sedimentary characteristics of fine-grained sedimentary rock and paleo-environment of Chang 7 member in the Ordos Basin: A case study from well Yaoye 1 in Tongchuan[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570.
    [35] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26.

    Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
    [36] 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):451-458.

    Jin Zhijun, Bai Zhenrui, Gao Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458.
    [37] 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1):1-10.

    Zhao Wenzhi, Hu Suyun, Hou Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.
    [38] 卢双舫,薛海涛,王民,等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报,2016,37(10):1309-1322.

    Lu Shuangfang, Xue Haitao, Wang Min, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322.
    [39] Bohacs K M, Carroll A R, Neal J E, et al. Lake-basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic-geochemical framework[M]//Gierlowski-Kordesch E H, Kelts K R. Lake basins through space and time. Tulsa: American Association of Petroleum Geologists, 2000: 3-34.
    [40] Katz B, Lin F. Lacustrine basin unconventional resource plays: Key differences[J]. Marine and Petroleum Geology, 2014, 56: 255-265.
    [41] 吴靖,姜在兴,王欣. 湖相细粒沉积岩三-四级层序地层划分方法与特征:以渤海湾盆地东营凹陷古近系沙四上亚段为例[J]. 天然气地球科学,2018,29(2):199-210.

    Wu Jing, Jiang Zaixing, Wang Xin. Sequence stratigraphy characteristics of lacustrine fine-grained sedimentary rocks: A case study of the upper Fourth member of Paleogene Shahejie Formation, Dongying Sag, Bohai Bay Basin[J]. Natural Gas Geoscience, 2018, 29(2): 199-210.
    [42] 彭军,许天宇,于乐丹. 东营凹陷沙河街组四段湖相细粒沉积特征及其控制因素[J]. 岩性油气藏,2020,32(5):1-12.

    Peng Jun, Xu Tianyu, Yu Ledan. Characteristics and controlling factors of lacustrine fine-grained sediments of the Fourth member of Shahejie Formation in Dongying Depression[J]. Lithologic Reservoirs, 2020, 32(5): 1-12.
    [43] Chen Z H, Jiang W B, Zhang L Y, et al. Organic matter, mineral composition, pore size, and gas sorption capacity of lacustrine mudstones: Implications for the shale oil and gas exploration in the Dongying Depression, eastern China[J]. AAPG Bulletin, 2018, 102(8): 1565-1600.
    [44] Li Z X, Yang W, Wang Y S, et al. Anatomy of a lacustrine stratigraphic sequence within the Fourth member of the Eocene Shahejie Formation along the steep margin of the Dongying Depression, eastern China[J]. AAPG Bulletin, 2019, 103(2): 469-504.
    [45] Wu J, Liang C, Jiang Z X, et al. Shale reservoir characterization and control factors on gas accumulation of the Lower Cambrian Niutitang shale, Sichuan Basin, South China[J]. Geological Journal, 2019, 54(3): 1604-1616.
    [46] 吴靖,姜在兴,潘悦文,等. 湖相细粒沉积模式:以东营凹陷古近系沙河街组四段上亚段为例[J]. 石油学报,2016,37(9):1080-1089.

    Wu Jing, Jiang Zaixing, Pan Yuewen, et al. Lacustrine fine-grained depositional model: A case study of the Upper submember of the Fourth member of Paleogene Shahejie Formation in Dongying Sag[J]. Acta Petrolei Sinica, 2016, 37(9): 1080-1089.
    [47] Kennedy M J, Löhr S C, Fraser S A, et al. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis[J]. Earth and Planetary Science Letters, 2014, 388: 59-70.
    [48] 马义权. 济阳坳陷古近系沙河街组湖相页岩岩相学及古气候记录[D]. 武汉:中国地质大学,2017.

    Ma Yiquan. Lacustrine shale stratigraphy and Eocene climate recorded in the Jiyang Depression in East China[D]. Wuhan: China University of Geosciences, 2017.
    [49] 张慧,李贵红,晋香兰. 南方下古生界页岩中有机质赋存状态及其成因[J]. 煤田地质与勘探,2018,46(1):51-55.

    Zhang Hui, Li Guihong, Jin Xianglan. Organic matters and their occurrence state in Lower Paleozoic shale in South China[J]. Coal Geology & Exploration, 2018, 46(1): 51-55.
    [50] 陈前,闫相宾,刘超英,等. 压实对页岩有机质孔隙发育控制作用:以四川盆地东南地区及周缘下古生界为例[J]. 石油与天然气地质,2021,42(1):76-85.

    Chen Qian, Yan Xiangbin, Liu Chaoying, et al. Controlling effect of compaction upon organic matter pore development in shale: A case study on the Lower Paleozoic in southeastern Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(1): 76-85.
    [51] 张慧,焦淑静,庞起发,等. 中国南方早古生代页岩有机质的扫描电镜研究[J]. 石油与天然气地质,2015,36(4):675-680.

    Zhang Hui, Jiao Shujing, Pang Qifa, et al. SEM observation of organic matters in the Eopaleozoic shale in South China[J]. Oil & Gas Geology, 2015, 36(4): 675-680.
    [52] 刘惠民,王勇,杨永红,等. 东营凹陷细粒混积岩发育环境及其岩相组合:以沙四上亚段泥页岩细粒沉积为例[J]. 地球科学,2020,45(10):3543-3555.

    Liu Huimin, Wang Yong, Yang Yonghong, et al. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying Sag: A case of fine-grained sedimentary system of the Es4[J]. Earth Science, 2020, 45(10): 3543-3555.
    [53] 杨万芹,王学军,丁桔红,等. 渤南洼陷细粒沉积岩岩相发育特征及控制因素[J]. 中国矿业大学学报,2017,46(2):365-374.

    Yang Wanqin, Wang Xuejun, Ding Juhong, et al. Characteristics and control factors of fine-grained sedimentary rock lithofacies in Bonan subsag[J]. Journal of China University of Mining & Technology, 2017, 46(2): 365-374.
    [54] 王勇,王学军,宋国奇,等. 渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J]. 石油勘探与开发,2016,43(5):696-704.

    Wang Yong, Wang Xuejun, Song Guoqi, et al. Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 696-704.
    [55] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [56] 张卫刚,陈刚,郭望,等. 鄂尔多斯盆地姬塬地区延长组下组合油源特征综合研究[J]. 西北地质,2020,53(4):140-152.

    Zhang Weigang, Chen Gang, Guo Wang, et al. Comprehensive research of oil-source rock correlation of lower Yanchang Formation in Jiyuan field, Ordos Basin[J]. Northwestern Geology, 2020, 53(4): 140-152.
    [57] 白悦悦,刘招君,孙平昌,等. 梅河盆地古近系梅河组下部含煤岩系有机质富集模式[J]. 煤炭学报,2014,39(增刊2):458-464.

    Bai Yueyue, Liu Zhaojun, Sun Pingchang, et al. Organic matter accumulation pattern of coal bearing layers in the lower part of Meihe Formtion in Paleogene, Meihe Basin[J]. Journal of China Coal Society, 2014, 39(Suppl.2): 458-464.
    [58] Chen L, Lu Y C, Jiang S, et al. Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China[J]. Marine and Petroleum Geology, 2015, 65: 232-246.
    [59] Hickey J J, Henk B. Lithofacies summary of the Mississippian barnett shale, mitchell 2 T.P. sims well, Wise county, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443.
    [60] Liang C, Jiang Z X, Cao Y C, et al. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression[J]. GSA Bulletin, 2018, 130(1/2): 154-174.
    [61] 张水昌,张宝民,边立曾,等. 中国海相烃源岩发育控制因素[J]. 地学前缘,2005,12(3):39-48.

    Zhang Shuichang, Zhang Baomin, Bian Lizeng, et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48.
    [62] 杨万芹,王学军,蒋有录,等. 湖泊古气候的量化恢复及其对细粒沉积的影响:以东营凹陷沙四段上亚段—沙三段下亚段为例[J]. 油气地质与采收率, 2018, 25(2):29-36.

