Advanced Search
Volume 43 Issue 1
Feb.  2025
Turn off MathJax
Article Contents

WU KeRui, SUN Yu, YAN BaiQuan, YANG JiaQi, MA ZhiQiang, YU LiMin, WANG XinRui. Progress on the Features of Physical Property and Hydrocarbon Accumulation of Laminated Lacustrine Fine-Grained Sedimentary Rocks[J]. Acta Sedimentologica Sinica, 2025, 43(1): 20-38. doi: 10.14027/j.issn.1000-0550.2023.072
Citation: WU KeRui, SUN Yu, YAN BaiQuan, YANG JiaQi, MA ZhiQiang, YU LiMin, WANG XinRui. Progress on the Features of Physical Property and Hydrocarbon Accumulation of Laminated Lacustrine Fine-Grained Sedimentary Rocks[J]. Acta Sedimentologica Sinica, 2025, 43(1): 20-38. doi: 10.14027/j.issn.1000-0550.2023.072

Progress on the Features of Physical Property and Hydrocarbon Accumulation of Laminated Lacustrine Fine-Grained Sedimentary Rocks

doi: 10.14027/j.issn.1000-0550.2023.072
Funds:

Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City 2021JJLH0077

Heilongjiang Provincial Natural Science Foundation of China ZD2023D002

National Natural Science Foundation of China 41872158

  • Received Date: 2023-04-21
  • Accepted Date: 2023-09-05
  • Rev Recd Date: 2023-08-13
  • Available Online: 2023-09-05
  • Publish Date: 2025-02-10
  • Objective Strong heterogeneity is the main feature of continental shale strata. Its characteristics are caused by the fact that the sedimentary environment of lacustrine fine grained rocks is close to the source area and the water depth is shallow, which is clearly controlled by hydrodynamic, climatic, structural, bioturbation, and other factors. In particular, the vertical composition, morphology, and structure of laminated fine-grained sedimentary rocks can exhibit significant differences at the millimeter scale. According to published literature statistics and analysis of previous research results, the reservoir physical properties and hydrocarbon accumulation ability of laminated fine-grained rocks are superior to the undeveloped/weakly developed laminated fine-grained rocks, exhibiting an excellent positive correlation with the development degree as well. However, the summary of relevant differences is still unclear and needs to be revealed. Methods Focusing on the relevant literature from the past ten years, the types and genesis of pores and fractures of laminated fine-grained sedimentary rocks were reviewed, the laminae sequence was divided into sandy and muddy laminae sequences, and the reservoir physical properties and hydrocarbon accumulation characteristics and mechanism of different laminae sequences were described. Conclusions and Prospects The laminae structure has three advantages, frequent vertical change of material composition, abnormal development of internal micro-fractures, and concentrated distribution of organic matter in the laminae structure, further improving the ability of hydrocarbon accumulation on the basis of fine-grained sedimentary rocks. Five main controlling factors are summarized: laminae composition; laminae continuity; laminae sequence; abundance of organic matter; degree of thermal evolution of organic matter. In the future, it is necessary to combine the inorganic genetic mechanism of lamellar fine grained rock with the organic evolution model and establish the corresponding relationship between micro-lamellar types and combinations and the evaluation of macro-oil and gas sweet spots and high-quality reservoirs.
  • [1] Zolitschka B, Francus P, Ojala A E K, et al. Varves in lake sediments: A review[J]. Quaternary Science Reviews, 2015, 117: 1-41.
    [2] Petterson G. Varved sediments in Sweden: A brief review[J]. Geological Society, London, Special Publications, 1996, 116(1): 73-77.
    [3] 吴科睿,闫百泉,孙雨,等. 湖盆细粒沉积岩纹层形成机制及影响因素研究进展[J]. 沉积学报,2024,42(4):1164-1184.

    Wu Kerui, Yan Baiquan, Sun Yu, et al. Research progress on the formation mechanism and influencing factors of fine-grained sedimentary rock laminae in lake basins[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1164-1184.
    [4] Xu S, Gou Q Y. The importance of laminae for China lacustrine shale oil enrichment: A review[J]. Energies, 2023, 16(4): 1661.
    [5] Xin B X, Zhao X Z, Hao F, et al. Laminae characteristics of lacustrine shales from the Paleogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China: Why do laminated shales have better reservoir physical properties?[J]. International Journal of Coal Geology, 2022, 260: 104056.
    [6] Li Y H, Song Y, Jiang Z X, et al. Major factors controlling lamina induced fractures in the Upper Triassic Yanchang Formation tight oil reservoir, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2018, 166: 107-119.
    [7] 邹才能,马锋,潘松圻,等. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J]. 地学前缘,2023,30(1):128-142.

    Zou Caineng, Ma Feng, Pan Songqi, et al. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers, 2023, 30(1): 128-142.
    [8] 赵文智,朱如凯,刘伟,等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘,2023,30(1):116-127.

    Zhao Wenzhi, Zhu Rukai, Liu Wei, et al. Enrichment conditions and distribution characteristics of lacustrine medium-to-high maturityshale oil in China[J]. Earth Science Frontiers, 2023, 30(1): 116-127.
    [9] 周雪. 美国页岩油勘探开发现状及其对中国的启示[J]. 现代化工,2022,42(7):5-9.

    Zhou Xue. Current situation of U.S.A. shale oil exploration and development, and enlightenment to China[J]. Modern Chemical Industry, 2022, 42(7): 5-9.
    [10] Yang W, Zuo R S, Wang X, et al. Sensitivity of lacustrine stromatolites to Cenozoic tectonic and climatic forcing in the southern Junggar Basin, NW China: New insights from mineralogical, stable and clumped isotope compositions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514: 109-123.
    [11] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
    [12] 卢斌,邱振,周川闽,等. 泥页岩沉积物理模拟研究进展与发展趋势[J]. 沉积学报,2021,39(4):781-793.

    Lu Bin, Qiu Zhen, Zhou Chuanmin, et al. Progress and prospects in the physical simulation of mudstone deposition[J]. Acta Sedimentologica Sinica, 2021, 39(4): 781-793.
    [13] Schimmelmann A, Lange C B, Schieber J, et al. Varves in marine sediments: A review[J]. Earth-Science Reviews, 2016, 159: 215-246.
    [14] 金凤鸣,韩文中,时战楠,等. 黄骅坳陷纹层型页岩油富集与提产提效关键技术[J]. 中国石油勘探,2023,28(3):100-120.

    Jin Fengming, Han Wenzhong, Shi Zhannan, et al. Enrichment characteristics and key technologies for production and efficiency enhancement of laminated shale oil in Huanghua Depression in Bohai Bay Basin[J]. China Petroleum Exploration, 2023, 28(3): 100-120.
    [15] 李森,朱如凯,崔景伟,等. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境:以铜川地区瑶页1井为例[J]. 沉积学报,2020,38(3):554-570.

    Li Sen, Zhu Rukai, Cui Jingwei, et al. Sedimentary characteristics of fine-grained sedimentary rock and paleo-environment of Chang 7 member in the Ordos Basin: A case study from well Yaoye 1 in Tongchuan[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570.
    [16] 刘姝君,操应长,梁超. 渤海湾盆地东营凹陷古近系细粒沉积岩特征及沉积环境[J]. 古地理学报,2019,21(3):479-489.

