Advanced Search
Volume 43 Issue 2
Apr.  2025
Turn off MathJax
Article Contents

WANG Bo, SHI JuYe, ZHU RuKai, LIANG XinPing. Organic Matter Enrichment Model of Lacustrine Fine-grained Sedimentary Rocks Driven by Astronomical Cycles: A case study of the lower Es3 and upper Es4 sub-member in well LY1, Dongying Sag[J]. Acta Sedimentologica Sinica, 2025, 43(2): 750-768. doi: 10.14027/j.issn.1000-0550.2023.016
Citation: WANG Bo, SHI JuYe, ZHU RuKai, LIANG XinPing. Organic Matter Enrichment Model of Lacustrine Fine-grained Sedimentary Rocks Driven by Astronomical Cycles: A case study of the lower Es3 and upper Es4 sub-member in well LY1, Dongying Sag[J]. Acta Sedimentologica Sinica, 2025, 43(2): 750-768. doi: 10.14027/j.issn.1000-0550.2023.016

Organic Matter Enrichment Model of Lacustrine Fine-grained Sedimentary Rocks Driven by Astronomical Cycles: A case study of the lower Es3 and upper Es4 sub-member in well LY1, Dongying Sag

doi: 10.14027/j.issn.1000-0550.2023.016
Funds:

National Natural Science Foundation of China 42102150

  • Received Date: 2022-08-08
  • Accepted Date: 2023-03-28
  • Rev Recd Date: 2023-03-01
  • Available Online: 2023-03-28
  • Publish Date: 2025-04-10
  • Objective The lacustrine fine-grained sedimentary rocks in Dongying Sag have great prospects for unconventional oil and gas resources. However, owing to the small grain size, rapid phase transition, and difficult identification of sequence interface, the traditional sequence stratigraphy cannot accurately divide and contrast the strata. At present, the understanding of the organic matter enrichment model is unclear, limiting the progress of unconventional oil and gas exploration. Cyclostratigraphy can divide high-frequency sequences and conduct a fine stratigraphic correlation, and can also explore the process of fine-grained rock deposition driven by astronomical cycles, which is an important means to establish the organic matter enrichment model and predict the sweet spot of shale oil. Methods Taking well LY1 in Dongying Sag, Bohai Bay Basin, as an example, the cyclostratigraphy of lacustrine fine-grained sedimentary rocks in the lower Es3(Es3l) and upper Es4(Es4u) sub-member were analyzed based on core, geochemical analysis, and natural gamma logging data. Results (1) The results show that this set of strata records good astronomical period signals, Es3l is mainly controlled by eccentricity and precession period, and Es4u is mainly controlled by eccentricity and obliquity period. During the deposition of Es3l, the thickness of sedimentary cycles controlled by 405 kyr long eccentricity, 100 kyr short eccentricity, and 20 kyr precession were 46.34 m, 14.20⁃12.23 m, and 2.64⁃2.09 m, respectively; while during that of Es4u, the thickness of sedimentary cycles controlled by 405 kyr eccentricity, 40 kyr obliquity, and 20 kyr precession were 30.54 m, 4.00⁃3.01 m, and 1.83⁃1.23 m, respectively. From Es4u to Es3l, the driving and controlling factors of sedimentary cycle gradually changed from the obliquity to precession cycle. (2) A 39.40⁃43.47 Ma absolute astronomical time scale was established using stable 405 kyr eccentricity astronomical tuning, with the top age of Es3l at 39.40 Ma as the anchor point. The high-precision astronomical time scale restricted the depth of the response to the Miocene Climatic Optimum event of 3 604.2⁃3 652.1 m, which wasin a warm and humid period, and the lithofacies shows the concentrated development of interbedded limestone. (3) Using the temporal properties of cyclostratigraphy, the filter curves of long eccentricity, short eccentricity, and obliquity were used as the reference curves for the fourth, fifth, and sixth order sequence divisions, respectively, and ten fourth-order sequences and forty fifth-order sequences were identified. Furthermore, the long eccentricity cycle with significant regional contrast characteristics was used as the scale for linking well correlation, and the high precision isochronous stratigraphic framework of the whole area was established. Conclusions Astronomical cycles control "source rock preservation conditions" by influencing lake level changes and "organic matter productivity" by influencing terrigenous input . Therefore, the astronomical cycle theory has been introduced to reveal the relationship between mud shale formation and the evolution of climate change, total organic carbon content, and other indicators and establish the sedimentary model under the control of cycles to predict sweet spot intervals, providing a theoretical basis for sweet spot prediction in thick mud shales. By discussing the response of fine-grained sedimentary rocks to eccentricity and precession cycles, we proposed that the organic matter enrichment model under both warm and wet and dry and cold climate conditions, considering that the maximum eccentricity value is beneficial to organic matter enrichment. The climate change caused by eccentricity and precession is the main mechanism of lacustrine high frequency cycle deposition and controls the development of hydrocarbons. This study not only guides shale oil exploration and development in Dongying Sag but also provides theoretical support for unconventional oil and gas exploration in other continental lacustrine basins.
  • [1] 宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率,2019,26(1):1-12.

    Song Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1-12.
    [2] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569-575.

    Sun Huanquan, Cai Xunyu, Zhou Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569-575.
    [3] 刘惠民. 济阳坳陷页岩油勘探实践与前景展望[J]. 中国石油勘探,2022,27(1):73-87.

    Liu Huimin. Exploration practice and prospect of shale oil in Jiyang Depression[J]. China Petroleum Exploration, 2022, 27(1): 73-87.
    [4] Machlus M L, Olsen P E, Christie-Blick N, et al. Spectral analysis of the Lower Eocene Wilkins Peak member, Green River Formation, Wyoming: Support for Milankovitch cyclicity[J]. Earth and Planetary Science Letters, 2008, 268(1/2): 64-75.
    [5] Abels H A, Aziz H A, Ventra D, et al. Orbital climate forcing in mudflat to marginal lacustrine deposits in the Miocene Teruel Basin (Northeast Spain)[J]. Journal of Sedimentary Research, 2009, 79(11/12): 831-847.
    [6] Valero L, Garcés M, Cabrera L, et al. 20 Myr of eccentricity paced lacustrine cycles in the Cenozoic Ebro Basin[J]. Earth and Planetary Science Letters, 2014, 408: 183-193.
    [7] Wu H C, Zhang S H, Sui S W, et al. Recognition of Milankovitch cycles in the natural gamma-ray logging of Upper Cretaceous terrestrial strata in the Songliao Basin[J]. Acta Geologica Sinica-English Edition, 2007, 81(6): 996-1001.
    [8] 陈果. 滨浅湖细粒沉积烃源岩有机质富集机理研究:以鄂尔多斯盆地盐池—定边地区长7段烃源岩为例[D]. 北京:中国石油大学(北京),2019.

    Chen Guo. Organic matter enrichment of fine-grained source rock in shollow lake facies: An example from Chang 7 unit source rock in Yanchi-Dingbian area[D]. Beijing: China University of Petroleum (Beijing), 2019.
    [9] 姚益民,徐道一,李保利,等. 东营凹陷牛38井沙三段高分辨率旋回地层研究[J]. 地层学杂志,2007,31(3):229-239.

    Yao Yimin, Xu Daoyi, Li Baoli, et al. High resolution cyclostratigraphic study on the Third member of Shahejie Formation of drill core Niu38 in the Dongying Depression, Shandong province[J]. Jourunal of Stratigraphy, 2007, 31(3): 229-239.
    [10] 孙善勇,刘惠民,操应长,等. 湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义:以东营凹陷牛页1井沙四上亚段为例[J]. 中国矿业大学学报,2017,46(4):846-858.

    Sun Shanyong, Liu Huimin, Cao Yingchang, et al. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil: A case study of the upper Es4 member of well NY1 in Dongying Sag[J]. Journal of China University of Mining & Technology, 2017, 46(4): 846-858.
    [11] 石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质,2019,40(6):1205-1214.

    Shi Juye, Jin Zhijun, Liu Quanyou, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214.
    [12] 张若琳,金思丁. 渤海湾盆地沾化凹陷罗69井沙三下亚段旋回地层学研究[J]. 中南大学学报(自然科学版),2021,52(5):1516-1531.

    Zhang Ruolin, Jin Siding. Cyclostratigraphy research on lower member 3 of Shahejie Formation in well Luo 69 in Zhanhua Sag Bohai Bay Basin[J]. Journal of Central South University (Science and Technology), 2021, 52(5): 1516-1531.
    [13] Zhang J G, Jiang Z X, Liang C, et al. Astronomical forcing of meter-scale organic-rich mudstone–limestone cyclicity in the Eocene Dongying Sag, China: Implications for shale reservoir exploration[J]. AAPG Bulletin, 2022, 106(8): 1557-1579.
    [14] Strasser A, Hilgen F J, Heckel P H. Cyclostratigraphy-concepts, definitions, and applications[J]. Newsletters on Stratigraphy, 2007, 42(2): 75-114.
    [15] 吴怀春,王成善,张世红,等. “地时”(Earth time)研究计划:“深时”(Deep Time)记录的定年精度与时间分辨率[J]. 现代地质,2011,25(3):419-428.