    Yang Wanqin, Wang Xuejun, Jiang Youlu, et al. Quantitative reconstruction of paleoclimate and its effects on fine-grained lacustrine sediments: A case study of the upper Es4 and lower Es3, in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2): 29-36.
    [63] 张建国,姜在兴,刘立安,等. 渤海湾盆地沾化凹陷沙河街组三段下亚段细粒沉积岩岩相特征与沉积演化[J]. 石油学报,2021,42(3):293-306.

    Zhang Jianguo, Jiang Zaixing, Liu Li'an, et al. Lithofacies and depositional evolution of fine-grained sedimentary rocks in the Lower submember of the member 3 of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2021, 42(3): 293-306.
    [64] 杨万芹,蒋有录,王勇. 东营凹陷沙三下—沙四上亚段泥页岩岩相沉积环境分析[J]. 中国石油大学学报(自然科学版),2015,39(4):19-26.

    Yang Wanqin, Jiang Youlu, Wang Yong. Study on shale facies sedimentary environment of lower Es3-upper Es4 in Dongying Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(4): 19-26.
    [65] Slatt R M, Philp P R, Abousleiman Y, et al. Pore-to-regional-scale integrated characterization workflow for unconventional gas shales[M]//Breyer J A. Shale reservoirs: Giant resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 2012.
    [66] 彭军,于乐丹,许天宇,等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征:以渤海湾盆地济阳坳陷东营凹陷樊页1井Es4scs为例[J]. 石油与天然气地质,2022,43(4):957-969.

    Peng Jun, Yu Ledan, Xu Tianyu, et al. Logging identification of Milankovitch cycle and environmental response characteristics of lacustrine shale: A case study on Es4scs in well Fanye 1, Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 957-969.
    [67] 刘庆. 东营凹陷樊页1井沙河街组烃源岩元素地球化学特征及其地质意义[J]. 油气地质与采收率,2017,24(5):40-45,52.

    Liu Qing. Element geochemical characteristics of source rocks in the Shahejie Formation in well Fangye-1, Dongying Sag and their geological significance[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5): 40-45, 52.
    [68] 吴靖,姜在兴,童金环,等. 东营凹陷古近系沙河街组四段上亚段细粒沉积岩沉积环境及控制因素[J]. 石油学报,2016,37(4):464-473.

    Wu Jing, Jiang Zaixing, Tong Jinhuan, et al. Sedimentary environment and control factors of fine-grained sedimentary rocks in the upper Fourth member of Paleogene Shahejie Formation, Dongying Sag[J]. Acta Petrolei Sinica, 2016, 37(4): 464-473.
    [69] Liu C L, Li H H, Zhang X, et al. Geochemical characteristics of the Paleogene and Neogene saline lacustrine source rocks in the western Qaidam Basin, northwestern China[J]. Energy & Fuels, 2016, 30(6): 4537-4549.
    [70] 黄第藩,李晋超. 关于松辽和华北中、新生代沉积相的某些问题[J]. 地质论评,1982,28(3):217-227.

    Huang Difan, Li Jinchao. Some questions about Mesozoic-Cenozoic sedimentary facies in the Songliao and North China basins[J]. Geological Review, 1982, 28(3): 217-227.
    [71] 朱光有,金强,张水昌,等. 济阳坳陷东营凹陷古近系沙河街组深湖相油页岩的特征及成因[J]. 古地理学报,2005,7(1):59-69.

    Zhu Guangyou, Jin Qiang, Zhang Shuichang, et al. Characteristics and origin of deep lake oil shale of the Shahejie Formation of Paleogene in Dongying Sag, Jiyang Depression[J]. Journal of Palaeogeography, 2005, 7(1): 59-69.
    [72] 逄淑伊,操应长,梁超. 渤海湾盆地东营凹陷沙四上亚段—沙三下亚段岩相特征及沉积环境:以樊页1井为例[J]. 石油与天然气地质,2019,40(4):799-809.

    Pang Shuyi, Cao Yingchang, Liang Cao. Lithofacies characteristics and sedimentary environment of Es4U and Es3L: A case study of well FY1 in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2019, 40(4): 799-809.
    [73] Dong T, Harris N B, Ayranci K. Relative sea-level cycles and organic matter accumulation in shales of the Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada: Insights into sediment flux, redox conditions, and bioproductivity[J]. GSA Bulletin, 2018, 130(5/6): 859-880.
    [74] 姚红生,何希鹏,汪凯明. 下扬子皖南地区下寒武统荷塘组页岩地球化学特征及地质意义[J]. 海洋地质前沿,2022,38(4):32-41.

    Yao Hongsheng, He Xipeng, Wang Kaiming. Geochemical characteristics and significance of the shale of Lower Cambrian Hetang Formation in the southern Anhui province of Lower Yangtze area[J]. Marine Geology Frontiers, 2022, 38(4): 32-41.
    [75] 薛路,陈建文,吴飘,等. 下扬子巢湖地区鼓地1井五峰组—高家边组下段页岩地球化学特征及其地质意义[J]. 海洋地质前沿,2022,38(5):12-22.

    Xue Lu, Chen Jianwen, Wu Piao, et al. Geochemical characteristics and geological significance of shale in the Lower member of Wufeng-Gaojiabian Formation of well Gudi 1 in Chaohu area, Lower Yangtze region[J]. Marine Geology Frontiers, 2022, 38(5): 12-22.
    [76] 何庆,高键,董田,等. 鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J]. 沉积学报,2021,39(3):686-703.

    He Qing, Gao Jian, Dong Tian, et al. Elemental geochemistry and paleo-environmental conditions of the Lower Cambrian Niutitang shale in western Hubei province[J]. Acta Sedimentologica Sinica, 2021, 39(3): 686-703.
    [77] 王鹏万,邹辰,李娴静,等. 滇黔北地区筇竹寺组元素地球化学特征及古环境意义[J]. 中国石油大学学报(自然科学版),2021,45(2):51-62.

    Wang Pengwan, Zou Chen, Li Xianjing, et al. Geochemical characteristics of element Qiongzhusi Group in Dianqianbei area and paleoenvironmental significance[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(2): 51-62.
    [78] 葛祥英,牟传龙,余谦,等. 四川盆地东部五峰组—龙马溪组黑色页岩有机质富集规律探讨[J]. 沉积与特提斯地质,2021,41(3):418-435.

    Ge Xiangying, Mou Chuanlong, Yu Qian, et al. A study on the enrichment of organic materials in black shales of the Wufeng to Longmaxi Formations in eastern Sichuan Basin[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(3): 418-435.
    [79] 邱振,江增光,董大忠,等. 巫溪地区五峰组—龙马溪组页岩有机质沉积模式[J]. 中国矿业大学学报,2017,46(5):1134-1143.

    Qiu Zhen, Jiang Zengguang, Dong Dazhong, et al. Organic matter enrichment model of the shale in Wufeng-Longmaxi Formation of Wuxi area[J]. Journal of China University of Mining & Technology, 2017, 46(5): 1134-1143.
    [80] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 1-312.
    [81] Pi D H, Liu C Q, Shields-zhou G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments[J]. Precambrian Research, 2013, 225: 218-229.
    [82] 郭来源,李忠生,解习农,等. 湖相富有机质泥页岩地球化学元素高频变化及其地质意义:以泌阳凹陷BY1井取心段为例[J]. 现代地质,2015,29(6):1360-1370.

    Guo Laiyuan, Li Zhongsheng, Xie Xinong, et al. High-frequency variation of geochemical elements and its geological implication on lacustrine organic-rich mudstone and shale formation: An example from the core-taking segment of well BY1 in the Biyang Depression[J]. Geoscience, 2015, 29(6): 1360-1370.
    [83] 杜学斌,刘辉,刘惠民,等. 细粒沉积物层序地层划分方法初探:以东营凹陷樊页1井沙三下—沙四上亚段泥页岩为例[J]. 地质科技情报,2016,35(4):1-11.

    Du Xuebin, Liu Hui, Liu Huimin, et al. Methods of sequence stratigraphy in the fine-grained sediments: A case from the upper Fourth sub-member and the lower Third sub-member of the Shahejie Formation in well Fanye 1 of Dongying Depression[J]. Geological Science and Technology Information, 2016, 35(4): 1-11.
    [84] 唐书恒,郗兆栋,朱卫平,等. 上扬子地台上奥陶统五峰组页岩有机质聚集主控因素[J]. 煤炭学报,2020,45(1):285-295.