    Liu Shujun, Cao Yingchang, Liang Chao. Lithologic characte-ristics and sedimentary environment of fine-grained sedimentary rocks of the Paleogene in Dongying Sag, Bohai Bay Basin[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(3): 479-489.
    [17] 邓远,蒲秀刚,陈世悦,等. 细粒混积岩储层特征与主控因素分析:以渤海湾盆地沧东凹陷孔二段为例[J]. 中国矿业大学学报,2019,48(6):1301-1316.

    Deng Yuan, Pu Xiugang, Chen Shiyue, et al. Characteristics and controlling factors of fine-grained mixed sedimentary rocks reservoir: A case study of the 2nd member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin[J]. Journal of China University of Mining & Technology, 2019, 48(6): 1301-1316.
    [18] 王伟庆,刘惠民,刘雅利,等. 东营凹陷古近系页岩碳酸盐纹层内部结构与成因[J]. 油气地质与采收率,2022,29(3):11-19.

    Wang Weiqing, Liu Huimin, Liu Yali, et al. Texture and genesis of Paleogene lacustrine shale carbonate laminae in Dongying Sag, Jiyang Depresion, Bohai Bay Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 11-19.
    [19] 刘喜武,刘宇巍,郭智奇. 陆相页岩油关键甜点要素地球物理表征技术[J]. 地球物理学进展,2022,37(4):1576-1584.

    Liu Xiwu, Liu Yuwei, Guo Zhiqi. Key sweet spot factors seismic characterization of continental shale oil[J]. Progress in Geophysics, 2022, 37(4): 1576-1584.
    [20] Guan M, Liu X P, Jin Z J, et al. Quantitative characterization of various oil contents and spatial distribution in lacustrine shales: Insight from petroleum compositional characteristics derived from programed pyrolysis[J]. Marine and Petroleum Geology, 2022, 138: 105522.
    [21] 聂海宽,张金川,张培先,等. 福特沃斯盆地Barnett页岩气藏特征及启示[J]. 地质科技情报,2009,28(2):87-93.

    Nie Haikuan, Zhang Jinchuan, Zhang Peixian, et al. Shale gas reservoir characteristics of Barnett shale gas reservoir in Fort Worth Basin[J]. Geological Science and Technology Information, 2009, 28(2): 87-93.
    [22] 赵贤正,陈长伟,宋舜尧,等. 渤海湾盆地沧东凹陷孔二段页岩层系不同岩性储层结构特征[J]. 地球科学,2023,48(1):63-76.

    Zhao Xianzheng, Chen Changwei, Song Shunyao, et al. Shale oil reservoir structure characteristics of the Second member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin[J]. Earth Science, 2023, 48(1): 63-76.
    [23] 孔祥鑫,姜在兴,韩超,等. 束鹿凹陷沙三段下亚段细粒碳酸盐纹层特征与储集意义[J]. 油气地质与采收率,2016,23(4):19-26.

    Kong Xiangxin, Jiang Zaixing, Han Chao, et al. Laminations characteristics and reservoir significance of fine-grained carbonate in the lower 3rd member of Shahejie Formation of Shulu Sag[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 19-26.
    [24] 陈扬,胡钦红,赵建华,等. 渤海湾盆地东营凹陷湖相富有机质页岩纹层特征和储集性能[J]. 石油与天然气地质,2022,43(2):307-324.

    Chen Yang, Hu Qinhong, Zhao Jianhua, et al. Lamina characteristics and their influence on reservoir property of lacustrine organic-rich shale in the Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(2): 307-324.
    [25] 刘国恒,黄志龙,姜振学,等. 鄂尔多斯盆地延长组湖相页岩纹层发育特征及储集意义[J]. 天然气地球科学,2015,26(3):408-417.

    Liu Guoheng, Huang Zhilong, Jiang Zhenxue, et al. The characteristic and reservoir significance of lamina in shale from Yanchang Formation of Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(3): 408-417.
    [26] Liu B, Sun J H, Zhang Y Q, et al. Reservoir space and enrichment model of shale oil in the First member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 608-624.
    [27] Shi Z S, Dong D Z, Wang H Y, et al. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(4): 888-900.
    [28] Liu B, Lü Y F, Meng Y L, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 656-666.
    [29] 张玉玺,周江羽,陈建文,等. 下扬子地区幕府山组陆缘海—台地黑色细粒沉积岩系沉积学和孔隙结构特征[J]. 地球科学,2021,46(1):186-199.

    Zhang Yuxi, Zhou Jiangyu, Chen Jianwen, et al. Sedimentology and porosity structures of the epicontinental sea-platform fine-grained deposits of Mufushan Formation in Lower Yangtze area[J]. Earth Science, 2021, 46(1): 186-199.
    [30] 曾治平,柳忠泉,赵乐强,等. 准噶尔盆地西北缘哈山地区二叠系风城组页岩油储层特征及其控制因素[J]. 岩性油气藏,2023,35(1):25-35.

    Zeng Zhiping, Liu Zhongquan, Zhao Le-qiang, et al. Shale oil reservoir characteristics and controlling factors of Permian Fengcheng Formation in Hashan area, northwestern margin of Junggar Basin[J]. Lithologic Reservoirs, 2023, 35(1): 25-35.
    [31] 王玉杰,赵迪斐,卢琪荣,等. 纹层、夹层沉积构造对海相页岩储集空间和储层脆性的影响:以四川盆地龙马溪组页岩为例[J]. 非常规油气,2020,7(6):33-40.

    Wang Yujie, Zhao Difei, Lu Qirong, et al. Impact of laminae and interlayer sedimentary structure on the storage and brittleness of shale reservoirs: Taking Longmaxi Formation shale in Sichuan Basin as an example[J]. Unconventional Oil & Gas, 2020, 7(6): 33-40.
    [32] 余志云,陈世悦,张顺,等. 成岩作用对泥页岩储集性能的影响:以东营凹陷古近系沙四上亚段为例[J]. 古地理学报,2022,24(4):771-784.

    Yu Zhiyun, Chen Shiyue, Zhang Shun, et al. Influence of diagenesis on reservoir performance of shale: A case study of the upper sub-member of member 4 of Paleogene Shahejie Formation in Dongying Sag[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(4): 771-784.
    [33] 蒲秀刚,时战楠,韩文中,等. 陆相湖盆细粒沉积区页岩层系石油地质特征与油气发现:以黄骅坳陷沧东凹陷孔二段为例[J]. 油气地质与采收率,2019,26(1):46-58.

    Pu Xiugang, Shi Zhannan, Han Wenzhong, et al. Petroleum geological characte-ristics and hydrocarbon discovery of shale system in fine-grained sedimentary area of lacustrine basin: A case study of Kong2 member in Cangdong Sag, Huanghua Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 46-58.
    [34] 白静,徐兴友,张君峰,等. 陆相页岩碳酸盐矿物成因及其页岩气富集作用:以松辽盆地梨树断陷沙河子组页岩为例[J]. 中国矿业大学学报,2022,51(4):742-756.