    Wu Huaichun, Wang Chengshan, Zhang Shihong, et al. “Earthtime” project: Dating precision and temporal resolution in the “Deep Time” record[J]. Geoscience, 2011, 25(3): 419-428.
    [16] 朱春霞,张尚锋,王雅宁,等. 陆丰凹陷韩江组旋回地层学分析及天文年代标尺的建立[J]. 海洋地质前沿,2022,38(4):42-52.

    Zhu Chunxia, Zhang Shangfeng, Wang Yaning, et al. Cyclical stratigraphic analysis and establishment of astronomical chronograph of Hanjiang Formation in Lufeng Sag[J]. Marine Geology Frontiers, 2022, 38(4): 42-52.
    [17] 年涛,姜在兴,刘惠民,等. 东营凹陷孔一段“红—灰”岩层旋回沉积记录:以王家岗地区王46井为例[J]. 地质科技通报,2022,41(3):32-43.

    Tao Nian, Jiang Zaixing, Liu Huimin, et al. Cyclic sedimentary record of “red-greyish green” beds in the First member of Eocene Kongdian Formation(Ek1), Dongying Sag: An example from the well Wang 46 in Wangjiagang area[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 32-43.
    [18] Li M S, Ogg J, Zhang Y, et al. Astronomical tuning of the end-Permian extinction and the Early Triassic epoch of South China and Germany[J]. Earth and Planetary Science Letters, 2016, 441: 10-25.
    [19] 杨雨,付文钊,余继峰,等. 胶莱盆地K/Pg界线下陆相红层的旋回地层学分析[J]. 沉积学报,2021,39(4):942-952.

    Yang Yu, Fu Wenzhao, Yu Jifeng, et al. Cyclostratigraphical analysis of continental red beds below K/Pg boundary in the Jiaolai Basin[J]. Acta Sedimentologica Sinica, 2021, 39(4): 942-952.
    [20] Wu H C, Zhang S H, Jiang G Q, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of northeast China and its stratigraphic and paleoclimate implications[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 308-323.
    [21] Yang H F, Huang Y J, Ma C, et al. Recognition of Milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications[J]. Journal of Asian Earth Sciences, 2020, 194: 104183.
    [22] 邹才能,邱振. 中国非常规油气沉积学新进展:“非常规油气沉积学”专辑前言[J]. 沉积学报,2021,39(1):1-9.

    Zou Caineng, Qiu Zhen. Preface: New advances in unconventional petroleum sedimentology in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 1-9.
    [23] 陆克政,漆家福,戴俊生,等. 渤海湾新生代含油气盆地构造模式[M]. 北京:地质出版社,1997.

    Lu Kezheng, Qi Jiafu, Dai Junsheng, et al. Tectonic model of Cenozoic petroliferous basin Bohai Bay province[M]. Beijing: Geological Publishing House, 1997.
    [24] 杨勇强,邱隆伟,姜在兴,等. 东营凹陷沙四上亚段滩坝物源体系[J]. 吉林大学学报(地球科学版),2011,41(1):46-53.

    Yang Yongqiang, Qiu Longwei, Jiang Zaixing, et al. Beach bar-provenance system on the upper part of Fourth member of Shahejie Formation, in Dongying Sag[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(1): 46-53.
    [25] 张超,张立强,陈家乐,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及判别[J]. 天然气地球科学,2017,28(5):713-723.

    Zhang Chao, Zhang Liqiang, Chen Jiale, et al. Lithofacies types and discrimination of Paleogene fine-grained sedimentary rocks in the Dongying Sag, Bohai Bay Basin, China[J]. Natural Gas Geoscience, 2017, 28(5): 713-723.
    [26] 田继军,姜在兴. 东营凹陷沙河街组四段上亚段层序地层特征与沉积体系演化[J]. 地质学报,2009,83(6):836-846.

    Tian Jijun, Jiang Zaixing. Sequence stratigraphy characteristics and sedimentary system evolution of upper Es4 in the Dongying Depression[J]. Acta Geologica Sinica, 2009, 83(6): 836-846.
    [27] 李丕龙. 陆相断陷盆地油气地质与勘探 [M]. 北京:石油工业出版社,地质出版社,2003.

    Li Pilong. Petroleum geology and exploration of continents fault basin [M]. Beijing: Petroleum Industry Press, Geological Publishing House, 2003.
    [28] 周靖皓,鲜本忠,张建国,等. 高频旋回地层约束下的湖相页岩有机质富集规律:以东营凹陷古近系沙三下亚段为例[J]. 古地理学报,2022,24(4):759-770.

    Zhou Jinghao, Xian Benzhong, Zhang Jianguo, et al. Organic matter enrichment law of lacustrine shale constrained by high resolution cyclostratigraphy: A case study from the lower sub-member of member 3 of Paleogene Shahejie Formation, Dongying Sag[J]. Journal of Palaeogeography, 2022, 24(4): 759-770.
    [29] Wang G L, Wang T G, Simoneit B R T, et al. The distribution of molecular fossils derived from dinoflagellates in Paleogene lacustrine sediments (Bohai Bay Basin, China)[J]. Organic Geochemistry, 2008, 39(11): 1512-1521.
    [30] 赵勇. 东营凹陷北带构造-层序-成藏动力学研究[M]. 北京:石油工业出版社,2006.

    Zhao Yong. The tectonic, sequence and oil formation kinetics research of the north slope in Dongying Depression[M]. Beijing: Petroleum Industry Press, 2006.
    [31] 盛文波,操应长,刘晖,等. 东营凹陷古近纪控盆断层演化特征及盆地结构类型[J]. 石油与天然气地质,2008,29(3):290-296.

    Sheng Wenbo, Cao Yingchang, Liu Hui, et al. Evolutionary characteristics of the Palaeogene basin-controlling boundary faults and types of basin architectures in the Dongying Sag[J]. Oil & Gas Geology, 2008, 29(3): 290-296.
    [32] 郭兴伟,施小斌,丘学林,等. 济阳坳陷新生代构造沉降特征[J]. 中国石油大学学报(自然科学版),2006,30(3):6-11.

    Guo Xingwei, Shi Xiaobin, Qiu Xuelin, et al. Characteristics of Cenozoic tectonic subsidence in Jiyang Depression[J]. Journal of China University of Petroleum, 2006, 30(3): 6-11.
    [33] 吴靖,姜在兴,童金环,等. 东营凹陷古近系沙河街组四段上亚段细粒沉积岩沉积环境及控制因素[J]. 石油学报,2016,37(4):464-473.

    Wu Jing, Jiang Zaixing, Tong Jinhuan, et al. Sedimentary environment and control factors of fine-grained sedimentary rocks in the upper Fourth member of Paleogene Shahejie Formation, Dongying Sag[J]. Acta Petrolei Sinica, 2016, 37(4): 464-473.
    [34] 杨万芹,蒋有录,王勇. 东营凹陷沙三下—沙四上亚段泥页岩岩相沉积环境分析[J]. 中国石油大学学报(自然科学版),2015,39(4):19-26.

    Yang Wanqin, Jiang Youlu, Wang Yong. Study on shale facies sedimentary environment of lower Es3-upper Es4 in Dongying Sag[J]. Journal of China University of Petroleum, 2015, 39(4): 19-26.
    [35] 杨万芹,王学军,蒋有录,等. 湖泊古气候的量化恢复及其对细粒沉积的影响:以东营凹陷沙四段上亚段—沙三段下亚段为例[J]. 油气地质与采收率,2018,25(2):29-36.

    Yang Wan-qin, Wang Xuejun, Jiang Youlu, et al. Quantitative reconstruction of paleoclimate and its effects on fine-grained lacustrine sediments: A case study of the upper Es4 and lower Es3 in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2): 29-36.
    [36] 朱光有,金强,张水昌,等. 济阳坳陷东营凹陷古近系沙河街组深湖相油页岩的特征及成因[J]. 古地理学报,2005,7(1):59-69.

    Zhu Guangyou, Jin Qiang, Zhang Shuichang, et al. Characteristics and origin of deep lake oil shale of the Shahejie Formation of Paleogene in Dongying Sag, Jiyang Depression[J]. Journal of Palaeogeography, 2005, 7(1): 59-69.
    [37] 姚益民,梁鸿德,蔡治国,等. 中国油气区第三系IV渤海湾盆地油气区分册[M]. 北京:石油工业出版社,1994.