    Tang Shuheng, Xi Zhaodong, Zhu Weiping, et al. Factors controlling organic matter accumulation in the Upper Ordovician Wufeng shale from Upper Yangtze Platform[J]. Journal of China Coal Society, 2020, 45(1): 285-295.
    [85] 于志超,刘立,孙晓明,等. 歧口凹陷古近纪热流体活动的证据及其对储层物性的影响[J]. 吉林大学学报(地球科学版),2012,42(增刊3):1-13.

    Yu Zhichao, Liu Li, Sun Xiaoming, et al. Evidence of Paleogene thermal fluid activities and their impact on porosity-permeability of reservoir in Qikou Sag[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(Suppl.3): 1-13.
    [86] 王清斌,刘立,牛成民,等. 渤中凹陷北部陡坡带热液活动及其对湖相碳酸盐岩储层的影响[J]. 地球科学,2019,44(8):2751-2760.

    Wang Qingbin, Liu Li, Niu Chengmin, et al. The geological evidences and impacts of deep thermal fluid on lacustrine carbonate reservoir in the actic area of the north part of Bozhong Depression, Bohai Bay Basin[J]. Earth Science, 2019, 44(8): 2751-2760.
    [87] 王勇,刘惠民,宋国奇,等. 湖相泥页岩中碳酸盐成因及页岩油气地质意义:以东营凹陷沙河街组四段上亚段—沙河街组三段下亚段烃源岩为例[J]. 石油学报,2017,38(12):1390-1400.

    Wang Yong, Liu Huimin, Song Guoqi, et al. Carbonate genesis and geological significance of shale hydrocarbon in lacustrine facies mud shale: A case study of source rocks in the Upper submember of member 4 and Lower submember of member 3 of Shahejie Formation, Dongying Sag[J]. Acta Petrolei Sinica, 2017, 38(12): 1390-1400.
    [88] 张洪安,徐田武,张云献. 东濮凹陷咸化湖盆优质烃源岩的发育特征及意义[J]. 断块油气田,2017,24(4):437-441.

    Zhang Hong'an, Xu Tianwu, Zhang Yunxian. Development characteristics and significance of high quality source rocks of salty lake in Dongpu Depression[J]. Fault-Block Oil and Gas Field, 2017, 24(4): 437-441.
    [89] 鹿坤,左银辉,梅冰,等. 东濮凹陷古沉积环境及其对有机质丰度的影响[J]. 地质与勘探,2013,49(3):589-594.

    Lu Kun, Zuo Yinhui, Mei Bing, et al. Paleo-sedimentary environments in the Dongpu Depression and their impact on organic matter abundance[J]. Geology and Exploration, 2013, 49(3): 589-594.
    [90] 陈洁,鹿坤,冯英,等. 东濮凹陷不同环境烃源岩评价及生排烃特征研究[J]. 断块油气田,2012,19(1):35-38.

    Chen Jie, Lu Kun, Feng Ying, et al. Evaluation on hydrocarbon source rocks in different environments and characteristics of hydrocarbon generation and expulsion in Dongpu Depression[J]. Fault Block Oil and Gas Field, 2012, 19(1): 35-38.
    [91] 周立宏,陈长伟,韩国猛,等. 渤海湾盆地歧口凹陷陆相湖盆页岩气富集条件及勘探潜力[J]. 天然气工业,2021,41(5):1-10.

    Zhou Lihong, Chen Changwei, Han Guomeng, et al. Enrichment conditions and exploration potential of shale gas in continental lake basins in Qikou Sag, Bohai Bay Basin[J]. Natural Gas Industry, 2021, 41(5): 1-10.
    [92] 孟庆涛,刘招君,胡菲,等. 桦甸盆地始新世古湖泊生产力与有机质富集机制[J]. 中国石油大学学报(自然科学版),2012,36(5):38-44.

    Meng Qingtao, Liu Zhaojun, Hu Fei, et al. Productivity of Eocene ancient lake and enrichment mechanism of organic matter in Huadian Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 38-44.
    [93] Yu L D, Peng J, Xu T Y, et al. A study on astronomical cycle identification and environmental response characteristics of lacustrine deep-water fine-grained sedimentary rocks: A case study of the Lower submember of member 3 of Shahejie Formation in well Fanye-1 of Dongying Sag, Bohai Bay Basin, China[J]. Geofluids, 2021, 2021: 5595829.
    [94] 刘姝君,操应长,梁超. 渤海湾盆地东营凹陷古近系细粒沉积岩特征及沉积环境[J]. 古地理学报,2019,21(3):479-489.

    Liu Shujun, Cao Yingchang, Liang Chao. Lithologic characteristics and sedimentary environment of fine-grained sedimentary rocks of the Paleogene in Dongying Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2019, 21(3): 479-489.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views(29) PDF downloads(7) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-05-23
  • Revised:  2022-07-29
  • Accepted:  2022-10-27
  • Published:  2024-02-04

Analysis of Organic Matter Enrichment and Influences in Fine-grained Sedimentary Strata in Saline Lacustrine Basins of Continental Fault Depressions: Case study of the upper sub-section of the upper 4th member of the Shahejie Formation in the Dongying Sag

doi: 10.14027/j.issn.1000-0550.2022.096
Funds:

National Natural Science Foundation of China 41872166

Abstract: Objective The development of the “sweet spot” in lacustrine fine-grained sedimentary shale reservoirs is closely related to the enrichment of organic matter (OM). However, few studies on the causes of OM enrichment and the establishment of enrichment models of shale in faulted saline lacustrine basins have been reported. A typical continental rifted saline lake basin was developed for the upper sub-segment of the upper 4th member of the Shahejie Formation (Es4scs) in the Dongying Sag. To further understand the OM enrichment in fine-grained sedimentary shale during this period, Methods This study used thin slice identification, scanning electron microscopy, X-ray diffraction, sporopollenin identification, biomarker chromatography-mass spectrometry and other techniques. The controlling factors of organic matter enrichment were explored in detail by using each index, and the organic matter enrichment model suitable for each stage of environmental evolution of the study area was established. Results (1) OM occurs at the microscopic level as strips, infills and dispersions. The OM source was mainly lower aquatic organisms such as algae, with evidence of small amounts of terrestrial higher plant material in the middle and upper strata. (2) The sedimentary environment evolved in three stages: A shallow-water semi-arid low-oxygen environment, a deepwater semi-humid reducing environment, and a sub-deepwater semi-arid low-oxygen environment. (3) OM enrichment was mainly influenced by climate, salinity, redox condition, productivity and deposition rate. Water depth, terrestrial input, volcanism and hydrothermal activity were secondary influences. Conclusions A model of OM enrichment in fine-grained sedimentary strata of the continental rifted saline lake basin was established, which may be highly significant for the exploration and development of continental shale oil and gas in China. To summarize: high OM enrichment in the studied interval was dominated by very productive conditions, a reducing environment for preservation, suitable salinity and suitable deposition rate.