    Bai Jing, Xu Xingyou, Zhang Junfeng, et al. Genesis of carbonate minerals in continental shale and their roles in shale gas enrichment: A case study of the shale of Shahezi Formation in Lishu fault depression, Songliao Basin, NE China[J]. Journal of China University of Mining & Technology, 2022, 51(4): 742-756.
    [35] 范雨辰,刘可禹,蒲秀刚,等. 页岩储集空间微观形态分类及三维结构重构:以渤海湾盆地沧东凹陷古近系孔店组二段为例[J]. 石油勘探与开发,2022,49(5):943-954.

    Fan Yuchen, Liu Keyu, Pu Xiugang, et al. Morphological classification and three-dimensional pore structure reconstruction of shale oil reservoirs: A case from the Second member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2022, 49(5): 943-954.
    [36] Lei Y H, Luo X R, Wang X Z, et al. Characteristics of silty laminae in Zhangjiatan shale of southeastern Ordos Basin, China: Implications for shale gas formation[J]. AAPG Bulletin, 2015, 99(4): 661-687.
    [37] 冯子辉,柳波,邵红梅,等. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能[J]. 大庆石油地质与开发,2020,39(3):72-85.

    Feng Zihui, Liu Bo, Shao Hongmei, et al. The diagenesis evolution and accumulating performance of the mud shale in Qingshankou Formation in Gulong area, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 72-85.
    [38] 梁成钢,谢建勇,陈依伟,等. 吉木萨尔凹陷芦草沟组页岩储集层裂缝成因及耦合关系[J]. 新疆石油地质,2021,42(5):521-528.

    Liang Chenggang, Xie Jianyong, Chen Yiwei, et al. Genesis and coupling relationship of fractures in shale reservoir of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2021, 42(5): 521-528.
    [39] Liu D D, Li Z, Jiang Z X, et al. Impact of laminae on pore structures of lacustrine shales in the southern Songliao Basin, NE China[J]. Journal of Asian Earth Sciences, 2019, 182: 103935.
    [40] 刘伟新,卢龙飞,魏志红,等. 川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比[J]. 石油实验地质,2020,42(3):378-386.

    Liu Weixin, Lu Longfei, Wei Zhihong, et al. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 378-386.
    [41] 谢建勇,袁珍珠,代兵,等. 页岩油储层层理缝渗吸机制和渗吸模式[J]. 特种油气藏,2021,28(5):161-167.

    Xie Jianyong, Yuan Zhenzhu, Dai Bing, et al. Imbibition mechanism and model of bedding fractures in shale oil reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 161-167.
    [42] 胡月,陈雷,周昊,等. 海相页岩纹层特征及其对页岩储层发育的影响:以川南长宁地区龙马溪组为例[J]. 断块油气田,2021,28(2):145-150.

    Hu Yue, Chen Lei, Zhou Hao, et al. Lamina characteristics of marine shale and its influence on shale reservoir development: A case study of Longmaxi Formation, Changning area, south Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 145-150.
    [43] Schmidt S, Cochran J K. Radium and radium-daughter nuclides in carbonates: A brief overview of strategies for determining chronologies[J]. Journal of Environmental Radioactivity, 2010, 101(7): 530-537.
    [44] 师良,王香增,范柏江,等. 鄂尔多斯盆地延长组砂质纹层发育特征与油气成藏[J]. 石油与天然气地质,2018,39(3):522-530.

    Shi Liang, Wang Xiangzeng, Fan Bojiang, et al. Characte-ristics of sandy lamination and its hydrocarbon accumulation, Yanchang Formation, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(3): 522-530.
    [45] Bian C S, Zhao W Z, Yang T, et al. The impact of lamina characte-ristics and types on organic matter enrichment of Chang 73 submember in Ordos Basin, NW China[J]. Geofluids, 2022, 2022: 6558883.
    [46] Liang C, Cao Y C, Liu K Y, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 112-128.
    [47] Tan P, Jin Y, Han K, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017, 206: 482-493.
    [48] 贾庆升,钟安海,张子麟,等. 济阳坳陷泥灰质纹层页岩脆性各向异性数值模拟研究[J]. 石油钻探技术,2021,49(4):78-84.

    Jia Qingsheng, Zhong Anhai, Zhang Zilin, et al. Numerical simulation of the brittleness anisotropy of laminated argillaceous limestone facies shale in the Jiyang Depression[J]. Petroleum Drilling Techniques, 2021, 49(4): 78-84.
    [49] 张安达,王继平,王永超,等. 松辽盆地古龙页岩储集空间类型及油赋存状态[J]. 大庆石油地质与开发,2021,40(5):68-77.

    Zhang Anda, Wang Jiping, Wang Yongchao, et al. Reservoir space types and oil occurrence of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 68-77.
    [50] 李庆,卢浩,吴胜和,等. 鄂尔多斯盆地南部三叠系长73亚段凝灰岩沉积成因及储层特征[J]. 石油与天然气地质,2022, 43(5):1141-1154.

    Li Qing, Lu Hao, Wu Shenghe, et al. Sedimentary origins and reservoir characteristics of the Triassic Chang 73 tuffs in the southern Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5): 1141-1154.
    [51] 林长木,王红岩,梁萍萍,等. 川南地区五峰组—龙马溪组黑色页岩纹层特征及其储集意义[J]. 地层学杂志,2019,43(2):133-140.

    Lin Changmu, Wang Hongyan, Liang Pingping, et al. The characteristics of laminae and its reservoir significance in black shale: Taking the Wufeng-Longmaxi Formations in the Changning-Shuanghe section as an example[J]. Journal of Stratigraphy, 2019, 43(2): 133-140.
    [52] Bennett R H, Bryant W R, Hulbert M H, et al. Microstructure of fine-grained sediments: From mud to shale[M]. New York: Springer, 1991: 5-32.
    [53] Slatt R M, Zavala C. Sediment transfer from shelf to deep water: Revisiting the delivery system[M]. Tulsa: AAPG, 2012: 31-51.
    [54] 熊周海,操应长,王冠民,等. 湖相细粒沉积岩纹层结构差异对可压裂性的影响[J]. 石油学报,2019,40(1):74-85.

    Xiong Zhouhai, Cao Yingchang, Wang Guanmin, et al. Influence of laminar structure differences on the fracability of lacustrine fine- grained sedimentary rocks[J]. Acta Petrolei Sinica, 2019, 40(1): 74-85.
    [55] Xiong Z H, Wang G M, Cao Y C, et al. Controlling effect of texture on fracability in lacustrine fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2019, 101: 195-210.
    [56] 李彦录,陆诗磊,夏东领,等. 鄂尔多斯盆地南部延长组长7油组页岩层系天然裂缝发育特征及主控因素[J]. 地质科学,2022,57(1):73-87.

    Li Yanlu, Lu Shilei, Xia Dongling, et al. Development characteristics and main controlling factors of natural fractures in shale series of the Seventh member of the Yanchang Formation, southern Ordos Basin[J]. Chinese Journal of Geology, 2022, 57(1): 73-87.
    [57] Chauve T, Scholtès L, Donzé F V, et al. Layering in shales controls microfracturing at the onset of primary migration in source rocks[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2020JB019444.
    [58] Shi Z S, Qiu Z, Dong D Z, et al. Lamina characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of well Wuxi 2 in Sichuan Basin, SW China[J]. Pe-troleum Exploration and Development, 2018, 45(2): 358-368.
    [59] Li T W, Jiang Z X, Su P B, et al. Effect of laminae development on pore structure in the lower Third member of the Shahejie Shale, Zhanhua Sag, eastern China[J]. Interpretation, 2020, 8(1): T103-T114.
    [60] 张顺,刘惠民,张鹏飞,等. 东营凹陷中低成熟度富碳酸盐页岩地质特征:以牛庄洼陷沙四段上亚段为例[J]. 中国矿业大学学报,2022,51(6):1138-1151.