    Yao Yimin, Liang Hongde, Cai Zhiguo, et al. Tertiary in petroliferous region of China contents Vol. IV The Bohai Gulf Basin[M]. Beijing: Petroleum Industry Press, 1994.
    [38] Liu Z H, Huang C J, Algeo T J, et al. High-resolution astrochronological record for the Paleocene-Oligocene (66-23 Ma) from the rapidly subsiding Bohai Bay Basin, northeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510: 78-92.
    [39] Wang M, Chen H H, Huang C J, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116.
    [40] Shi J Y, Jin Z J, Liu Q Y, et al. Cyclostratigraphy and astronomical tuning of the Middle Eocene terrestrial successions in the Bohai Bay Basin, eastern China[J]. Global and Planetary Change, 2019, 174: 115-126.
    [41] Jin S D, Liu S B, Li Z, et al. Astrochronology of a Middle Eocene lacustrine sequence and sedimentary noise modeling of lake-level changes in Dongying Depression, Bohai Bay Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 585: 110740.
    [42] Westphal H, Hilgen F, Munnecke A. An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application[J]. Earth-Science Reviews, 2010, 99(1/2): 19-30.
    [43] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.

    Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(3): 409-428.
    [44] 马雪莹,卢远征,樊茹,等. 新疆柯坪大湾沟中、上奥陶统旋回地层学研究及其地质意义[J]. 地层学杂志,2021,45(1):29-37.

    Ma Xueying, Lu Yuanzheng, Fan Ru, et al. Cyclostratigraphic studies of the Middle-Upper Ordovician at Dawangou section, Kalpin, Xinjiang and their geological implications[J]. Journal of Stratigraphy, 2021, 45(1): 29-37.
    [45] 彭军,于乐丹,许天宇,等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征:以渤海湾盆地济阳坳陷东营凹陷樊页1井Es4scs为例[J]. 石油与天然气地质,2022,43(4):957-969.

    Peng Jun, Yu Ledan, Xu Tianyu, et al. Logging identification of Milankovitch cycle and environmental response characteristics of lacustrine shale: A case study on Es4scs in well Fanye 1, Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(4): 957-969.
    [46] 曹海洋,王华,赵睿. 手持X射线衍射仪(ED-XRF)在旋回地层学中的应用:以酒泉盆地青西凹陷早白垩世下沟组为例[J]. 地球科学,2017,42(12):2299-2311.

    Cao Haiyang, Wang Hua, Zhao Rui. The application of the handheld energy-dispersive X-Ray Fluorescence (ED-XRF) in the cyclostratigraphy research: A case study from the Xiagou Formation of the Lower Cretaceous in the Qingxi Sag, Jiuquan Basin[J]. Earth Science, 2017, 42(12): 2299-2311.
    [47] 滕建彬,刘惠民,邱隆伟,等. 东营凹陷古近系页岩油储层储集空间发育特点与控制因素[J/OL]. 地球科学. http://kns.cnki.net/kcms/detail/42.1874.p.20220531.0951.012.html. http://kns.cnki.net/kcms/detail/42.1874.p.20220531.0951.012.html

    Teng Jianbin, Liu Huimin, Qiu Longwei, et al. Characteristics and influencing factors of shale oil reservoir space in Paleogene shale of Dongying Sag[J/OL]. Earth Science. http://kns.cnki.net/kcms/detail/42.1874.p.20220531.0951.012.html. http://kns.cnki.net/kcms/detail/42.1874.p.20220531.0951.012.html
    [48] 宋明水,刘惠民,王勇,等. 济阳坳陷古近系页岩油富集规律认识与勘探实践[J]. 石油勘探与开发,2020,47(2):225-235.

    Song Mingshui, Liu Huimin, Wang Yong, et al. Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(2): 225-235.
    [49] Li M S, Hinnov L, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22.
    [50] Schulz M, Mudelsee M. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002, 28(3): 421-426.
    [51] Thomson D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE, 1982, 70(9): 1055-1096.
    [52] 宋翠玉,吕大炜. 米兰科维奇旋回时间序列分析法研究进展[J]. 沉积学报,2022,40(2):380-395.

    Song Cuiyu, Dawei Lü. Advances in time series analysis methods for Milankovitch cycles[J]. Acta Sedimentologica Sinica, 2022, 40(2): 380-395.
    [53] Weedon G P. Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles[M]. Cambridge: Cambridge University Press, 2003.
    [54] 房强. 晚古生代冰期末期米兰科维奇旋回在华南的记录及环境响应[D]. 北京:中国地质大学(北京),2015:1-90.

    Fang Qiang. Milankovitch cycles from South China and the environmental responds at the end of the Late Paleozoic ice age[D]. Beijing: China University of Geosciences (Beijing), 2015: 1-90.
    [55] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
    [56] 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘,2014,21(2):48-66.

    Huang Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66.
    [57] Hinnov L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 419-475.
    [58] Hinnov L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. GSA Bulletin, 2013, 125(11/12): 1703-1734.
    [59] 金思丁. 酒泉盆地白垩系下沟组旋回地层识别及成因机制探讨[D]. 武汉:中国地质大学,2016.

    Jin Siding. Recognition of cyclostratigraphy and discussion of the genetic mechanism of Xiagou Formation in Early Cretaceous, Jiuquan Basin, west of China[D]. Wuhan: China University of Geosciences, 2016.
    [60] Meyers S R, Sageman B B, Hinnov L A. Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek limestone member using evolutive harmonic analysis and stratigraphic modeling[J]. Journal of Sedimentary Research, 2001, 71(4): 628-644.
    [61] 李前裕,田军,汪品先. 认识偏心率周期的地层古气候意义[J]. 地球科学:中国地质大学学报,2005,30(5):519-528.

    Li Qianyu, Tian Jun, Wang Pinxian. Recognizing the stratigraphic and paleoclimatic significance of eccentricity cycles[J]. Earth Science: Journal of China University of Geosciences, 2005, 30(5): 519-528.
    [62] Bradley W H. The varves and climate of the Green River Epoch[R]. Washington: U.S. Government Printing Office, 1929.
    [63] Olsen P E, Kent D V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 122(1/2/3/4): 1-26.
    [64] Wu H C, Hinnov L A, Zhang S H, et al. Continental geological evidence for Solar System chaotic behavior in the Late Cretaceous[J]. GSA Bulletin, 2023, 135(3/4):712-724.
    [65] Wu H C, Zhang S H, Jiang G Q, et al. Astrochronology of the Early Turonian–Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
    [66] Chen G, Gang W Z, Liu Y Z, et al. High-resolution sediment accumulation rate determined by cyclostratigraphy and its impact on the organic matter abundance of the hydrocarbon source rock in the Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 103: 1-11.
    [67] Zhang R, Jin Z J, Liu Q Y, et al. Astronomical constraints on deposition of the Middle Triassic Chang 7 lacustrine shales in the Ordos Basin, central China[J]. Palaeogeography, Palaeoclimato-logy, Palaeoecology, 2019, 528: 87-98.
    [68] Edgar K M, Wilson P A, Sexton P F, et al. New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(3/4): 670-682.
    [69] Slatt R M, Rodriguez N. Comparative sequence stratigraphy and organic geochemistry of North American unconventional gas shales: Commonality or coincidence?[J].Journal of Natural Gas Science and Engineering, 2012, 8, 68-84.
    [70] Nio S D, Brouwer J H, Smith D, et al. Spectral trend attribute analysis: Applications in the stratigraphic analysis of wireline logs[J]. First Break, 2005, 23(4): 71-75.
    [71] 吴峰,郭来源,张道军,等. 基于高精度岩心扫描元素数据的高频层序划分:以西科1井第四系生物礁滩体系为例[J]. 地质科技情报,2016,35(5):42-51.

    Wu Feng, Guo Laiyuan, Zhang Daojun, et al. High resolution sequence units division based on geochemical data: Taking Quaternary reef-bank strata of well XK1 as an example[J]. Geological Science and Technology Information, 2016, 35(5): 42-51.
    [72] 石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的高精度旋回识别与划分:以南图尔盖盆地Ary301井中侏罗统为例[J]. 沉积学报,2017,35(3):436-448.

    Shi Juye, Jin Zhijun, Liu Quanyou, et al. Recognition and division of high-resolution sequences based on the Milankovitch theory: A case study from the Middle Jurassic of well Ary301 in the south Turgay Basin[J]. Acta Sedimentologica Sinica, 2017, 35(3): 436-448.
    [73] 王鸿祯,史晓颖. 沉积层序及海平面旋回的分类级别:旋回周期的成因讨论[J]. 现代地质,1998,12(1):1-16.

    Wang Hongzhen, Shi Xiaoying. Hierarchy of depositional sequences and eustatic cycles: A discussion on the mechanism of sedimentary cycles[J]. Geoscience, 1998, 12(1): 1-16.
    [74] 郑荣才,彭军,吴朝容. 陆相盆地基准面旋回的级次划分和研究意义[J]. 沉积学报,2001,19(2):249-255.

    Zheng Rongcai, Peng Jun, Wu Chaorong. Grade division of base-level cycles of terrigenous basin and its implications[J]. Acta Sedimentologica Sinica, 2001, 19(2): 249-255.
    [75] 赵宗举,陈轩,潘懋,等. 塔里木盆地塔中—巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究[J]. 地质学报,2010,84(4):518-536.