YU LeDan, PENG Jun, XU TianYu, HAN HaoDong, YANG YiMing. Analysis of Organic Matter Enrichment and Influences in Fine-grained Sedimentary Strata in Saline Lacustrine Basins of Continental Fault Depressions: Case study of the upper sub-section of the upper 4th member of the Shahejie Formation in the Dongying Sag[J]. Acta Sedimentologica Sinica, 2024, 42(2): 701-722. doi: 10.14027/j.issn.1000-0550.2022.096
Citation: YU LeDan, PENG Jun, XU TianYu, HAN HaoDong, YANG YiMing. Analysis of Organic Matter Enrichment and Influences in Fine-grained Sedimentary Strata in Saline Lacustrine Basins of Continental Fault Depressions: Case study of the upper sub-section of the upper 4th member of the Shahejie Formation in the Dongying Sag[J]. Acta Sedimentologica Sinica, 2024, 42(2): 701-722. doi: 10.14027/j.issn.1000-0550.2022.096
  • 近年来,有机质沉积物富集的影响因素一直是讨论的热点,尤其是陆相断陷湖盆有机质形成条件及其富集机理研究是非常规油气勘探研究的重点[12]。但由于湖相烃源岩沉积过程中更容易受气候影响,造成有机质富集特征更为复杂、非均质性更强[35],加之受限于测试分析资料等,导致目前对湖相咸水断陷湖盆沉积环境下形成的东营凹陷沙河街组烃源岩认识较浅,而有学者认为有机质的富集受陆源输入、初级生产力及保存条件等因素的影响,但尚不清楚优质烃源岩的形成条件,故有机质影响机理及富集模式亟需进一步探究[6]

    影响有机质聚集的因素较多,包括生产力、氧化还原性、沉积速率及沉积后的降解过程等[712]。前人针对泥页岩有机质富集已开展了大量研究,其研究成果可以归纳为以下几种学术观点:生产力学派主要以Sageman et al.[13]和Gallego-Torres et al.[14]为代表,认为有机质富集主要受控于海洋表层的生物生产力,水体氧化还原性质影响有限[1517];氧化还原学派主要以Mort et al.[18]为代表,认为当水体的氧化还原性为缺氧环境甚至达到硫化环境时,在海洋表层生产力较低的情况下也可形成有机质含量高的沉积物[19];沉积速率主导的学派以Murphy et al.[20]为代表,他们认为当沉积速率处于适当水平时会促进有机质富集,但是当沉积速率过高或者过低时均不利于有机质富集[2123];以吴诗情等[24]、丁江辉等[25]、久凯等[26]、夏威等[27]、梁钰等[28]为代表的学者认为海底热液活动为富有机质页岩提供了必要的物质基础和保存条件;以李登华等[29]、吴蓝宇等[30]、卢贤志等[31]、梁新平等[32]、王书荣等[33]、李森等[34]为代表的学者认为火山活动释放的火山灰不仅可以提供营养物质,与火山活动有关的缺氧环境还为有机碳保存创造了有利条件。目前,对有机质富集的研究仍然主要集中在海相盆地,而国内页岩油气丰富且主要赋存于陆相断陷湖盆[3538],但由于该类型的湖盆面积小、水体浅、湖平面变化频繁,且较易受构造和沉积环境的影响[3940],使得有机质来源、富集控制因素及富集机制与海相有较大差异,故需加强对湖相沉积有机质富集机制的研究,建立合理的有机质富集模式。

    东营凹陷古近系沙河街组发育数百米厚的富有机质细粒沉积岩,该凹陷油气资源丰富,勘探程度高,沉积学及地球化学等测试分析数据丰富,是开展细粒沉积有机质富集特征、富集控制因素及富集模式研究的最佳地区。针对研究区富有机质页岩层段,前人在岩性岩相特征、储集空间、沉积环境等方面开展了大量研究,但受到测试资料不足等限制而对有机质形成机理研究较少,且有机质的富集控制因素和富集模式尚不明确。基于此,选取东营凹陷系统取心井FY1井、NY1井、LY1井和GX27井沙河街组第沙四段上亚段纯上次亚段富有机质细粒沉积岩作为研究对象,开展矿物学、有机地球化学、元素地球化学、生物标志化合物和孢粉鉴定等分析,详细阐述有机质富集特征及来源,在分析湖盆沉积环境演化阶段的基础上,分阶段分析表征沉积环境、陆源碎屑、沉积速率等各指标与有机质发育的相关关系,探讨有机质富集的主控因素,最终建立有机质富集模式。

  • 渤海湾盆地位于中国东部,是华北板块经过古生代沉积并在印支、燕山期运动的基础上发展起来的中—新生代断陷盆地。济阳坳陷位于渤海湾盆地东南部,坳陷内共发育车镇凹陷、沾化凹陷、惠民凹陷和东营凹陷四个次级凹陷。东营凹陷构造演化的断陷阶段发生于古近纪,这一时期是凹陷的主要伸展裂陷期,发育众多伸展断层,活动强烈,形成了典型的非对称箕状凹陷样式,勘探面积约5 800 km2,凹陷周边发育较多凸起,凹陷内部一系列同沉积正断层进一步将凹陷划分为四个主要生油洼陷(博兴、利津、牛庄、民丰)和北部陡坡带、中央背斜带、南部缓坡带及多个断裂构造带等次级构造单元(图1a)[4142]

    Figure 1.  Schematic diagram of structural belt and strata development in Dongying Sag, Bohai Basin, NE China (modified from references [41⁃44])

    古近系地层自下而上分为孔店组、沙河街组和东营组,沙河街组自下而上又细分为四段(沙四段、沙三段、沙二段和沙一段)。沙四段厚度可达1 600 m,依据岩性及生物组合将该段进一步细分为沙四下亚段(Es4x)和沙四上亚段(Es4s),沙四上亚段再细分为纯下次亚段(Es4scx)和纯上次亚段(Es4scs)两部分,其中Es4scs为半潮湿气候下沉积的深灰色、灰褐色泥岩、油页岩和薄层灰岩、泥质灰岩互层,向洼陷中心方向逐渐过渡为泥质灰岩、灰质泥岩、泥岩及油页岩等(图1b)[4344]

  • 湖盆沉积物中的有机质来源及丰度、矿物成分、微量元素含量随着物源供给、古气候及古生产力的改变而发生周期性的变化,造成了有机质富集程度的变化。为明确东营凹陷Es4scs层段有机质富集的主控因素,综合运用多种资料,选取相应的沉积环境指标,在有机质富集特征及沉积环境演化特征研究基础上,分析有机质富集程度指标TOC与沉积环境之间的响应关系,探究有机质富集的主控因素。

  • 目前对有机质的研究,多集中于其含量的纵横向及平面的分布与变化等[4546],对其赋存状态的研究相对较少。已有的研究认为,有机质存在分散有机质、顺层有机质、填隙充填有机质、矿物沥青基质等赋存状态[47]

    东营凹陷Es4scs层段富有机质细粒沉积岩有机质含量较高且存在形式多样,而有机质与无机矿物共同构成岩石的骨架,对细粒沉积储层的形成和演化具有重要影响。有机质在毫米尺度的赋存状态依据显微薄片鉴定,以顺层分布的纹层为主,形成了以有机质和黏土矿物混合的富有机质黏土纹层与灰质纹层组成的层偶(图2a);有机质与矿物伴生,填充于裂缝(图2b)或矿物溶蚀后形成的孔缝中,且有机质与矿物颗粒伴生时常具有较高的TOC含量;另外有机质也发育于生物骨架溶蚀后的体腔(图2c)[48]

    Figure 2.  Photomicrographs of organic matter (OM) forms of Es4scs, Dongying Sag

    在氩离子抛光—扫描电镜下,有机质的赋存状态包括条带状有机质、充填有机质、分散状有机质(可达几微米至十几微米)和交互状有机质等[4951]。条带状有机质在水平方向上连续分布,一般具有较为完整的形态,是由有机质与矿物质交替沉积形成的条带或微层(图3a),通常沿层理面分布[49,51];充填有机质是充填于矿物颗粒间隙的有机质颗粒,本身通常无固定形状,多充填于原生矿物质之间的缝隙,常见的被充填缝隙有顺层缝隙(见图3b中顺层理分布的黑色线理为有机质)、层间裂隙、粒边缝隙或矿物颗粒之间的粒间孔(图3c,d)等[4951];分散状有机质是指有机质的局部沉积和富集(见图3e中的不规则黑色块),多以不规则的、分布不均匀的黑色散块形式存在,块的大小为微米级,与矿物质界限明显[49];交互状有机质是指与矿物颗粒伴生的、以有机质—矿物集合体形式存在的有机质,分布于矿物颗粒边缘,有时包裹矿物颗粒,通常情况下该类有机质与自生矿物关系密切[4951],扫描电镜下可见有机质与黏土矿物相伴生(图3f)、有机质包裹黄铁矿、方解石(图3g,h)和石英(图3i)等。

    Figure 3.  Forms of Es4scs organic matter on polished surface of fine⁃grained sedimentary rocks in Dongying Sag