    Zhang Shun, Liu Huimin, Zhang Pengfei, et al. Geological characteristics of shale oil enrichment in Niuzhuang Sag, Dongying Depression[J]. Journal of China University of Mining & Technology, 2022, 51(6): 1138-1151.
    [61] 刘惠民,王勇,李军亮,等. 济阳坳陷始新统页岩岩相发育主控因素及分布特征[J]. 古地理学报,2023,25(4):752-767.

    Liu Huimin, Wang Yong, Li Junliang, et al. Main controlling factors and distribution characteristics of shale lithofacies in the Eocene of Jiyang Depression[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(4): 752-767.
    [62] 宁方兴,王学军,郝雪峰,等. 济阳坳陷不同岩相页岩油赋存机理[J]. 石油学报,2017,38(2):185-195.

    Ning Fangxing, Wang Xuejun, Hao Xuefeng, et al. Occurrence mechanism of shale oil with different lithofacies in Jiyang Depression[J]. Acta Petrolei Sinica, 2017, 38(2): 185-195.
    [63] 衡帅,杨春和,郭印同,等. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报,2015,34(2):228-237.

    Heng Shuai, Yang Chunhe, Guo Yintong, et al. Influence of bedding planes on hydraulic fracture propagation in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 228-237.
    [64] 吴松涛,朱如凯,罗忠,等. 中国中西部盆地典型陆相页岩纹层结构与储层品质评价[J]. 中国石油勘探,2022,27(5):62-72.

    Wu Songtao, Zhu Rukai, Luo Zhong, et al. Laminar structure of typical continental shales and reservoir quality evaluation in central-western basins in China[J]. China Petroleum Exploration, 2022, 27(5): 62-72.
    [65] Xi K L, Li K, Cao Y C, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1342-1353.
    [66] 吴靖,姜在兴,梁超. 东营凹陷沙河街组四段上亚段细粒沉积岩岩相特征及与沉积环境的关系[J]. 石油学报,2017,38(10):1110-1122.

    Wu Jing, Jiang Zaixing, Liang Chao. Lithofacies characteristics of fine-grained sedimentary rocks in the upper submember of member 4 of Shahejie Formation, Dongying Sag and their relationship with sedimentary environment[J]. Acta Petrolei Sinica, 2017, 38(10): 1110-1122.
    [67] 吕洲,张文旗,顾斐,等. 松辽盆地青一段与北美鹰滩组致密油特征对比[J]. 桂林理工大学学报,2018,38(2):217-221.

    Zhou Lü, Zhang Wenqi, Gu Fei, et al. Comparison of geological characteristics of tight oil between the Qingshankou Formation in Songliao Basin and the Eagle Ford Formation in South Texas[J]. Journal of Guilin University of Technology, 2018, 38(2): 217-221.
    [68] 王超,张柏桥,舒志国,等. 焦石坝地区五峰组—龙马溪组页岩纹层发育特征及其储集意义[J]. 地球科学,2019,44(3):972-982.

    Wang Chao, Zhang Boqiao, Shu Zhiguo, et al. Shale lamination and its influence on shale reservoir quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba area[J]. Earth Science, 2019, 44(3): 972-982.
    [69] 张大千. 松辽盆地长岭凹陷上白垩统嫩江组油气成藏主控因素分析[J]. 甘肃科技,2021,37(12):13-16,109.

    Zhang Daqian. Main controlling factors of hydrocarbon accumulation in Nenjiang Formation of Upper Cretaceous in Changling Sag, Songliao Basin[J]. Gansu Science and Technology, 2021, 37(12): 13-16, 109.
    [70] 商斐,周海燕,刘勇,等. 松辽盆地嫩江组泥页岩有机质富集模式探讨:以嫩江组一、二段油页岩为例[J]. 中国地质,2020,47(1):236-248.

    Shang Fei, Zhou Haiyan, Liu Yong, et al. A discussion on the organic matter enrichment model of the Nenjiang Formation, Songliao Basin: A case study of oil shale in the 1st and 2nd members of the Nenjiang Formation[J]. Geology in China, 2020, 47(1): 236-248.
    [71] He W Y, Meng Q A, Lin T F, et al. Evolution features of in-situ permeability of low-maturity shale with the increasing temperature, Cretaceous Nenjiang Formation, northern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2022, 49(3): 516-529.
    [72] 丛奇,陈君青,卢贵武,等. 利用分子动力学模拟研究页岩吸附能力的影响因素及微观机理的综述[J]. 中南大学学报(自然科学版),2022,53(9):3474-3489.

    Cong Qi, Chen Junqing, Lu Guiwu, et al. Review on influencing factors and microscopic mechanism of shale adsorption capacity by molecular dynamics simulation[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3474-3489.
    [73] 皇甫玉慧,张金友,张水昌,等. 松辽盆地北部白垩系青山口组不同赋存状态页岩油特征[J]. 地质学报,2023,97(2):523-538.

    Huangfu Yuhui, Zhang Jinyou, Zhang Suichang, et al. Characteristics of shale oil in different occurrence states of the Cretaceous Qingshankou Formation in the northern Songliao Basin[J]. Acta Geologica Sinica, 2023, 97(2): 523-538.
    [74] 王剑,周路,刘金,等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩层系甜点体烃类可流动性影响因素[J]. 天然气地球科学,2022,33(1):116-124.

    Wang Jian, Zhou Lu, Liu Jin, et al. Influencing factors of hydrocarbon mobility in sweet spot of the Lucaogou Formation shale in Jimusar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2022, 33(1): 116-124.
    [75] 党伟,张金川,聂海宽,等. 页岩油微观赋存特征及其主控因素:以鄂尔多斯盆地延安地区延长组7段3亚段陆相页岩为例[J]. 石油学报,2022,43(4):507-523.

    Dang Wei, Zhang Jinchuan, Nie Haikuan, et al. Microscopic occurrence characte-ristics of shale oil and their main controlling factors: A case study of the 3rd submember continental shale of member 7 of Yanchang Formation in Yan’an area, Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 507-523.
    [76] Wang S, Feng Q H, Javadpour F, et al. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place[J]. International Journal of Coal Geology, 2015, 147-148: 9-24.
    [77] 王永诗,李政,王民,等. 渤海湾盆地济阳坳陷陆相页岩油吸附控制因素[J]. 石油与天然气地质,2022,43(3):489-498.

    Wang Yongshi, Li Zheng, Wang Min, et al. Factors controlling lacustrine shale oil adsorption in the Jiyang Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(3): 489-498.
    [78] 黄涛,程林松,曹仁义,等. 页岩油在无机矿物表面赋存运移特征的分子动力学模拟[J]. 西安石油大学学报(自然科学版),2022,37(4):42-48.