    Zhao Zongju, Chen Xuan, Pan Mao, et al. Milankovitch cycles in the Upper Ordovician Lianglitage Formation in the Tazhong-Bachu area, Tarim Basin[J]. Acta Geologica Sinica, 2010, 84(4): 518-536.
    [76] 关有志. 科尔沁沙地的元素、粘土矿物与沉积环境[J]. 中国沙漠,1992,12(1):9-15.

    Guan Youzhi. The element, clay mineral and depositional environment in Horqin sand land[J]. Journal of Desert Research, 1992, 12(1): 9-15.
    [77] 陆现彩,胡文宣,李佩珍,等. 胜利油区第三纪火山活动对油气生成的影响[J]. 地质论评,1999,45(增刊1):594-598.

    Lu Xiancai, Hu Wenxuan, Li Peizhen, et al. Influence of volcanic activity in the Tertiary on the generation of hydrocarbons in Shengli oil field, Shandong province[J]. Geological Review, 1999, 45(Suppl.1): 594-598.
    [78] 于乐丹,彭军,许天宇,等. 陆相断陷咸化湖盆细粒沉积地层有机质富集特征及控制因素分析:以东营凹陷沙河街组第四段上亚段纯上次亚段为例[J]. 沉积学报,2024,42(2):701-722.

    Yu Ledan, Peng Jun, Xu Tianyu, et al. Analysis of organic matter enrichment and influences in fine-grained sedimentary strata in saline lacustrine basins of continental fault depressions: Case study of the upper sub of the upper 4th member of the Shahejie Formation in the Dongying Depression[J]. Acta Sedimentologica Sinica, 2024, 42(2): 701-722.
    [79] Huang C J, Hinnov L. Astronomically forced climate evolution in a saline lake record of the Middle Eocene to Oligocene, Jianghan Basin, China[J]. Earth and Planetary Science Letters, 2019, 528: 115846.
    [80] Thomas G H, Kevin T P, Stuart A R. Milankovitch forcing of bioturbation intensity in deep-marine thin-bedded siliciclastic turbidites[J] Earth and Planetary Science Letters, 2008, 272(1): 130-138.
    [81] 张建国. 济阳坳陷始新统沙三下亚段湖相细粒沉积岩成因机制研究[D]. 北京:中国地质大学(北京),2017:1-114.

    Zhang Jianguo. The formation mechanisms of lacustrine fine-grained sedimentary rocks in the Eocene lower Es3 strata, the Jiyang Depression[D]. Beijing: China University of Geosciences (Beijing), 2017: 1-114.
    [82] 杨仁超,田源. 天文周期与异重流沉积前沿科学问题探讨[J]. 非常规油气,2020,7(5):1-7.

    Yang Renchao, Tian Yuan. Discussion on the scientific issues in frontiers of astronomical cycles and hyperpycnal flow deposits[J]. Unconventional Oil & Gas, 2020, 7(5): 1-7.
    [83] Demaison G J, Moore G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin, 1980, 64(8): 1179-1209.
    [84] Calvert S E. Oceanographic controls on the accumulation of organic matter in marine sediments[J]. Geological Society, London, Special Publications, 1987, 26(1): 137-151.
    [85] Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1-24.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(13) PDF downloads(5) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-08-08
  • Revised:  2023-03-01
  • Accepted:  2023-03-28
  • Published:  2025-04-10

Organic Matter Enrichment Model of Lacustrine Fine-grained Sedimentary Rocks Driven by Astronomical Cycles: A case study of the lower Es3 and upper Es4 sub-member in well LY1, Dongying Sag

doi: 10.14027/j.issn.1000-0550.2023.016
Funds:

National Natural Science Foundation of China 42102150

Abstract: Objective The lacustrine fine-grained sedimentary rocks in Dongying Sag have great prospects for unconventional oil and gas resources. However, owing to the small grain size, rapid phase transition, and difficult identification of sequence interface, the traditional sequence stratigraphy cannot accurately divide and contrast the strata. At present, the understanding of the organic matter enrichment model is unclear, limiting the progress of unconventional oil and gas exploration. Cyclostratigraphy can divide high-frequency sequences and conduct a fine stratigraphic correlation, and can also explore the process of fine-grained rock deposition driven by astronomical cycles, which is an important means to establish the organic matter enrichment model and predict the sweet spot of shale oil. Methods Taking well LY1 in Dongying Sag, Bohai Bay Basin, as an example, the cyclostratigraphy of lacustrine fine-grained sedimentary rocks in the lower Es3(Es3l) and upper Es4(Es4u) sub-member were analyzed based on core, geochemical analysis, and natural gamma logging data. Results (1) The results show that this set of strata records good astronomical period signals, Es3l is mainly controlled by eccentricity and precession period, and Es4u is mainly controlled by eccentricity and obliquity period. During the deposition of Es3l, the thickness of sedimentary cycles controlled by 405 kyr long eccentricity, 100 kyr short eccentricity, and 20 kyr precession were 46.34 m, 14.20⁃12.23 m, and 2.64⁃2.09 m, respectively; while during that of Es4u, the thickness of sedimentary cycles controlled by 405 kyr eccentricity, 40 kyr obliquity, and 20 kyr precession were 30.54 m, 4.00⁃3.01 m, and 1.83⁃1.23 m, respectively. From Es4u to Es3l, the driving and controlling factors of sedimentary cycle gradually changed from the obliquity to precession cycle. (2) A 39.40⁃43.47 Ma absolute astronomical time scale was established using stable 405 kyr eccentricity astronomical tuning, with the top age of Es3l at 39.40 Ma as the anchor point. The high-precision astronomical time scale restricted the depth of the response to the Miocene Climatic Optimum event of 3 604.2⁃3 652.1 m, which wasin a warm and humid period, and the lithofacies shows the concentrated development of interbedded limestone. (3) Using the temporal properties of cyclostratigraphy, the filter curves of long eccentricity, short eccentricity, and obliquity were used as the reference curves for the fourth, fifth, and sixth order sequence divisions, respectively, and ten fourth-order sequences and forty fifth-order sequences were identified. Furthermore, the long eccentricity cycle with significant regional contrast characteristics was used as the scale for linking well correlation, and the high precision isochronous stratigraphic framework of the whole area was established. Conclusions Astronomical cycles control "source rock preservation conditions" by influencing lake level changes and "organic matter productivity" by influencing terrigenous input . Therefore, the astronomical cycle theory has been introduced to reveal the relationship between mud shale formation and the evolution of climate change, total organic carbon content, and other indicators and establish the sedimentary model under the control of cycles to predict sweet spot intervals, providing a theoretical basis for sweet spot prediction in thick mud shales. By discussing the response of fine-grained sedimentary rocks to eccentricity and precession cycles, we proposed that the organic matter enrichment model under both warm and wet and dry and cold climate conditions, considering that the maximum eccentricity value is beneficial to organic matter enrichment. The climate change caused by eccentricity and precession is the main mechanism of lacustrine high frequency cycle deposition and controls the development of hydrocarbons. This study not only guides shale oil exploration and development in Dongying Sag but also provides theoretical support for unconventional oil and gas exploration in other continental lacustrine basins.

WANG Bo, SHI JuYe, ZHU RuKai, LIANG XinPing. Organic Matter Enrichment Model of Lacustrine Fine-grained Sedimentary Rocks Driven by Astronomical Cycles: A case study of the lower Es3 and upper Es4 sub-member in well LY1, Dongying Sag[J]. Acta Sedimentologica Sinica, 2025, 43(2): 750-768. doi: 10.14027/j.issn.1000-0550.2023.016
Citation: WANG Bo, SHI JuYe, ZHU RuKai, LIANG XinPing. Organic Matter Enrichment Model of Lacustrine Fine-grained Sedimentary Rocks Driven by Astronomical Cycles: A case study of the lower Es3 and upper Es4 sub-member in well LY1, Dongying Sag[J]. Acta Sedimentologica Sinica, 2025, 43(2): 750-768. doi: 10.14027/j.issn.1000-0550.2023.016
  • 渤海湾盆地属于中新生代陆相断陷湖盆,蕴含着丰富的非常规油气资源[12]。济阳坳陷页岩油主要目的层段为沙三下—沙四上亚段湖相深水细粒沉积岩,2021年勘探再创佳绩,位列中石化十大油气勘探发现成果第一位,有利区块预测储量4.58亿吨[3]。随着页岩油气勘探开发的大力进行,湖相细粒沉积岩地层精细划分与对比的问题亟需解决,但传统层序地层学方法无法建立高精度等时地层格架。国际上,美国怀俄明州始新世绿河组[4]、西班牙东北部中新世Teruel盆地[5]、葡萄牙新生代Ebro盆地[6],这些研究均表明天文旋回驱动湖盆沉积。