    据薄片鉴定结果统计,研究层段有机质微观赋存状态以条带状有机质、交互状有机质和充填有机质为主,且与矿物颗粒伴生的有机质丰度较高,而微观赋存状态的多样性也使得有机质的富集特征及来源更复杂。

  • 针对不同研究区有机碳高低的区分,不同学者给出了不同的方案。方正等[16]从TOC对页岩油富集的贡献出发确定了分区方案,即0<TOC<1%为低碳、1%<TOC≤2%为中碳、2%<TOC≤4%为高碳、TOC>4%为富碳,并将高碳及富碳定为富有机质;彭军等[42]、刘惠民等[52]、杨万芹等[53]和王勇等[54]以有机质体积分数2%为界,大于2%定义为富有机质,小于2%定义为含有机质;姜在兴等[55]认为有机质在细粒岩沉积、成岩等方面发挥了重要作用,故以TOC含量2%和4%为界,将有机质分为高/富有机质、中有机质和低/贫有机质三大类。

    东营凹陷Es4scs有机质含量分布具有显著的层段差异,表现出较强的非均质性(图4)。Es4scs自上而下进一步细分为纯上1小层(Es4scs1)、纯上2小层(Es4scs2)和纯上3小层(Es4scs3),TOC值变化范围较大,介于0.16%~11.4%,主要介于1%~4%,平均值为2.53%,整体表现为自下而上先增后减的分布特征,其中2小层最高。FY1井和NY1井的Es4scsTOC平均值分别为2.13%、2.82%,参考姜在兴等[55]的有机质富集程度划分方案,均属于中—高/富有机质。

    Figure 4.  Organic Matter distribution in fine⁃grained sedimentary rocks of Es4scs, Dongying Sag

  • 用于有机质母质来源研究的指标包括正构烷烃[16,19,33]、甾类化合物[15,19,33,5657]、萜类化合物[19,33]和干酪根类型[19,25,5859]等。依据中国石化胜利油田分公司勘探开发研究院提供的FY1井和NY1井Es4scs全烃气相色谱和生物标志物色谱—质谱测试结果,分析东营凹陷Es4scs有机质的母质来源。

    1) 正构烷烃

    正构烷烃是饱和烃中一个重要的有机地化标志,甾烷类是一种具有烷基侧链的四环化合物,都可以作为分析有机质来源的指标。前峰型正构烷烃、存在C15或C17的优势但没有明显奇偶优势的中等相对分子质量的正构烷烃反映烃源岩有机质多来源于菌、藻类等低等水生浮游生物[19];后峰型和具有奇偶优势的高相对分子质量正构(或异构、反异构)烷烃反映烃源岩有机质多来源于陆源高等植物的输入;双峰型反映母质具有低等生物和高等植物的混合来源[16,19,33]

    结合东营凹陷Es4scs饱和烃气相色谱图特征分析Es4scs3~Es4scs1各小层有机质来源。FY1井Es4scs3(3 436.00~3 436.24 m)以发育前峰型奇偶优势正构烷烃为主,主碳为C21,在C15~C21之间具有明显的奇碳优势,表明原始生物组合中藻类等浮游生物占优势(图5a);Es4scs3(3 411.28~3 422.86 m)正构烷烃的分布为前峰型,无明显奇偶优势,且主峰碳为C17,该特征指示藻类等水生生物来源(图5b);Es4scs2(3 397.14 m)正构烷烃分布以双峰型为主,主峰碳为C17和C26,在C17~C21之间具有明显的奇碳优势,表明有机质来源以藻类等浮游生物为主,同时,出现少量的陆源高等植物(图5c);Es4scs2(3 361.54~3 362.26 m)正构烷烃分布以前峰型低碳为主,在C17~C23之间具明显的奇碳优势,表明生物来源主要以藻类为主(图5d);Es4scs1(3 288.91~3 289.23 m和3 259.14~3 260.01 m)以前峰型正构烷烃为主且偏向低碳数一侧,主峰碳为C16~C17和C15,故代表藻类生物来源(图5e,f)。上述正构烷烃分布特征经与方正等[16]、曹竣锋等[19]、王书荣等[33]的研究成果类比分析,认为有机质来源于藻类等水生生物,以疑源类光面球藻属和粒面球藻属为主,在中上部地层出现极少量陆源高等植物来源。

    Figure 5.  Gas chromatograms of saturated hydrocarbons in typical samples of Es4scs, well FY1, Dongying Sag

    2) 甾类化合物

    甾烷可以较好地分析烃源岩的有机质来源。藻类等水生浮游生物C27甾醇占优势,C28和C29甾醇的含量较低,陆源高等植物C29甾醇占优势,而C27和C28甾醇的含量较低。甾烷中C27~C29甾烷呈明显的C27>C28、C27>C29的“L”字型,反映母质以低等水生生物和藻类为主;呈“V”字形指示藻类及陆生植物都有输入;呈C29>C27>C28的反“L”字型分布,指示藻类输入逐渐减少,陆源高等植物输入逐渐增多[15,19,33,5657]

    FY1井Es4scs岩心样品中表现出相对较高含量的规则甾烷,运用ααα-20R构型的甾烷分析有机质来源(图6)。其中,一些样品C27甾烷含量大于C29甾烷含量,C27~C29甾烷呈明显的C27>C28、C27>C29的“L”字形,表明有机质基本都是来自以低等水生生物和藻类为主的湖泊生物,图6b中C27和C29甾烷的含量相当,呈“V”字形,指示藻类及陆生植物都有输入。NY1井Es4scs岩心样品的甾烷特征显示,图6d和图6f中C27甾烷含量大于C29甾烷含量并具有明显的优势分布,C27~C29呈明显的“L”字形,表明有机质基本都是来自以低等水生生物和藻类为主的湖泊生物,而图6e中C29甾烷的含量明显高于C27甾烷,C27~C29呈明显的反“L”字形,指示藻类输入逐渐减少,陆源高等植物输入逐渐增多。

    Figure 6.  Distributions of steroids in typical samples of Es4scs, Dongying Sag

    上述甾类化合物分布特征经与曹婷婷等[15]、张卫刚等[56]的研究成果类比分析后认为有机质基本都来自以低等水生生物和藻类为主的湖泊生物,在该层段的中上部地层出现少量的陆源高等植物来源。该结论与正构烷烃指标分析结果一致。

    3) 萜烷类化合物

    萜类化合物中C19和C20三环萜烷主要来源于陆源高等植物;五环三萜系列中Tm、C29、C31相对于C30明显变高(有时C29甚至超过C30),而Ts和C35极低的藿烷分布特征也指示高等植物生源的输入,而较高丰度的三环萜烷系列化合物和C23三环萜烷主要来源于藻类等水生生物[19,33]

    根据萜烷类化合物的分布特征分析有机质的来源(图7)。东营凹陷FY1井和NY1井Es4scs岩心样品中三环萜烷丰度均较高,且C23含量较C19和C20高,尤其以Es4scs2和Es4scs1两个小层最明显(图7b,c,e,f),表明有机质母质来源主要是藻类等水生生物。但值得注意的是,这两个小层中五环三萜系列的Tm、C29、C31含量相对于Es4scs3小层明显变高(图7a,d),也反映了中上部地层中有机质出现了陆源高等植物的来源。

    Figure 7.  Distributions of terpenoids in typical samples of Es4scs, Dongying Sag

    4) 干酪根

    研究区FY1井和NY1井Es4scs24块细粒沉积岩样品的干酪根组分中,以腐泥组最为丰富,其次为镜质组,并含有少量壳质组分,而惰质组基本不发育。根据显微组分计算干酪根类型指数[19,25,5859],从计算结果可知,Es4scs干酪根类型指数介于90.03~98.78,平均值为96.23,指示干酪根以I型为主,即主体偏腐泥型,表明有机质以藻类及低等水生生物来源为主,而藻类体由于受沉积成岩早期降解作用影响而被降解为腐泥无定形体[60]

    综合东营凹陷Es4scs岩心样品的正构烷烃、甾烷、萜烷类化合物的分布特征及干酪根类型等数据可知,有机质来源以藻类等水生生物为主,在中上部地层出现少量陆源高等植物来源,总体表现出以藻类为主的低等水生生物来源逐渐过渡到伴有少量陆源高等植物的混合来源。