    Huang Tao, Cheng Linsong, Cao Renyi, et al. Molecular dynamics simulation of occurrence and migration characteristics of shale oil on inorganic mineral surface[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2022, 37(4): 42-48.
    [79] Liu B, Jin L, Hu C Z. Fractal characterization of silty beds/laminae and its implications for the prediction of shale oil reservoirs in Qingshankou Formation of northern Songliao Basin, northeast China[J]. Fractals, 2019, 27(1): 1940009.
    [80] 张金川,李振,王东升,等. 中国页岩气成藏模式[J]. 天然气工业,2022,42(8):78-95.

    Zhang Jinchuan, Li Zhen, Wang Dongsheng, et al. Shale gas accumulation patterns in China[J]. Natural Gas Industry, 2022, 42(8): 78-95.
    [81] Shi J Y, Jin Z J, Liu Q Y, et al. Laminar characteristics of lacustrine organic-rich shales and their significance for shale reservoir formation: A case study of the Paleogene shales in the Dongying Sag, Bohai Bay Basin, China[J]. Journal of Asian Earth Sciences, 2022, 223: 104976.
    [82] 马炳杰,范菲,孙志刚,等. 济阳坳陷纹层状页岩油流动能力影响因素实验[J]. 大庆石油地质与开发,2022,41(5):153-159.

    Ma Bingjie, Fan Fei, Sun Zhigang, et al. Experimental study on influencing factors of shale oil flow capacity in laminar shale in Jiyang Depression[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(5): 153-159.
    [83] 赵贤正,周立宏,蒲秀刚,等. 断陷湖盆湖相页岩油形成有利条件及富集特征:以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油学报,2019,40(9):1013-1029.

    Zhao Xianzheng, Zhou Lihong, Pu Xiugang, et al. Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin: A case study of member 2 of Kongdian Formation in Cangdong Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1013-1029.
    [84] 毛俊莉,张金川,刘通,等. 辽河西部凹陷页岩纹层结构及其储集空间意义[J]. 石油实验地质,2019,41(1):113-120.

    Mao Junli, Zhang Jinchuan, Liu Tong, et al. Laminated texture of shale and its storage space significance in Western Depression, Liaohe Basin[J]. Petroleum Geology & Experiment, 2019, 41(1): 113-120.
    [85] Kalani M, Jahren J, Mondol N H, et al. Petrophysical implications of source rock microfracturing[J]. International Journal of Coal Geology, 2015, 143: 43-67.
    [86] 姚振华,覃建华,高阳,等. 吉木萨尔凹陷页岩油物性变化规律[J]. 新疆石油地质,2022,43(1):72-78.

    Yao Zhenhua, Qin Jianhua, Gao Yang, et al. Variations of physical properties of shale oil in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(1): 72-78.
    [87] 付金华,李士祥,郭芪恒,等. 鄂尔多斯盆地陆相页岩油富集条件及有利区优选[J]. 石油学报,2022,43(12):1702-1716.

    Fu Jinhua, Li Shixiang, Guo Qiheng, et al. Enrichment conditions and favorable area optimization of continental shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(12): 1702-1716.
    [88] Zhang J G, Jiang Z X, Liang C, et al. Lacustrine massive mudrock in the Eocene Jiyang Depression, Bohai Bay Basin, China: Nature, origin and significance[J]. Marine and Petroleum Geology, 2016, 77: 1042-1055.
    [89] Lee H P, Olson J E, Holder J, et al. The interaction of propagating opening mode fractures with preexisting discontinuities in shale[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(1): 169-181.
    [90] Yang Y F, Mavko G. Mathematical modeling of microcrack growth in source rock during kerogen thermal maturation[J]. AAPG Bulletin, 2018, 102(12): 2519-2535.
    [91] Zhao X Z, Zhou L H, Pu X G, et al. Theories, technologies and practices of lacustrine shale oil exploration and development: A case study of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2022, 49(3): 707-718.
    [92] Chen S B, Zhu Y M, Wang H Y, et al. Shale gas reservoir characte-risation: A typical case in the southern Sichuan Basin of China[J]. Energy, 2011, 36(11): 6609-6616.
    [93] 王林生,叶义平,覃建华,等. 陆相页岩油储层微观孔喉结构表征与含油性分级评价:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油与天然气地质,2022,43(1):149-160.

    Wang Linsheng, Ye Yiping, Qin Jianhua, et al. Microscopic pore structure characterization and oil-bearing property evaluation of lacustrine shale reservoir: A case study of the Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Oil & Gas Geology, 2022, 43(1): 149-160.
    [94] Ma C F, Dong C M, Lin C Y, et al. Influencing factors and fracability of lacustrine shale oil reservoirs[J]. Marine and Petroleum Geology, 2019, 110: 463-471.
    [95] Tylmann W, Zolitschka B, Enters D, et al. Laminated lake sediments in northeast Poland: Distribution, preconditions for formation and potential for paleoenvironmental investigation[J]. Journal of Paleolimnology, 2013, 50(4): 487-503.
    [96] Ducassou E, Migeon S, Capotondi L, et al. Run-out distance and erosion of debris-flows in the Nile deep-sea fan system: Evidence from lithofacies and micropalaeontological analyses[J]. Marine and Petroleum Geology, 2013, 39(1): 102-123.
    [97] Craig M J, Baas J H, Amos K J, et al. Biomediation of submarine sediment gravity flow dynamics[J]. Geology, 2020, 48(1): 72-76.
    [98] Li Y F, Zhang T W, Ellis G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 252-264.
    [99] 王勇,熊伟,郝雪峰,等. 湖相泥页岩细粒沉积组构成因及油气地质意义:以济阳坳陷沙四上—沙三下亚段泥页岩为例[J]. 地质论评,2019,65(增刊1):217-219.

    Wang Yong, Xiong Wei, Hao Xuefeng, et al. Fabric characteristics and its oil-gas significance of lacustrine mud shale fine-grained sedimentary: A case study of upper Es4 and lower Es3 member in Jiyang Depression[J]. Geological Review, 2019, 65(Suppl.1): 217-219.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(2)

Article Metrics

Article views(529) PDF downloads(129) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-04-21
  • Revised:  2023-08-13
  • Accepted:  2023-09-05
  • Published:  2025-02-10

Progress on the Features of Physical Property and Hydrocarbon Accumulation of Laminated Lacustrine Fine-Grained Sedimentary Rocks

doi: 10.14027/j.issn.1000-0550.2023.072
Funds:

Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City 2021JJLH0077

Heilongjiang Provincial Natural Science Foundation of China ZD2023D002

National Natural Science Foundation of China 41872158

Abstract: Objective Strong heterogeneity is the main feature of continental shale strata. Its characteristics are caused by the fact that the sedimentary environment of lacustrine fine grained rocks is close to the source area and the water depth is shallow, which is clearly controlled by hydrodynamic, climatic, structural, bioturbation, and other factors. In particular, the vertical composition, morphology, and structure of laminated fine-grained sedimentary rocks can exhibit significant differences at the millimeter scale. According to published literature statistics and analysis of previous research results, the reservoir physical properties and hydrocarbon accumulation ability of laminated fine-grained rocks are superior to the undeveloped/weakly developed laminated fine-grained rocks, exhibiting an excellent positive correlation with the development degree as well. However, the summary of relevant differences is still unclear and needs to be revealed. Methods Focusing on the relevant literature from the past ten years, the types and genesis of pores and fractures of laminated fine-grained sedimentary rocks were reviewed, the laminae sequence was divided into sandy and muddy laminae sequences, and the reservoir physical properties and hydrocarbon accumulation characteristics and mechanism of different laminae sequences were described. Conclusions and Prospects The laminae structure has three advantages, frequent vertical change of material composition, abnormal development of internal micro-fractures, and concentrated distribution of organic matter in the laminae structure, further improving the ability of hydrocarbon accumulation on the basis of fine-grained sedimentary rocks. Five main controlling factors are summarized: laminae composition; laminae continuity; laminae sequence; abundance of organic matter; degree of thermal evolution of organic matter. In the future, it is necessary to combine the inorganic genetic mechanism of lamellar fine grained rock with the organic evolution model and establish the corresponding relationship between micro-lamellar types and combinations and the evaluation of macro-oil and gas sweet spots and high-quality reservoirs.