    在我国,湖相旋回地层研究热点在非常规油气层段,如Wu et al.[7]建立松辽盆地白垩系青山口组和嫩江组天文年代标尺,揭示了受天文旋回控制的沉积作用,证明了天文旋回可以为高分辨率地层划分和对比提供帮助;陈果[8]通过对鄂尔多斯三叠系长7段细粒烃源岩开展旋回研究,获得了各亚段界限年龄及持续时间,探究了有机质富集机理。东营凹陷沙三下—沙四上亚段时期,沉积相对连续完整的细粒沉积岩,记录了丰富的古气候和古环境演化信息,是研究旋回地层学研究的理想载体[9]。前人对该区域进行一定的旋回地层研究,但地层界限年龄仍存在争议、高频层序划分方案和标准不统一[1013]

    天文旋回理论认为,地球公转时轨道参数发生周期性变化,驱动气候发生0.02~0.40 Myr的旋回性变化,影响地表风化、搬运、剥蚀、沉积等过程,这些变化会记录在沉积地层中,其研究的主要周期为~405 kyr长偏心率、~100 kyr短偏心率、~40 kyr斜率和~20 kyr岁差[14]。旋回地层学研究就是通过对连续沉积地层中古气候替代性指标进行高密度采样,利用时间序列分析方法识别出地层中天文周期,从而建立~0.02 Myr天文年代标尺,并实现地层高频划分与对比[15]。近年来,旋回地层学应用思路拓宽,如估算沉积速率动态演变[1617]、为重大地质事件提供精确年龄[1819]、恢复海平面变化以及古气候研究等[2021]

    本研究拟对东营凹陷古近系沙三下—沙四上亚段的湖相深水细粒沉积岩开展旋回地层学分析,选取自然伽马(GR)数据序列作为古气候替代性指标。运用频谱分析(MTM)和滑动窗口分析(EHA),识别出天文旋回;通过长偏心率调谐到Laskar理论曲线上,建立天文年代标尺,计算各层段精确界面天文年龄及持续时间;并将地球轨道参数与高频层序相对,实现富有机质页岩四级层序高精度等时对比。最后在高精度的年代地层格架下,探究细粒沉积岩的天文响应及天文轨道对有机质富集的控制。研究成果旨在突破泥页岩地层划分瓶颈,预测甜点层段,为页岩油气勘探开发提供一种新思路[22]

  • 东营凹陷是济阳坳陷内最大的次级构造单元,位于其南部,走向NEE,受晚白垩世上地幔上隆而处于伸展构造背景,具有“北断南超,西断东超”的特点,典型的陆相箕状断陷湖盆[2325]。其西邻滨县和青城凸起,北临陈家庄凸起,南侧为鲁西隆起,东为青坨子凸起,勘探面积约5 700 km2[2627]图1)。凹陷主要发育利津洼陷、牛庄洼陷、博兴洼陷、民丰洼陷等次级洼陷[30]。东营凹陷新生代构造演化主要受到喜山运动的幕式活动影响,整体构造演化时长约63 Myr,可以划分为两个阶段:古近纪裂陷期、新近纪坳陷期[31]。其中多幕裂陷期可细分为4个裂陷幕,分别为孔店组的裂陷I幕,沙四段的裂陷II幕,沙三段—沙二下亚段的裂陷II幕,沙二上亚段—东营组的裂陷IV幕[32]

    Figure 1.  Comprehensive geological background map of Dongying Sag (modified from references [17,28⁃29])

    本文主要研究对象为古近系沙三下—沙四上亚段的细粒沉积岩,也是页岩油勘探的主要目的层段,此时是湖盆裂陷发育鼎盛期,大量沉积充填沙河街组,形成半深湖—深湖环境[3335]。从沙四上到沙三下亚段,古气候条件逐渐从干旱向湿润过渡,古盐度从盐湖相向半咸水湖相转变,古水位逐渐加深,整体均处于强还原条件下[36]。岩性主要为泥岩、灰质泥岩、泥质灰岩、粉砂质灰岩。

    前人对渤海湾盆地古近纪地层做过大量古气候和旋回地层学研究,关于各界限年龄结论不一。最早姚益民等[37]使用K-Ar方法测定辽河盆地火山灰年龄,得出孔店组底部65.0 Ma到东营组顶部24.6 Ma中9个年龄,其中沙三下和沙四上界限年龄为42.4 Ma。Liu et al.[38]利用GTS2012中古近纪/新近纪界限年龄23.03 Ma,建立的23~66 Ma(渐新世—古新世)天文年代标尺显示该界限年龄为42.47 Ma。Wang et al.[39]以前人给定的东营组—沙河街组界限年龄28.86 Ma为锚点,建立东濮凹陷沙河街组28.86~43.59 Ma标尺显示该界限年龄为43.59 Ma。Shi et al.[40]对FY1井综合磁性地层研究确定了C18n1n-C20n边界位置以及GTS2012中对应的磁性地层年龄,并将其作为锚点建立东营凹陷天文年代标尺,该界限年龄为41.38 Ma。Jin et al.[41]同样对FY1井开展旋回地层学研究,结合天文检验方法,建立沙三下—沙四上39.628~43.621 Ma高分辨率标尺,目标界限年龄为41.28 Ma。上述研究表明,沙三下和沙四上亚段大致年龄范围集中在38~44 Ma,界限年龄在41~43 Ma。

  • 旋回地层学分析前需要选取合适的古气候替代性指标,通常考虑以下两方面因素:对古气候响应是否灵敏准确;时间和成本[42]。常见的古气候替代性指标有:地球物理类指标,如自然伽马(GR)测井、磁化率、岩性等;地球化学类指标,如碳、氧稳定同位素,Fe、Al等元素地球化学数据、有机碳等;古生物类,如生物更替速度、灭绝率、多样性等[43]。自然伽马测井曲线因其方便快捷、准确性高、分辨率高,近些年广泛应用在旋回地层学研究中[1617,28,4445]。自然伽马测量岩石中天然放射性核素,数值变化主要与黏土矿物吸附的钍(Th)、钾(K)含量及相对富集在有机物中的铀(U)有关。由于湖盆中黏土矿物和有机质丰度对环境和气候变化敏感,GR可以保存与气候变化相关的主要信号[18]。化学风化和降雨增强导致更多的黏土矿物输入和有机物质聚集(GR高值时)表明暖湿气候条件;相反,物理风化作用增强和植被减少导致黏土输入量减少和无机碳酸盐输入量增加(GR低值时),表明干冷气候条件。

    本研究数据主要为LY1井、NY1井、FY1井、F120井的自然伽马测井,除此之外,还包括实验室测得总有机碳(TOC)含量和矿物含量数据。XRF数据的获取是通过布鲁克公司的手持式X荧光光谱仪测得,可原位分析常量和微量元素,扫描间隔0.1 m[46]。四口页岩油系统取心井以古近系沙三下—沙四上亚段细粒沉积岩为目的层,钻至孔店组,钻井资料显示无明显缺失和间断,是旋回分析的理想载体[4748]。选取四口井GR数据序列作为古气候替代性指标开展旋回分析,采样间隔0.10 m。LY1井沙三下—沙四上亚段3 525~3 872 m,GR取值范围为43~103 API。NY1井该段3 206~3 467 m,GR取值范围为42~109 API。FY1井该段3 206~3 467 m,GR取值范围为33~96 API。F120井该段3 206~3 467 m,GR取值范围为19~92 API。GR含量显示出明显的旋回性变化:GR含量高指示泥质含量高;GR含量低指示砂质含量高。

  • 本研究的旋回分析实验流程在基于Matlab平台的Acycle V2.4.1进行[49]

    1) 数据预处理

    原始数据包含“环境噪音”,影响后续实验结果的准确性,所以在旋回分析之前,首先对这些数据做预处理操作:(1)使用Sort/Unique/Delete-empty程序包删除偏离正常波动范围内异常值、同一深度的多值、空值;(2)使用Interpolation程序包进行线性插值,保证数据为等间距;(3)使用Detrending程序包中“LOWESS”方法来去除长周期对高频信号的压制。

    2) 旋回分析

    (1)采用频谱分析(multitaper method),配合Robust AR(1)红噪音模型置信度检验,提取置信度大于90%的显著峰值[50]。频谱图表示信号功率在频谱范围内分布情况,横坐标为频率,其倒数为对应旋回厚度,纵坐标为目标频率的相对振幅[5152];(2)选用滑动窗口频谱分析(Fast Fourier Transform),得到深度域演化图谱,直观反应沉积速率在纵向上的变化,还可以识别可能存在的沉积间断[53];(3)利用滤波(filtering)从地层混杂叠加的信号中获取特定信号[54],具体操作为使用高斯滤波器(Gause)中高通滤波(highpass)选项,设置中心频率和滤波带宽,将潜在目标轨道信号提取出来;(4)将前一步骤获得的数据序列建立年龄模型(build age modle),获得深—时转换关系图及沉积速率变化曲线。再进行天文调谐(age/tuning)将滤波出的周期校正到标准曲线上,完成深度域的数据序列向时间域的转换,利用绝对年龄为“锚点”,从而建立绝对天文年代标尺。中新生代的天文调谐已全部调谐完,La2010d提供了405 kyr长偏心率理论曲线模型,本文将时间域调谐至其上[5556]