  • 湖盆细粒沉积岩中的有机质来源及丰度、矿物成分、微量元素含量都会随着古气候、古水深、古氧化还原性、古盐度和古生产力的改变而发生周期性的变化[15,17,22,25]。将TOC含量作为有机质富集程度指标,分析其与表征古环境变化各类指标之间的关系,从而探究研究层段沉积环境的变化特征,为后期探讨有机质富集主控因素及富集模式奠定基础。

  • 古气候不仅影响海(湖)流、水体分层、母岩风化、沉积物侵蚀和搬运等,而且对于盆地内部生物种属、种群密度也有着重要影响[25,61]。因此,通过干湿指数C值(C=Σ(Fe+Mn+Cr+V+Co+Ni)/Σ(Ca+Mg+Na+K+Sr+Ba))、碳酸盐矿物含量和孢粉等数据资料研究沉积时期的古气候特征[41,6263]

    前人研究表明,C<0.1代表干旱气候、0.1~0.2代表半干旱气候、0.2~0.4代表半潮湿气候、>0.4代表潮湿气候[3,16,62,64]。利用FY1井Es4scs岩心样品的XRF测试分析数据计算C值,统计其分布范围和平均值如下:3 395.60~3 441.00 m(第一阶段,下同)C值介于0.023~0.682,平均值为0.118;3 300.70~3 395.60 m(第二阶段)C值介于0.048~1.524,平均值为0.24;3 251.00~3 300.70 m(第三阶段)C值介于0.046~0.213,平均值为0.156。可见从第一阶段到第三阶段,气候由半干旱向半潮湿演化,再过渡为半干旱气候。另外从XRD测试的矿物成分含量来看,第一阶段黏土矿物含量为低值,平均值为13.96%,碳酸盐矿物含量为高值,平均值为57.216%,表示此时气候较为干热,沉积水体较封闭,湖水的蒸发作用强;第二阶段开始碳酸盐矿物减少到低值,黏土矿物增加到高值,指示此时气候变得湿润;进入第三阶段之后碳酸盐矿物含量又开始增加,平均值为54.652%,黏土矿物含量相对减少,平均值为14.62%,表明气候又向半干旱转变。

    胜利油田勘探开发研究院提供的FY1井Es4scs岩心样品的孢粉鉴定结果显示,仅在3 264.81 m的一块样品中鉴定出少量单束松粉属、双束松粉属、榆粉属、栎粉属等古近纪常见的孢粉类型;同样在NY1井Es4scs的11块样品中,仅在3 335.58 m的一块样品中孢粉较丰富,其中被子植物花粉中栎粉属(45.1%)含量很高,以小亨氏栎粉(34.1%)为主。依据前人的孢粉古气候研究成果[46,63],判断研究区Es4scs的上部地层古气候以半干旱—半湿润为主。

    上述三种研究方法得出的结果均表明东营凹陷Es4scs古气候具有由半干旱→半湿润→半干旱转变的演化特征,中部地层的气候湿润程度最高(图8)。

    Figure 8.  Sedimentary environment indices and stage divisions of Es4scs, well FY1, Dongying Sag

  • 相比于古气候的间接影响,古水深和古氧化还原性等古环境介质特征直接影响着有机质的生成和保存条件。利用与古水深呈负相关的Fe/Mn、(Fe+Al)/(Ca+Mg)等定性指标来判断沉积时的水体深度[3,4142,46,62]

    Fe/Mn、(Fe+Al)/(Ca+Mg)指标值的分布范围和均值显示,第一阶段两指标平均值分别为38.91和0.555,第二阶段分别为31.67和0.428,第三阶段分别为33.38和0.443,据此可知研究层段古水深经历了由较浅→深→次深的变化过程(图8)。

  • 研究古氧化还原性的指标包括地球化学指标和颜色、矿物成分等沉积学指标[3,42,46,65]。论文利用沉积学、地球化学和全烃气相色谱分析资料探讨古氧化还原性特征。

    元素V、Cr、Ni和Co在氧化或还原环境中具有不同的富集特征,故可用其元素比值定量表征古氧化还原性,其中,V/Cr<2指示氧化环境,2<V/Cr<4.25指示贫氧环境,V/Cr>4.25指示还原环境;Ni/Co<5指示氧化环境,5<Ni/Co<7指示贫氧环境,Ni/Co>7指示还原环境;V/(V+Ni)>0.60指示厌氧环境,0.46<V/(V+Ni)<0.60指示贫氧环境,V/(V+Ni)<0.46指示富氧环境[25,6667]。第一阶段的V/Cr、Ni/Co和V/(V+Ni)均值分别为1.894、4.745和0.449,第二阶段分别为4.251、7.409和0.688,第三阶段分别为3.164、6.912和0.532,指示了弱氧化环境→还原环境→贫氧环境的演化趋势。黄铁矿含量为高值指示深水还原环境,低值指示浅水氧化环境[68],该指标第一阶段较低,平均值为2.77%,第二阶段波动上升并保持稳定的高值,平均值为3.03%,第三阶段又下降,平均值为2.82%,故可知第二阶段的还原性最强,第三阶段的还原性变弱,第一阶段向氧化环境过渡(图8);姥鲛烷(Pr)和植烷(Ph)的分布特征可以反映沉积环境的氧化还原条件[15,19,23],Pr/Ph<1时代表还原环境,Pr/Ph>2时代表氧化环境,1<Pr/Ph<2时代表贫氧的弱还原环境,根据Pr/Ph比值均值特征可知第二阶段为还原环境。

  • 沉积水体古盐度与湖盆中的生物化学过程密切相关,古盐度研究对于恢复沉积时期的环境、探究烃源岩中有机质差异富集机理具有重要意义[69]。前人研究中提出了不同水体盐度的划分标准:淡水盐度为0.5‰~1.0‰,微咸水盐度为1‰~5‰,半咸水盐度为5‰~15‰,咸水为15‰~50‰,高盐水盐度为大于50‰[7071]。论文运用Sr/Ba、Ca/(Ca+Fe)和Ca/Mg比值等定量指标以及Sr/Ca比值等定性指标[3,62,72]对FY1井Es4scs的古盐度进行了分析,当Sr/Ba<0.5时水体为微咸水,0.5<Sr/Ba<1时为半咸水,Sr/Ba>1时为咸水环境;Ca/(Ca+Fe)<0.4时指示淡水沉积,0.4<Ca/(Ca+Fe)<0.8时指示半咸水沉积,Ca/(Ca+Fe)>0.8时为咸水沉积;Ca/Mg>80时指示淡水环境,Ca/Mg<80时指示咸水环境;Sr/Ca高值为咸水环境,低值为淡水环境。第一阶段Sr/Ba、Ca/(Ca+Fe)和Ca/Mg均值分别为5.24、0.867和11.577,指示较高盐度的咸水环境,第二阶段分别为3.992、0.778和12.445,指示盐度稍微偏低的咸水—半咸水环境,第三阶段分别为4.102、0.881和17.653,指示盐度升高的咸水环境,而Sr/Ca比值自下而上由大变小再变大,指示了盐度较高的咸水环境过渡为盐度低的咸水—半咸水环境再过渡为盐度略高的咸水环境的变化特征。各盐度指标均表明研究层段为咸水环境,第一阶段盐度均值较高,较高的含盐度伴随着水体的分层作用,从而使得上部水体盐度较高且含氧量较为充足,底部水体盐度更高且处于贫氧或缺氧状态,即具有相对富氧且盐度较高的表层水和相对缺氧盐度更高的底层水特征;第二阶段盐度均值略微减小但出现了几次盐度瞬时高值,推测盐度瞬时增大的原因可能是受到了海侵的影响,同时,该阶段气候变得温暖湿润后,水体深度达到峰值,陆源输入较多,湖泊出现水体分层的特征,即上部水体含氧量较为充足,底部水体处于贫氧或缺氧状态,湖底处于较强的还原环境;到第三阶段盐度均值又增大(图8)。