WU KeRui, SUN Yu, YAN BaiQuan, YANG JiaQi, MA ZhiQiang, YU LiMin, WANG XinRui. Progress on the Features of Physical Property and Hydrocarbon Accumulation of Laminated Lacustrine Fine-Grained Sedimentary Rocks[J]. Acta Sedimentologica Sinica, 2025, 43(1): 20-38. doi: 10.14027/j.issn.1000-0550.2023.072
Citation: WU KeRui, SUN Yu, YAN BaiQuan, YANG JiaQi, MA ZhiQiang, YU LiMin, WANG XinRui. Progress on the Features of Physical Property and Hydrocarbon Accumulation of Laminated Lacustrine Fine-Grained Sedimentary Rocks[J]. Acta Sedimentologica Sinica, 2025, 43(1): 20-38. doi: 10.14027/j.issn.1000-0550.2023.072
  • 纹层是细粒沉积岩中常见的沉积结构,被描述为在地层中可用肉眼分辨的、最基本的沉积单元结构。自19世纪60年代起,由瑞典地质勘探队首次记录有关纹层结构的描述后,对于纹层的研究相类型由冰川相逐渐转变为海相和陆相;研究区域范围由北欧延伸到美洲、亚洲乃至全球;研究类型由黏土质纹层扩展到长英质纹层、钙质纹层、有机质纹层及不同类型纹层的序列组合[12]。当前,在众多学者的持续探索下,使纹层不仅局限于作为冰川消退期的时间量程[1],包括利用纹层物质组分、形态、旋回等特征恢复古代地质环境的周期性变化;利用水槽物理模拟了多种类纹层的沉积过程,归纳不同沉积环境与纹层发育特征的耦合关系,从而丰富了细粒沉积岩成因模式;利用纹层加强了页岩层系的非均质性的特征,继而探究纹层对储层成因机理、油气赋存机制、开发生产效果等方面,产生了重要影响[3]。这使得纹层研究的各个方向均成为学者所关注的热点。

    国外学者率先利用纹层内的沉积物变化特征作为一种高分辨率年代测定参数[1],而在纹层状湖盆细粒岩的储集物性、油气富集特征方面,国内外学者的研究进展平分秋色。我国渤海湾盆地古近系沙河街组、松辽盆地白垩系青山口组和嫩江组、准噶尔盆地二叠系芦草沟组、鄂尔多斯盆地三叠系延长组等地层均广泛发育纹层状湖盆细粒岩,且学者们分别归纳了不同地区中页岩油气“甜点”与之相对应的含纹层岩相。经学者统计约80%的页岩油气分布在页岩储层的大型孔(大于50 nm)中,因此孔隙结构特征对页岩储层的储集能力产生重要影响[4]。在低压氮气物理吸附实验中,纹层状页岩处在低压时,吸附N2的总量较低,不断增压后呈吸附总量缓慢提高的现象;处在相对高压时,继续增压后,吸附量呈急剧增加的现象[5]。再结合其他测验数值后,表明纹层状岩样中存在大量体积较大、连通性较好的介孔。同时学者也发现纹层边缘和内部的微裂缝尤为发育,造成这一特征的主要原因是相邻纹层的矿物组分差异,导致了短距离内抗压能力频繁的变化[6],较发育的微裂缝是导致纹层状细粒岩与其他结构细粒岩之间产生油气富集能力差异的主要原因之一。因此,高密度的微裂缝可成为油气高效的运移通道和储集空间[5]

    对比美国海相页岩勘探开发历经长期的探索和发展(1953—2016年),页岩油产量于2017年起发生了跨越式增长,先后建成巴肯(Bakken)、安纳达科(Anadarko)等七大成熟页岩油生产区,近10年达到年均25%的产出增长率,且页岩油的总产量已占美国原油年总产量(7.47×108 t)的50%左右[78]。我国页岩油资源也十分巨大,资源量约为1 500×108 t,但技术可采储量仅达(30~60)×108 t,可见我国页岩油气产量受到了非常规油气富集基础研究的制约[9]。通过文献统计和前人研究成果分析,发现纹层状细粒岩发育程度与储集物性、油气富集的能力具有正相关性[10]。因此,以二者的相关性展开,归纳不同纹层中孔隙、裂缝的类别与成因、物性储集和油气富集机理的控制因素,以及不同湖盆含纹层结构的有利岩相等,旨在为下一步页岩油气勘探发展阶段提供相应指导。

  • 当前,国内外在纹层状细粒岩的研究热点主要聚焦在:(1)纹层内部的微观特征,包括纹层孔隙内的有机质演化、流体赋存状态、孔喉润湿性等特征;(2)纹层力学方面特征,包括纹层的压裂裂缝展布特征、脆性各向异性、纹层内流体受力运移等特征;(3)结合人工智能(AI)的含纹层结构的机器识别,大量纹层状岩相结合测井相后,使AI提高识别页岩纹层及组合类型的准确度;(4)纹层状细粒岩的成因机制研究,包括纹层发育影响因素、内部特殊构造成因、纹层的物理实验模拟等方向。基于知网平台检索功能,同时选取“纹层”“物性”“油”和“气”作为交互关键词,并排除有关海相纹层状细粒岩的期刊文献,以2012—2017年和2012—2022年两个时间段分别进行期刊文献计量学研究,文献检索时间2023年2月。其中2012—2017年的相关文章共检索518篇,2012—2022年共检索1 308篇,可见同阶段内,此主题的期刊发表数量在快速增长。而2000—2012年仅发表320篇,可知近年此方面的研究逐渐成为热点方向。