  • 50 Ma以来的地质历史时期中,405 kyr长偏心率是稳定存在的,斜率和岁差周期由于潮汐耗散作用以及地月距离的增大发生变化,周期随着地质演化发展逐渐变长,但三者之间通常保持稳定比值关系20∶5∶2∶1[5758]。首先需要准确计算出该段历史时期的理论轨道周期,若地层记录中识别出来沉积旋回厚度之比与理论周期一致或相近(比值误差5%),则初步识别出米兰科维奇旋回[57,59]

    前人研究表明,东营凹陷沙三下—沙四上大致年龄范围在38~44 Ma之间,本研究利用天文解决方案(Astronomical Solution)模块,获得La2010d ETP理论天文轨道数据,其是将偏心率(E)、斜率(O)、岁差(P)按照权重拟合而成的复合数据,可以综合反映天文轨道信号信息,采样间隔为1 kyr。

    理论数据频谱分析显示长偏心率的周期为405 kyr(E)、短偏心率周期为125 kyr(e1)和95 kyr(e2)(平均周期100 kyr)、斜率周期为51 kyr(O1)、40 kyr(O2)和38 kyr(O3)(平均周期 40 kyr)、岁差周期为23 kyr(P1)、22 kyr(P2)、19 kyr(P3)(平均周期20 kyr),相互之间比值约为20∶5∶2∶1,且所有周期均远高于99%置信度检验(图2)。在识别出频谱图显著周期后,再对该数据进行滑动频谱分析,频谱图中显著峰值对应滑动谱图中周期稳定、连续、高能的条带。综上,可以将上述周期当作东营凹陷沙三下—沙四上38~44 Ma时期的基准周期。

    Figure 2.  The spectral analysis of the astronomical theory orbital curve

  • 原始LY1井GR曲线随着深度增加存在先减小后增大再减小的趋势。前人研究表明,该段沉积速率介于7~12 cm/kyr,所以405 kyr长偏心率控制的旋回厚度为28.35~48.60 m。选用LOWESS方法,窗口大小设置为60.15 m,实现去趋势化,防止低频部分信号失真压制要识别的峰值,且最大程度保留长偏心率周期。对趋势化后的GR数据进行频谱分析(MTM),频谱图中横坐标频率值倒数对应旋回厚度(1/频率),纵坐标代表信号能量,能量越大代表旋回性越强。52.58 m,38.56 m,12.66 m,4.04 m,3.52 m,3.25 m,3.02 m,2.54 m,2.40 m,1.83 m的置信度超过99%;21.42 m,11.72 m,6.05 m,1.73 m的置信度超过95%。整体上可分为52.58~38.56 m,12.66~7.71 m,4.04~3.07 m,2.54~1.83 m四个频带,与20∶5∶2∶1的理论周期接近,初步识别出地层潜在的天文信号(图3)。滑动频谱分析(EHA)可以直观体现信号的稳定性及沉积速率在纵向上的变化,在3 701 m处有明显的峰值信号不连续现象,可能是陆源输入影响沉积速率变化[60]。滑动频谱图信号变化的深度与地层划分结果一致,将LY1井纵向上分为二段,依次为沙三下(3 525~3 701 m),沙四上(3 701~3 872 m),并分段频谱分析。在沙三下亚段(3 525~3 701 m),高于90%的6个频率谱峰对应的旋回厚度为46.34 m,14.20 m,10.61 m,2.64 m,2.51 m,2.09 m,其比值接近405:125:95:23:22:19;在沙四上亚段(3 701~3 872 m),高于95%的3个频率谱峰对应的旋回厚度为30.54 m,3.01 m,1.83 m,其比值接近405∶40∶23,证实沙三下—沙四上时期天文轨道周期驱动沉积地层变化。通过405 kyr长偏心率对应的沉积厚度初步估计,沙三下沉积速率约为11.40 cm/kyr,沙四上沉积速率约为7.54 cm/kyr,综合EHA频谱结果,信号在3 701 m开始向右移动也表示沉积速率减小。另一方面,认为沙三下—沙四上偏心率信号一直稳定存在,沙四上的斜率信号能量较强,而沙三下的岁差信号能量较强,说明斜率驱动逐渐减弱而岁差驱动逐渐增强。

    Figure 3.  Well LY1 spectral analysis

  • 基于频谱分析结果,对趋势化后的数据通过高斯滤波方法提取特定频率信号。提取LY1井沙三下亚段代表405 kyr长偏心率的46.34 m厚度的旋回周期,滤波频率为0.022±0.0055 cycle/m,滤波结果显示4.5个长偏心率周期;提取代表100 kyr短偏心率的11.14 m厚度的旋回周期,滤波频率为0.087±0.022 cycle/m,结果显示16个短偏心率周期;提取代表40 kyr斜率的4.58 m厚度的旋回周期,滤波频率为0.218±0.054 5 cycle/m,结果显示39个斜率周期;提取代表20 kyr岁差的2.29 m厚度的旋回周期,滤波频率为0.437±0.109 cycle/m,滤波显示78个岁差周期。提取LY1井沙四上亚段代表405 kyr长偏心率的30.54 m厚度的旋回周期,滤波频率为0.033±0.008 cycle/m,结果显示5.5个长偏心率周期;提取代表100 kyr短偏心率的7.54 m厚度的旋回周期,滤波频率为0.133±0.033 cycle/m,结果显示24个短偏心率周期;提取代表40 kyr斜率的3.02 m厚度的旋回周期,滤波频率为0.312±0.078 cycle/m,滤波结果显示54个斜率周期;提取代表20 kyr岁差的1.51 m厚度的旋回周期,滤波频率为0.312±0.078 cycle/m,结果显示108个岁差周期。

    La2010d理论天文模型在50 Ma内已被证实十分完善可靠,本次研究选择稳定的405 kyr长偏心率周期,将地层中实际的滤波曲线与理论目标曲线进行对比,实现深度域向时间域转化,获得沉积速率曲线及天文年代标尺[14]

  • 旋回地层学分析表明,LY1井沙三下—沙四上亚段沉积地层受天文周期驱动,其中以405 kyr旋回周期最为显著。选择从LY1井深度域提取出来的405 kyr长偏心率滤波曲线为调谐曲线,100 kyr短偏心率滤波曲线为辅助曲线,以La2010d的405 kyr长偏心率曲线为目标天文曲线,100 kyr短偏心率曲线为辅助天文曲线。Shi et al.[40]对相邻FY1井进行系统性磁性地层定年测试,以磁性地层学年龄为锚点,已建立的绝对天文年代标尺显示FY1井沙三下亚段顶部界限年龄为39.23 Ma。由于不同井的滤波曲线在调谐过程中与理论曲线会存在相位差异,因此将其天文年龄调整为39.40 Ma,作为LY1井天文调谐的初始锚点,控制本次研究时间范围,建立东营凹陷绝对天文年代标尺[38]

    405 kyr长偏心率是地质历史时期最稳定的地球轨道参数,将此作为地质计时单位将新生代划分成162个单元(E1~E162)来校准地质年代[61]。本文进一步将建好的标尺对比其上,首先需要明确地层替代性指标与理论曲线相位关系:在偏心率值高值时,气候暖湿,此时化学风化和河流输入作用强,自然伽马曲线也对应高值;在偏心率值低值时,气候干冷,此时物理风化为主、陆源输入作用弱,自然伽马曲线也对应低值。因此关系可将时间域自然伽马曲线峰值与理论曲线峰值依次比对,时间域405 kyr长偏心率滤波与已建立的新生代标尺完全贴合,验证了天文年代标尺的可靠性(图4)。结果显示沙三下亚段持续时间为1.61 Ma,沙三下底部年龄为41.01 Ma;由于沙四上与沙三下之间存在0.16 Ma的沉积间断,沙四上顶部年龄为41.17 Ma,沙四上底部年龄为43.47 Ma。沙三下—沙四上亚段沉积持续时间约为3.91 Ma,整段平均沉积速度约为8.87 cm/kyr。年龄误差可能由以下因素导致:(1)沉积速率变化使405 ka周期峰值难以准确识别;(2)偏心率信号滤波时混入噪声;(3)天文调谐中假定相邻长偏心率峰间沉积速率恒定带来的系统误差。无法算出精确的误差,但考虑到这些不确定性并假设调谐和相关性正确,预估LY1井的天文年龄不确定性为±0.1 Ma。

    Figure 4.  Astrochronological time scale of Es3l⁃Es4u in Dongying Sag established by 405 kyr long⁃eccentricity tuning