  • 古生产力是指地质历史时期生物在能量循环过程中固定能量的速率,指示了海底或湖底沉积物中初始的有机物质量。前人研究表明,生源钡(Babio)的含量是由沉积物中的总Ba含量与陆源Ba含量相减得到的,该指标可有效衡量古生产力[7379],具体的计算公式为Babio=Ba样品-Al样品×(Ba/Al)PAAS,其中Ba样品以及Al样品分别为样品的总Ba含量和总Al含量,(Ba/Al)PAAS为后太古宙澳大利亚页岩中Ba/Al比值,取值为0.007 7[80]。通常认为,当Babio>1 000 μg/g时认为该时期具有高的古生产力[7475,77,81]。除此之外,Ba/Al和Al/Ti比值亦可用于表征古生产力,其比值越大表明古生产力越高[17,8283]。因此,本次运用这三种指标分析古生产力。

    第一阶段生源Ba、Ba/Al和Al/Ti比值均值分别为362.82 μg/g、0.01 μg/g和20.7 μg/g,第二阶段分别为428.73 μg/g、0.015 μg/g和22.30 μg/g,第三阶段分别为377.07 μg/g、0.011 μg/g和21.08 μg/g,由此可知研究层段古生产力经历低水平→高水平→次高水平的演化过程(图8)。

  • 陆源碎屑输入的同时带来大量的营养物质使得藻类大量繁殖,进而对于有机质的富集具有很重要的作用。但是,过多的陆源碎屑物质输入同样会对生产力造成一定的稀释作用[12]。前人研究中多采用Al、Ti元素来表征陆源物质的输入程度[84],元素指标的高值表征陆源输入增多,而陆源输入对有机质富集的影响具有双面性,既可能稀释有机质又可能促使有机质富集。

    研究区Es4scs地层的Al和Ti含量分布具有相似性,在第二阶段Al和Ti的含量有一定的波动,而第一阶段和第三阶段Al和Ti含量保持相对稳定(图8),说明在第二阶段沉积时期,气候变得相对温暖湿润,降雨量增多,湖平面上升,风化作用强烈,陆源输入程度增加,而其余两个阶段沉积时气候处于干旱或半干旱阶段,蒸发作用强烈,湖平面下降,风化作用弱,陆源输入程度低。

  • 大量研究表明,火山活动对有机质的富集具有双重促进作用,一方面是火山喷发形成的火山灰作为营养物质会提高生物生产力,另一方面火山活动会造成环境极度缺氧,从而为有机质的埋藏和保存提供了条件[6,3032]在东营凹陷LY1井3 629.00 m、3 828.93 m深度处均发育含有机质凝灰岩,该类岩相与上下岩层呈突变接触,以长英质矿物为主,自下而上粒度逐渐变细,有机质含量较低,而与其紧密相邻的岩相有机质含量较高,在三塘湖盆地和鄂尔多斯盆地的凝灰质泥岩中发现了相似的现象(图9[3334]。凝灰岩中由粗变细的正旋回沉积代表了火山灰逐渐降落的过程,而附近岩相有机质含量高是由于火山喷发带来了大量营养物质,使生物大量繁殖,生物死亡后堆积形成了高有机质含量的凝灰岩。

    Figure 9.  Sedimentological microfeatures of volcanic activity in Dongying Sag

    前人研究表明,热液为水体提供热能并携带了大量微量元素和营养物质,使得生物大量繁盛,对古生产力的提高有积极的影响,有助于有机质的富集,而判别热液活动的指标包括Ni、Sb、Pb和Co等微量元素以及Fe/Ti、(Fe+Mn)/Ti和Co/Ni等比值[2425,8486]。研究区的地化资料分析结果显示(图10),东营凹陷Es4scs中部3 330.00~3 410.00 m深度段有机质丰度高,同时,与热液相关的Pb和Co等微量元素富集以及热液活动指标Fe/Ti、(Fe+Mn)/Ti呈高值,Co/Ni比值多大于1。除了地球化学指标证据外,前人在东营凹陷NY1井碳酸盐纹层中发现了伴生的中低温热液矿物碳酸锶[87]。由此推断,Es4scs中上部地层受热液活动的影响,有益于有机质的富集。

    Figure 10.  Geochemical signatures of hydrothermal activity of Es4scs, well FY1, Dongying Sag

  • 首次对研究区的沉积速率与有机质丰度关系进行了探讨。为研究沉积速率的垂向变化,运用偏心率相邻波峰间地层厚度与沉积持续时间(Es4scs,~124.22 kyr),计算得出FY1井Es4scs的平均沉积速率为0.069 m/kyr。研究发现,研究区沉积速率与有机质丰度具有一定的关系(图11),即有机质丰度随着沉积速率的逐渐增高显示出先增后减的特征,具体表现为:沉积速率小于0.07 m/kyr时,有机质丰度与沉积速率为较好的正相关关系,相关系数为0.663 4;沉积速率大于0.07 m/kyr时,两者具有较好的负相关关系,相关系数为0.437 7。该研究结论与前人的研究结果一致[23]

    Figure 11.  Deposition rate vs. TOC content of Es4scs, well FY1, Dongying Sag

  • 为了厘清研究区有机质富集的主要控制因素,分析了TOC值与表征沉积环境、陆源碎屑、沉积速率、火山作用和热液活动等参数之间的相关性。

    TOC值与干湿指数C之间的相关性分析结果显示(图12),对于东营凹陷Es4scs的细粒沉积岩样品,第一阶段TOC值与干湿指数C之间具有极好的幂相关关系(R2=0.564)(相关性为相关系数取绝对值,0~0.1为极弱或无相关性,0.1~0.3为弱或差相关性,0.3~0.5为中等或较好相关性,0.5~1.0为强或极好的相关性;下同),第二阶段两者具有极好的多项式相关关系(R2=0.918 8),而第三阶段两者之间具有较好的多项式相关关系(R2=0.384 3,由此可知第二阶段的气候湿润程度最高,这种气候条件下会加快大气水循环,促进母岩风化,从而使得营养物质等输送入湖泊,营养元素的增加会促进湖水表层微生物的大量繁盛,有机质埋藏量增加,而湖水底部水体缺氧,形成有利于有机质保存的环境。因此研究层段细粒沉积岩的形成受到气候湿润程度的影响,该因素在一定程度上影响有机质的供给、埋藏和保存,即古气候湿润的层段更有利于有机质的富集和保存。

    Figure 12.  Correlation between TOC content and sedimentary environmental indicators for fine⁃grained sedimentary rock samples of Es4scs, well FY1, Dongying Sag

    根据细粒沉积岩样品TOC值与Fe/Mn、(Fe+Al)/(Ca+Mg)之间的关系分析可知(图12),TOC值与古水深呈很弱的相关性,由于两指标与古水深呈负相关,因此,当(Fe+Al)/(Ca+Mg)比值小于0.5时,TOC值以大于1.5为主,当Fe/Mn比值介于25~40时,TOC值以大于2为主,故古水深变化会影响有机质的富集,在水体深度增加时,有机质富集程度高。

    根据细粒沉积岩样品TOC值与表征古氧化还原性指标之间的相关性分析可知,对于东营凹陷Es4scs样品,TOC值与V/Cr、Ni/Co比值在不同阶段具有不同的相关关系(图12)。第一阶段的相关系数分别为0.371和0.485,表明相关性整体较好;第二阶段的相关系数分别为0.630和0.891,相关性极好;第三阶段的相关系数分别为0.287和0.274,相关性较差但趋于中等。总体来看,TOC值与V/Cr、Ni/Co比值具有相对较好的正相关性。故古氧化还原性变化会影响有机质的富集,当气候逐渐进入暖湿气候阶段时,降水增加,水体深度达到最大,此时水体处于还原环境,具有较好的有机质保存条件,而该阶段的TOC值与氧化还原性呈正相关关系,表明水体的还原程度越高越有利于有机质的富集。