    聚类分析图和关键词热点图表明(图1a~d),2012—2017年,我国在湖相纹层与油气二者关系的研究属于探索阶段,以渤海湾、准噶尔等咸化湖盆的纹层结构研究为主体,松辽淡化湖盆次之。研究学者逐渐意识到纹层结构在陆相页岩油气开采方面的重要作用,探索初期以描述纹层内物质成分与孔缝、油气赋存的对应关系为主。受相关科学理论限制,学者通常以海相纹层状细粒岩的理论类比湖相纹层状细粒岩,总体以描述特征和推测机制为主,研究方向已初步向有机质演化、流体赋存状态和控制因素等方面扩展。2017年至今,随着前期研究成果的铺垫、研究学者和岩心数据的增加,在渤海湾盆地已经生产出成熟的工业页岩油气,其相关文献数量和技术成熟度最高,相关的油气富集机理已初现端倪,且应用于其他湖盆地区,包括松辽、准噶尔、潜江、苏北等盆地均发现了大量纹层状细粒岩,且初步进行非常规油气的开采。而在2012—2017年所研究的内容逐渐精细,如碳酸盐纹层的储集性能已按白云石和方解石纹层分别概括和总结;按单个成岩作用对纹层油气富集过程的影响作用、纹层内孔隙度的单一主控因素分析等均已开展。总体沿着前期学者的研究方向进行扩展,同时各个小方向有着交互的趋势(图1e~f),按照不同地区的纹层成分—孔隙类型—成岩作用—主控因素—有机质丰度/演化程度—成藏模式等主题进行配比研究。

    Figure 1.  Study on physical properties and hydrocarbon accumulation of laminated fine⁃grained sedimentary rocks reservoir cluster

    截至目前,对于纹层状细粒岩油气富集的研究尚处于初期阶段,许多相关科学认识仍不清晰:(1)纹层状细粒岩与“甜点位”的关系是什么?纹层状细粒岩对页岩油气的分布有哪些影响?(2)相比其他结构,纹层状细粒岩中的无机颗粒对有机质的影响有哪些差异?成岩作用后,对烃源岩品质、储层品质、页岩油流动品质有哪些改变?(3)同地区、同种类的纹层状细粒岩,油气富集发生差异的原因是什么?(4)纹层组合在垂向上不断叠加后,油气富集能力能达到的极值是多少?影响因素是什么?能否建立表达方程式或数据模型?(5)从有利于页岩油气勘探和开发的角度出发,如何对富含油气的纹层状细粒岩进行类型划分?均可以是下一阶段探讨的主要问题。而未来,应将纹层状细粒岩的无机成因机制与有机演化模式相结合,建立微观纹层类型及组合与宏观油气甜点区、优质储层评价的对应关系。

  • 近年来,国内外学者已逐渐摒弃了延浅湖向深湖区严格发育由砂质纹层过度成黏土质纹层的初始观念。Schieber et al.[11]利用粉砂和黏土材料进行物理模拟实验后,提出了细粒沉积物凝絮作用搬运机制,认为此理论可解释深湖区同时发育砂质纹层和泥质纹层的主要原因。具体为黏土物质在水流中易与细粒物发生絮凝作用,结合成的絮凝体团会不断扩大,直至达到与流速相平衡的最大絮团级次,并以絮状波纹的形式在底面移动[1112]。此时,絮凝体团将有能力携带粗颗粒和有机质一起向深湖区运移。当粗颗粒因惯性破坏絮凝团而被释放出时,黏土质波纹和砂质波纹会发生分选,同时在底部沉积而形成砂泥互层结构;若粗颗粒较少时,大量泥质絮状波纹经堆积—压实后,可形成(富有机质)泥页岩[12]。后续学者发现细粒碳酸盐岩颗粒也可以发生絮凝作用[13],再次证实了纹层凝絮搬运机制的准确性。

    海相细粒沉积岩处于广袤的深海环境,水体动力较为稳定,且富含硫酸盐(具有毒性,可有效抑制生物扰动),因此纹层状海相细粒沉积岩的分布面积和体积巨大,横向和纵向上岩性较稳定:颜色多以(灰)黑色为主,结构以连续平直型为主,成分以黏土质和混积成分为主,有机质丰度明显高于湖相[14];而纹层状细粒岩受限于沉积环境距物源区较近和水深较浅,对沉积环境水动力、气候和生物扰动等因素变化的反应更加“敏感”,导致颜色、成分、结构在短距离内呈较不稳定的特征[1518]。在不同地区的偏光镜图中可发现不同成分、结构的纹层发生多期互层现象:其中在季节和旋回控制下发育“二元”纹层结构(图2a)、“三元”纹层结构(图2b),甚至多元无序纹层结构[1617]。若在强烈生物扰动、古代突发性事件(例地震、洪水等)、构造活动、成岩作用下均可改变、侵蚀或破坏纹层形态与结构[18]图2c),因此可以说湖相纹层十分“脆弱”。在实验室地震岩石物理计算中发现纹层结构越发育,Thomson参数(各向异性参数)敏感性越大,即表征纹层形态与组合具有不确定性和突变性[19]。纹层状细粒岩内的有机质含量及相关有机作用,相比其他结构的细粒沉积岩也具有差异性特征。荧光薄片观测结果对比表明,块状泥岩中的荧光较弱呈斑点状分布,纹层状页岩样品中的荧光较强,且沿纹层平面呈线性分布或局部集中[20],并且纹层中还存在一种特殊的有机质聚集形式——有机质纹层。

    Figure 2.  Laminar polarizer map in different areas (modified from references [3,18])

  • 通过汇总国内外不同纹层结构的孔隙度、渗透率、孔隙类型和岩相类型等[2128]表1),可以发现纹层状细粒岩的孔隙度和渗透率明显高于同一地区非纹层状细粒岩,这对于论述纹层与二者关系有着结论性的意义。如松辽盆地青一段的中有机质纹层状页岩的孔隙度(平均值6.8%)高于非纹层岩相近2%,且渗透率为非纹层岩相5~10倍[26]。但这并不意味着这一结论是绝对性的,包括某些块状泥岩在不同条件下使其孔隙度高于3%的实例是大量存在的[29]。不同地区的纹层状细粒岩的物性分别受到物源区碎屑成分、沉积环境、后期成岩作用等复杂因素的共同控制,随意将不同地区的纹层结构数据进行对比,会摒弃岩样自身所具备的地域差异性特征。因此,将范围局限于纹层发育区域层段的细粒岩与不发育/弱发育纹层状细粒岩之间,梳理其内部孔缝类型、成因以及其对储集物性的影响。

    地区岩相类型孔隙类型孔隙度/%渗透率/×10-3 μm2
    北美Fort Worth盆地早石炭统 Barnett页岩层[21]富有机质纹层状页岩无机孔、有机孔和天然裂缝5.0~6.00.01
    渤海湾盆地沧东凹陷孔二段[22]长英质纹层状页岩溶蚀孔、残余粒间孔、晶间孔、 晶内孔和有机质孔3.0~7.00.1~1.0
    渤海湾盆地束鹿凹陷沙三下亚段[23]富有机质纹层状泥灰岩粒间孔、粒内孔、有机质孔 及边缘缝隙和微裂隙0.1~13.21.0
    渤海湾盆地东营凹陷沙四上亚段[24]纹层状碳酸盐岩黏土矿物晶间孔和方解石纹层中的 有机质收缩缝,范围分布在3~200 nm平均值为16.0
    鄂尔多斯盆地延长组长73亚段[25]纹层状页岩溶蚀孔隙、颗粒间孔2.0~3.00.01~1.0
    松辽盆地青山口组一段[26]富有机质纹层状页岩无机孔和有机孔平均值为6.81.0
    四川盆地龙马溪组龙一段[27]纹层状泥页岩有机孔、无机孔和微裂缝2.0~4.0≤0.01
    准噶尔湖盆地马朗凹陷二叠系芦草沟组[28]富有机质纹层状细粒岩若干直径约50 μm的大孔隙以及平均直径约l μm的中孔隙和微孔隙最高值为18.2