    本研究与Jin et al.[41]建立的39.628~43.621 Ma天文标尺相比,持续时间及沙三下—沙四上亚段界限年龄41.280 Ma较为吻合,但其沙四上底部年龄更老,区别在于:(1)Jin et al.[41]选用FY1井为研究对象,而本文利用LY1井,不同井对天文旋回响应有所差异;(2)其通过FY1井中100 kyr短偏心率进行调谐,而本研究选择信号更稳定的405 kyr长偏心率调谐[39]

    陆相湖盆天文年代学研究得到广泛的应用,同时代美国怀俄明州绿河组米级沉积旋回被认为是由偏心率和岁差控制[4,62],本研究与其沉积速率10.49 cm/kyr相当一致,表明这种对应关系是可靠的;北美东部晚三叠世Newark厚层序列提供的沉积速率3 cm/kyr[63],产生差异的原因可能是其受到Pangea大陆的裂开以及地质年代相差~180 Ma造成天文周期发生显著变化。与国内含页岩油气热点盆地,如松辽盆地晚白垩世青山口组最优沉积速率11.7~13.0 cm/kyr相近[6465],而鄂尔多斯盆地长7段的沉积速率1~2 cm/kyr相对较低[66],可能因为长7段离物源区远,碎屑沉积物供应速率慢以及整体处于湖泛期,沉积物粒度较细[67]

    高精度天文年代标尺可以约束重大地质事件持续时间,进一步探讨古气候天文驱动机制以及为高频层序划分提供等时格架。古近系短期热气候(Mid-Eocene Climatic Optimum,MECO)事件持续时间大约在40.05~40.50 Ma[68],对应于东营凹陷LY1井3 604.2~3 652.1 m,处于温暖湿润期。在此深度范围,GR含量具有明显增加趋势及岩相上表现为夹层状灰岩集中发育,可反映湖相细粒沉积岩对突发性热事件具有良好响应特征。

  • 随着国内外页岩油气勘探不断取得新突破,泥页岩高频层序划分成为研究热点。传统层序地层学通常以地震层序上的不整合面作为层序边界进行地层划分。然而,湖相深水细粒岩沉积连续,以平行反射为主,利用井震资料无法准确识别层序界面。湖相页岩的高频层序地层学方法还不成熟,限制了泥页岩沉积等时对比精度与准确性。不同的学者对泥页岩层序划分尝试过多种方案,总体而言主要有四大方法:(1)GRP法,Slatt et al.[69]基于GR对海平面升降的敏感响应,划分GRP层序的3种构成样式;(2)INPEFA法,荷兰团队提出对自然伽马序列进行频谱属性分析[70];(3)元素分析法,依据高精度岩心扫描获取元素比值在纵向上的规律性周期变化进行划分[71];(4)基于米兰科维奇理论,利用米氏旋回的时间属性,进行高频层序划分与对比[72]

    本研究结合旋回地层学和层序地层学,将四、五、六级旋回分别与长偏心率、短偏心率、斜率对应,滤波曲线波峰相对层序界面。同时引入基准面概念,在每个周期内部以滤波曲线波谷分隔上升和下降半旋回。四级层序形成时限0.2~1.0 Ma,海平面变化幅度较小,可以与中期基准面旋回级次相对,驱动机制为405 kyr长偏心率;五级层序形成时限0.1 Ma,海平面变化低幅,可以与短期基准面旋回级次相对,驱动机制为100 kyr短偏心率;六级层序形成时限0.02~0.04 Ma,可以与超短期基准面旋回级次相对,驱动机制为40 kyr斜率或20 kyr岁差[7375]

    依据前人研究基础,将LY1井沙三下—沙四上亚段划分为2个层序、4个体系域(图5)。LY1井沙四纯上层序分为湖侵体系域(TST)和高位体系域(HST),包括5.5个长偏心率即5.5个四级旋回,24个短偏心率即24个五级旋回。TST(3 745~3 872 m),地层厚度较大,为127 m,底部发育含有机质粉砂质泥岩、灰质粉砂岩、泥岩,此时气候较为干燥,水体较浅;中上部发育深灰色灰质泥岩、深灰色泥岩和中有机质纹层状泥质灰岩,气候逐渐向暖湿过渡,水体变深。共包含4个长偏心率(四级旋回),19个短偏心率(五级旋回),基准面上升和基准面下降均较发育,整体可容纳空间增大。HST(3 701~3 745 m)主要岩性为层状灰质泥岩与富有机质纹层状泥岩互层。共包含1.5个长偏心率(四级旋回),六个短偏心率(五级旋回),湖平面上升达到最大水深后缓慢回落,整体可容纳空间缩小。LY1井沙三下层序也分为湖侵体系域(TST)和高位体系域(HST),包括4.5个长偏心率即4.5个四级旋回,16个短偏心率即16个五级旋回。TST(3 577~3 765 m),地层厚度较厚,岩性为深灰色富有机质层状灰质泥岩夹多套褐灰色灰质油页岩。共包含3.5个长偏心率(四级旋回),10个短偏心率(五级旋回),湖平面逐渐上升,整体可容纳空间增大。HST(3 525~3 577 m),岩性为深灰色中有机质层状灰质泥岩夹块状粉砂质泥岩。共包含1个长偏心率(四级旋回),六个短偏心率(五级旋回),湖平面下降,整体可容纳空间减小。

    Figure 5.  Quantitative classification of high⁃frequency sequences in well LY1

  • 为了提高高频层序划分的准确性和可靠性,选取信号最稳定明显的405 kyr长偏心率作为四级层序划分标尺,以LY1井为中心井,东西向展布的F120井FY1井、NY1井为相邻井(图6),实现东营凹陷内不同洼陷高精度等时地层对比并建立高频层序地层格架。

    Figure 6.  Eccentricity cycles correlation of the Es3l⁃Es4u in Dongying Sag

    结果显示四口井除顶底部滤波有细微差异外,均记录约11个旋回。滤波差别可能与井位不同导致其物源差异和沉积过程差异性有关。其中,F120井和FY1井均位于博兴洼陷内,沙三下—沙四上亚段地层厚度分别为356 m和390 m,沉积持续时间分别为3.90 Myr和3.99 Myr,沉积速率分别为9.13 cm/kyr和9.77 cm/kyr;LY1井位于利津洼陷内,该亚段地层厚度为347 m,沉积持续时间为3.91 Myr,沉积速率为8.87 cm/kyr;NY1井位于牛庄洼陷内,该亚段地层厚度为261 m,沉积持续时间为3.98 Ma,沉积速率为6.56 cm/kyr。四口井中,地层厚度越大沉积速率越快。

  • 对古气候响应的元素有很多,但单一元素或比值易受到自身物化性质的干扰,所以为了准确反应古气候,关有志[76]提出干湿指数“C”:=∑(Fe+Mn+Cr+V+Co+Ni)/(Ca+Mg+Sr+Ba+K+Na)。暖湿气候条件下,降雨量大,河流作用强,Fe、Mn、Cr等惰性组分通过径流注入湖盆,含量较高,而干冷气候条件下Ca、Mg、Sr、Ba、K、Na等活性组分仍可通过化学侵蚀在湖盆底部以盐类化合物析出富集。干湿指数越大,气候越暖湿;干湿指数越小,气候越干冷。Fe/Mn既可以指示古水深又可以反映古气候,Fe/Mn高值代表气候暖湿,Fe/Mn低值代表气候干冷。结合前人对元素相关指标敏感性和适用性测试结果,本研究选用干湿指数C、Fe/Mn反应古气候变化,分析细粒沉积岩对轨道周期的响应。

    选择信号保存良好的沙三下亚段3 620~3 648 m进行短偏心率讨论,对应地质时间40.20~40.48 Ma,包括2个短偏心率极大值和2个短偏心率极小值(图7)。在底部第一个短偏心率极大值附近,TOC平均值含量高,为6.60%,最大值8.22%。古气候指数C、Fe/Mn波动范围较大,平均含量分别为0.472和48.881。矿物含量方面,黄铁矿为4.175%,其高值指示还原性较强的深水环境。陆源碎屑含量也较高,34.003%,而碳酸盐矿物含量较低,26.038%,指示气候温暖湿润。向上短偏心率极小值附近,TOC含量明显降低,平均值为3.47%。古气候指数C和Fe/Mn处于平稳低值,平均含量分别为0.305和16.975,气候炎热干旱。黄铁矿和陆源碎屑含量分别减小至3.192%和25.098%,碳酸盐矿物含量显著增大到35.858%,也说明此时气候干旱。在第二个短偏心率极大值附近,有机质更加富集,TOC平均值6.60%,最大值8.22%。古气候指数C、Fe/Mn恢复高值,平均值分别为0.357和44.653,显示气候温暖湿润。黄铁矿和陆源碎屑含量分别上升至3.792%、29.368%,碳酸盐矿物含量下降至29.055%。在第二个短偏心率极小值附近,TOC含量再次降低至3.244%,古气候指数C和Fe/Mn明显降低至0.294和13.733,黏土矿物和陆源碎屑含量分别降低至37.211和25.129,碳酸盐矿物含量上升至37.661,整体指示干旱气候。