    研究区细粒沉积岩样品的Sr/Ca比值表明,东营凹陷Es4scs沉积时期为典型的咸水水体,但不同阶段盐度存在差异。以第二阶段为例,当Sr/Ca比值小于0.015时,TOC值与该指标具有极好的正相关关系,相关系数为0.686 4,随Sr/Ca比值的增大TOC含量明显增高,当Sr/Ca比值大于0.015时,TOC值与该指标具有较好的负相关关系,相关系数为0.392,随Sr/Ca比值的增大TOC值降低(图12)。同时,第一阶段和第三阶段都表现出与第二阶段类似的特征,这两个阶段的临界值分别为0.0105和0.012。综上可知,当Sr/Ca值介于0.010 5~0.015时,TOC值达到最高值,表明古盐度控制了Es4scs岩石的有机质富集程度,即富集程度随着古盐度的增加显示出先增后减的特征,这与前人的研究结果既有差异但也较为一致。张洪安等[88]、鹿坤等[89]、陈洁等[90]认为东濮凹陷沙河街组优质烃源岩主要发育在咸水环境,沉积水体的盐度越高则有机质丰度就越高。而此次研究发现,当水体盐度达到一定的临界值后,有机质含量显示出降低的特征。这主要是因为,湖水水体盐度的适当增加,使营养物质更丰富,促使藻类等喜盐水生生物大量繁殖,促进藻类的勃发,有利于提高生物生产力,且咸化环境有利于有机质絮凝,易于形成有机质的富集[9192];但是当盐度升高到一定程度后,突破了水生生物适宜繁殖的临界点,会造成生物丰度的减少。

    利用Ba值和Al/Ti比值探究古生产力与TOC值的相关性。研究表明,随Ba值和Al/Ti比值的增大,TOC值均显示出明显升高的趋势。第一阶段TOC值与Ba值的相关系数为0.347,表明两者相关性较好,第二阶段和第三阶段TOC值与Al/Ti比值的相关系数分别为0.663和0.505(图12),表明两者相关性极好。总体来看,两个阶段的两指标与TOC值均显示出明显较好、极好的正相关关系。由此可见,古生产力越高,有机质的富集程度越高,表明古生产力是有机质富集程度的主要控制因素。

    FY1井Es4scs样品中的TOC值与陆源碎屑指标的相关性分析显示,TOC含量与Al呈现一定的极弱的正相关关系(图12),同样的分析方法可得出TOC含量与Ti则呈极弱的正或负相关性,表明在Es4scs沉积时陆源碎屑的输入会在一定程度上稀释有机质,不利于有机质的聚集,但不是决定性的因素。

    火山作用与有机质富集具有紧密联系,火山喷发带来了大量营养物质,使生物大量繁殖,生物死亡后堆积形成了高有机质含量的凝灰岩。通过分析TOC含量与热液活动指标的相关性可知两者呈正相关关系,当Pb含量介于20~25 μg/g时,TOC含量以大于2%为主,证实热液活动有助于有机质的富集。

    沉积速率与有机质丰度具有一定的相关性(图11),即在低沉积速率阶段,影响有机质富集的主要因素是有机质的降解作用,而随着沉积速率的升高,有机质降解的时间缩短,从而利于有机质富集,有机质丰度逐渐增高;高沉积速率阶段,由于陆源碎屑输入量的增多,对有机质产生了稀释作用,从而导致该时期的有机质丰度降低,使得该阶段稀释作用取代降解作用成为影响有机质富集的主要因素。

    综上所述,从TOC值与表征古环境特征及陆源碎屑输入、火山作用等各指标的相关性分析来看,有机质富集和富有机质页岩的形成是多种因素综合作用的结果,具体包括古气候、古水深、水体氧化还原性、古盐度、古生产力、陆源碎屑输入、火山作用和热液活动及沉积速率等。其中古气候、古盐度、古氧化还原性、古生产力和沉积速率是有机质富集的主要控制因素,古水深、陆源碎屑输入、火山作用和热液活动是次要控制因素,这些因素都会直接或者间接地影响有机质供给或有机质的埋藏和保存。因此,有机质富集的控制因素是多方面的,这些因素之间相互作用,不能局限于古生产力、古氧化还原性、古盐度、陆源供给、热液活动和火山作用等因素中的某一个或某几个因素[1517,19,2225,2934],需将有机质富集控制因素分析纳入富有机质页岩形成的环境体系中去分析,强调各环境参数的综合作用;其次不能忽视沉积速率对有机质的埋藏和保存的控制作用,前人对该因素的研究较少,今后亟需加强。

  • 由于湖盆沉积物中矿物成分及含量、微量元素、有机质来源及丰度会随着物源供给、古气候、古氧化还原性等的改变而发生周期性变化[15,93],从而使得不同环境演化阶段的有机质富集程度发生变化。

    研究层段沉积环境演化阶段中的第一阶段处于干旱程度较高的半干旱气候(图13a),该阶段湖平面较低,降雨量减少,陆源输入程度低,蒸发作用强,水体盐度高,较高的含盐度伴随着水体的分层作用,即上部水体含氧量较为充足,底部水体处于贫氧或缺氧状态,从而导致该阶段整体呈弱氧化、分层的咸水环境。尽管这种环境的沉积过程中具有高盐度和缺氧的底层水,为有机质的保存提供了优质的条件,但陆源高等植物输入减少且较为严苛的生存环境导致生物物种较为单一,且不利于水生生物的生存和繁盛,藻类等水生生物含量低[15],从而使生物生产力低,造成该阶段有机质较为贫乏,沉积有机质丰度低(图13a)。

    Figure 13.  Enrichment model of organic matter in lacustrine fine⁃grained sedimentary rocks of Es4scs, Dongying Sag

    有机质富集层段形成于气候暖湿的第二阶段,气候潮湿时,降雨量增加,水深增加,为有机质的富集和发育提供了充足的空间;湿润的气候及相对低盐度的水体环境有利于生物的发育。该时期陆源碎屑输入程度增加,虽然在一定程度上会稀释有机质,但是大量雨水的注入利于营养元素进入湖泊,使湖盆的营养物质大幅增加,极大地促进了藻类等水生生物的生长和繁殖,为有机质的富集提供了较为充足的物质基础,同时提供的营养物质促进湖泊表层初级生产力的提高[24,94];咸水—半咸水还原性的水体特征为有机质的埋藏提供了保证,当气候变得温暖湿润后,水体深度达到峰值,陆源输入较多,湖泊出现水体分层的特征,即上部水体含氧量较为充足,底部水体处于贫氧或缺氧状态,湖底处于较强的还原环境,故在湖盆底部形成了有利于有机质保存的缺氧环境。同时,底栖微生物的呼吸也可以加剧水体中氧的消耗,二者共同促进有机质埋藏和保存,形成了还原条件下的有机质富集模式。因此,在该阶段有机质丰度高,富集程度最好,是页岩油气勘探的有利层段(图13b)。

    第三阶段处于半干旱气候阶段,该阶段受到上一阶段暖湿气候的影响而表现出相对低的干旱程度。湖泊水体深度不断变浅,盐度略有增加,陆源输入程度稍有降低,湖盆表层生产力下降,水体介质特征整体表现为不利于有机质保存的贫氧环境,导致大量死亡的有机质不能得到较好的保存,使得该阶段的沉积有机质丰度下降。总体来看,有机质的富集程度降低而低于第二阶段高于第一阶段(图13c)。

  • (1) 东营凹陷沙四上亚段纯上次亚段Es4scs湖相细粒沉积岩的有机质丰度较高且聚集较为集中,其赋存状态存在条带状有机质、充填有机质、分散有机质和交互状有机质等赋存状态,同时,各类生物标志化合物指标表明有机质来源以藻类等浮游生物为主,在中上部地层出现少量的陆源高等植物。

    (2) 沙四上亚段纯上次亚段Es4scs有机质富集主要受控于古气候、古盐度、古氧化还原性、古生产力和沉积速率,而古水深、陆源输入、火山作用及热液活动是有机质富集的次要控制因素。

    (3) 建立了适合研究区的各环境演化阶段的有机质富集模式,指出有机质的富集和富有机质细粒沉积岩的形成是多个要素相互配置与耦合的结果,即较高的生产力、一定的还原保存条件和盐度及适宜的沉积速率主导了高有机质的富集,该时期沉积的细粒沉积岩是页岩油气勘探的有利层段。

Reference (94)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return