    Figure 7.  Geological response characteristics to short eccentricity cycles during 3 622⁃3 646 m in well LY1

    天文周期驱动细粒沉积过程研究中,需要考虑火山活动、重力流等事件沉积的影响程度或排除其干扰。

    1) 火山活动影响程度

    钻录井资料与前人研究表明,东营凹陷地区沙三下—沙四上时期内基本没有大规模火山活动[77],但有学者薄片观察结果显示LY1井3 629 m深度处发育含有机质凝灰岩[78]。在此有三点说明,(1)凝灰岩层段较薄,在连续沉积3 525~3 872 m岩心上仅有两处分布,前期数据处理过程已将异常值删掉后插值处理,不影响高分辨率旋回分析结果;(2)此深度处TOC含量较低,而上下两段TOC含量较高,附近的黏土矿物和陆源碎屑变化均较小,因此火山层位的TOC会受到一定影响,但上下影响范围有限,主要与天文旋回驱动的气候变化密切相关;(3)所选层段3 622~3 646 m广泛发育夹层状灰岩,在时间域响应中始新世气候适宜事件(MECO),且对应偏心率极大值(E100),认为此阶段主要受天文轨道驱动[79]

    2) 事件性沉积作用

    一方面已有学者探究天文旋回对事件沉积的控制作用,认为偏心率极大值期间,有利于事件沉积发生[8082]。此情况下不需要排除其影响。另一方面,LY1井深处盆地中心深湖区,远离控盆边界断裂,沉积构造稳定,选取沙三下层段3 622~3 646 m在岩心观察描述未发现事件沉积相应构造。

    以上详细的数据分析和讨论表明,短偏心率驱动气候变化,控制细粒岩沉积,TOC含量与曲线拟合良好,岩相规律性变化。偏心率极大附近,地球化学元素比值反应气候暖湿,此时TOC含量高,陆源输入较大,发育黄铁矿;偏心率极小附近,气候干冷,此时TOC含量低,陆源输入较少,发育碳酸盐矿物。偏心率通过控制岁差的振幅变化来影响气候,进一步探究岁差尺度有机质富集规律。

    分别选取偏心率极大值附近的暖湿半旋回(图8)和偏心率极小值附近干冷半旋回(图9),对应地质年龄分别为40.28~40.38 Ma和40.20~40.32 Ma。3 628~3 639 m暖湿半旋回中,偏心率极大值中心对应强振幅的2~4岁差周期,TOC平均值为6.081%,与岁差曲线拟合性好。黄铁矿、黏土矿物和陆源碎屑含量较高,平均值分别为3.792%、41.577%、29.368%,碳酸盐矿物平均含量较低,为29.055%,古气候指数C和Fe/Mn波动明显,分别高达0.463和44.653,指示气候暖湿、水体较深的还原环境。岩相表现为富有机质纹层状或层状灰质泥岩。3 620~3 632 m干冷半旋回中,偏心率极小值中心对应弱振幅的2~5岁差周期,信号能量较弱,TOC平均值为2.89%,呈现两头高、中点低的分布特点。相比暖湿半旋回,干冷半旋回中黄铁矿、黏土矿物和陆源碎屑含量更低,平均值分别为3.378%、36.011%、25.987%,碳酸盐矿物平均含量更高,为38.002%,古气候指数C和Fe/Mn保持平稳低值,分别为0.269和15.653,指示气候干冷、水体较浅的氧化环境。岩相表现为中有机质或含有机质层状—块状灰质泥岩。

    Figure 8.  Geological response characteristics to precession cycles near the maximum short eccentricity from 3 628⁃3 638 m in well LY1

    Figure 9.  Geological response characteristics to precession cycles near the minimum short eccentricity from 3 622⁃3 632 m in well LY1

  • 细粒沉积岩对轨道周期具有良好响应特征,证明东营凹陷沙三下—沙四上时期沉积过程受到天文驱动的影响。在偏心率极大值和极小值附近,表现为不同的古环境、古气候及沉积模式,因此分别建立偏心率极大值附近对应的暖湿气候和偏心率极小值附近对应干冷气候两种沉积模式。天文轨道周期通过影响湖平面变化来控制“烃源岩保存条件”,通过影响陆源输入来控制“有机质生产力”[8385]

    偏心率决定地球公转轨道椭率,因而影响地球接受总日照量及在不同纬度分布情况。当偏心率值越大,地球公转轨道越椭,使得地球接收到的日照量增大的同时同一纬度季节性明显,反之偏心率越小,轨道则趋向圆形,地球接受日照量减小的同时季节性变弱。但偏心率变化量很小,往往通过调制岁差的幅度来影响气候。岁差导致近日点在冬至点和夏至点之间周期性变化,通过季节性差异来影响地球气候[10]

    在短偏心率极大值附近(图10a),岁差振幅也较大,干湿指数C和Fe/Mn处于高值可证实此时气候暖湿。此阶段由于湖—陆温差大,气压发生变化产生季风,而季风的到来会使降雨量增加,河流输入作用增强,大量的陆源碎屑混杂有机质、营养物质注入湖盆。一方面增加了湖盆的生产力使得沉积物中TOC含量高,另一方面水体较深使得湖盆处于还原状态,有利于有机质的保存。随着偏心率曲线的峰谷值交替变化,黏土矿物、陆源碎屑也随之增大和减小。但碳酸盐矿物由于陆源输入使得湖水动荡浑浊,影响化学沉淀作用,所以碳酸盐矿物出现了相反的趋势。Fe元素在二价和三价随沉积环境氧化还原条件而变化,部分Fe元素在浅水区呈现Fe3+,而大量剩余Fe元素将会输送到湖盆深处,与S循环发生作用,生成FeS2黄铁矿。因此,底部黄铁矿的大量发育证实了底部沉积处于还原环境,岩相为富有机质细粒沉积岩。

    Figure 10.  Depositional model of fine⁃grained sedimentary rocks affected by astronomical cycles under different climate

    在短偏心率极小值附近(图10b),岁差振幅很小,地球接收到的能量少,干湿指数C和Fe/Mn处于低值可证实此时气候干冷。此阶段由于海—陆温差小,季风较弱,河流输入作用减小,相应陆源碎屑输入量也少,养分循环减弱。湖盆的生产力低且使得沉积物中TOC含量低,且湖平面较低,不利于有机质的保存。随着偏心率曲线峰谷的变化,黏土矿物、陆源碎屑稍有增加但总体处于低值。此阶段盆内碳酸盐矿物沉淀占优。岩相为含有机质或中有机质细粒沉积岩。

  • 东营凹陷沙三下—沙四上亚段泥页岩纵向上TOC含量分布的非均质性制约了非常规油气勘探开发。本研究表明,天文周期控制沉积模式演化进而控制TOC含量垂向分布。偏心率—岁差共同引发的气候变化是湖相高频旋回沉积作用的主要机制,同时控制控制烃源岩的发育。在岁差极大值附近,气候暖湿,岩相表现为富有机质纹层状暗色灰质泥岩,是勘探开发的重点目的层段;而岁差极小值附近,气候干冷,岩相为中有机质块状—层状灰质泥岩。因此,引入天文周期理论,揭示泥页岩地层与气候变化、TOC含量等指标演化规律之间的关系,建立旋回控制下的沉积模式进而预测甜点层段,为厚层泥页岩中甜点预测提供理论依据。

  • (1) 东营凹陷沙三下—沙四上亚段地层中记录较为完好的米兰科维奇旋回信号,从沙四上亚段到沙三下亚段,沉积旋回驱动主控因素由斜率周期逐渐转为岁差周期。

    (2) 基于405 ka长偏心率调谐建立的天文年代标尺显示,沙三下—沙四上亚段沉积持续时间为3.91 Ma。绝对天文年代标尺约束古气候事件 MECO 对应深度为 3 604.2~3 652.1 m。

    (3) 以长偏心率(四级层序)、短偏心率(五级层序)和斜率周期(六级层序)为基准,定量划分LY1井为10个四级层序和40个五级层序,突破湖相细粒沉积岩高频层序划分瓶颈。东西向连井对比表明,长偏心率驱动的四级层序格架可有效约束富有机质页岩空间展布。

    (4) 天文轨道周期通过影响湖平面变化控制“烃源岩保存条件”,通过影响陆源输入控制“有机质生产力”。偏心率极大值和极小值附近分别对应暖湿气候和干冷气候两种沉积模式:在偏心率极大值附近,此时气候暖湿,河流作用强,大量的陆源碎屑携带营养物质向湖盆输入,初级生产力高。另一方面降雨量大,湖平面较高,利于有机质保存,岩相表现为富有机质层状—纹层状灰质泥岩;在偏心率极小值附近,此时气候干冷,河流作用弱,营养物质输入量少,初级生产力低,同时蒸发量大,此时湖平面较低,不利于有机质保存,岩相表现为中有机质块状—层状灰质泥岩。

Reference (85)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return