    Table 1.  pore type, Porosity and permeability of fine⁃grained sedimentary rocks in different basins

  • 纹层状细粒岩内部主要含有的孔隙类型包括溶蚀孔、粒间孔、晶间孔、晶内孔、有机质孔,以及裂缝类型包括纹层间裂缝、构造缝、异常压力缝、有机质收缩缝[2231]

  • 溶蚀孔是长石、石英、碳酸盐等矿物被有机酸性流体或大气淡水溶蚀而形成的孔隙,通常有机质丰度较高的纹层序列更易发育溶蚀孔隙[22,24,26]图3a)。溶蚀作用由弱至强时,纹层内的溶蚀孔由连通性较差的蜂窝状、港湾状的分布模式(在矿物碎屑边缘或内部)逐渐到被有机酸完全溶蚀,形成直径为30 μm左右的铸模孔[22,24,30,33]。若岩石内的溶蚀孔隙与相邻纹层的收缩微缝、纹层间裂缝连通时,可形成有效的储集空间网络[24,34]。在细粒沉积岩中,长石矿物易被有机酸溶蚀,当纹层内长石含量进一步提高时,与溶蚀孔数量可呈明显正相关性[34]

    Figure 3.  Different types of pores in scanning electron microscope images (modified from references [22,28])

    粒间孔主要为石英、长石等矿物碎屑因粒径大小差异排列而保留下的格架间孔隙(图3b),大多介于10~30 μm,呈不规则多角状[24,26,35]。深度增加使地层的压实作用逐渐增强[3031],硅质矿物因晶形排列稳定、抗压能力强,从而阻止了细粒沉积岩中原生孔隙的消亡[32]。所以通常情况下长英质纹层的孔隙度和连通性最优[22,30],例如在松辽盆地青山口组中含硅长英质纹层状页岩粒间孔平均占比可以达到80%[26]。而泥晶方解石纹层、黏土纹层等受压实作用明显,粒间孔隙相对不发育[24,26]

    晶间孔是自生石英、黏土、碳酸盐等矿物的残余胶结物晶体之间的孔隙(图3c),呈规则多面体状,孔径分布不均,大多介于2~13 μm[22,28]。白云岩纹层内晶间孔可能成因于白云石化作用中Mg2+取代Ca2+过程或淡水淋滤作用中白云石菱面体汇集过程,使白云石晶体的体积缩小;硅质纹层内晶间孔可成因于自生硅质沉淀作用;方解石纹层内晶间孔可成因于早成岩阶段的方解石重结晶作用[28,33]。黏土纹层在压实下易引发塑性变形,或在蒙脱石转化生成伊利石的后期成岩过程中,层间脱水和析出Ca2+、Mg2+使孔隙内流体超压,抵抗上覆压力而保留下部分纳米级晶间孔(孔隙范围为0.5~8 μm)[30,35],均是泥质纹层中重要的孔隙组成部。

    粒(晶)内孔为矿物颗粒(晶体)内部的微小孔隙,孔径以几十纳米到几微米为主,粒内孔主要发育于长石、石英以及碳酸盐颗粒中,晶内孔多发育于黏土、黄铁矿或泥晶碳酸盐的胶结物晶体内部[22,36]

    有机质孔是指有机质在热演化过程中,因气液态烃类排出和运移后,在有机质内部或边缘形成的残留孔隙(图3d),孔径可从纳米级到微米级[17,28]。有机质在纹层序列中呈分散状或纹层状分布[26,33],其中Ⅰ型干酪根易发育有机质边缘孔,Ⅱ型干酪根易发育机质内部孔和边缘孔[17]。有机质孔是海相页岩的优势孔隙之一,但细粒岩有机质热演化程度普遍较低,其数量和大小受非均质性、丰度、成熟度等因素控制[17,30,37]

  • 纹层间裂缝(图4a)是指在走滑应力作用下沿薄弱纹层面发育的顺层缝,具有开度小(几微米到几十微米不等)、延伸距离较远、一般不切穿颗粒、走向接近水平方向的特征,从而提高纹层状细粒岩的横向渗透率[22,38]。储集层内部压力优先沿纹层面释放后,受压应力超过其破裂极限时,会继续发生错动而形成剪切缝[38]。研究表明纹层间裂缝是流体运移的首选路径[39],如束鹿凹陷沙三段方解石纹层和砂质纹层序列内同时发育纹层间裂缝和高角度贯穿构造缝,结合后形成了连通裂缝网,从而显著改善岩石的储集和渗流能力[23]

    Figure 4.  Different fractures in laminae (modified from references [23,27,33,37])

    构造缝(图4b)是岩石在构造应力作用下破裂而产生的缝隙[17,28]。纹层组内单层厚度变薄时,相同应力下会发生微层理缝密度增加现象[40]。其开度和发育角度受岩石成分和构造控制,通常易呈垂直的走向且贯穿多条纹层,可形成裂缝—溶蚀孔体系,为后期溶蚀流体提供运移通道或为油气提供储集空间[17,30,41]

    异常压力缝(图4c)形成于欠压实、有机质生烃超压、黏土矿物转化脱水等作用,局部高压致使纹层页理破裂,因触发机制条件限制,使其数量相对较少[17]。具有开度大、角度高、缝面呈锯齿状等不规则形状的特点[22]

    有机质缝(图4d)主要发育在有机质与黏土或脆性矿物纹层的接触边缘,形成于热演化过程中有机质排烃导致自身体积的收缩,同时排放的有机酸会进一步溶蚀矿物边界,从而扩大其裂缝空间,一般宽度不超过1 μm[17,37]。纹层中的有机质在生烃阶段不仅可形成用来储存油气分子的高连通性有机质孔缝,并且运移的有机酸和气液态烃还可形成酸性环境,从而抑制邻层碳酸盐的胶结作用。

  • 有学者统计纹层状细粒岩中30%~50%的孔隙大小介于10~30 nm,并且少量部分可大于100 nm,而块状细粒沉积岩中总有效孔隙的50%~90%是小于10 nm的超细孔隙[4]。对比块状细粒岩的物质成分相对单一、有效储集空间以裂缝为主的特点,纹层状细粒岩具有垂向相邻纹层的成分和结构,在毫米尺度下即可表现出较大的差异,其本质是不同矿物颗粒的组合和排列。不同种类纹层频繁叠置使不同受力展布特征的纹层相互排序,促进了裂缝的发育,使得不同种类的孔缝相互结合,最后让纹层的储集物性明显高于不发育/弱发育纹层状细粒岩,并且成因机理具有复杂性[22,42]。通常含有机质泥质纹层(部分富有机质纹层除外)产出的油气数量与其储集空间体积在数值上匹配度较低,尽管砂质纹层可为有机化合物提供有效且充足的储集空间,但纹层自身的TOC含量较低(通常长英质纹层内有机质丰度小于5%)。因此,纹层序列形成后可将不同纹层的优势和劣势特征相结合,类似于“木桶原理”,可高效地提升整套储层的品质下限。同时碳酸盐胶结作用是潜在影响储层物性特征的重要因素之一,纹层状细粒岩的胶结作用通常发生在方解石纹层、白云石纹层及与其相邻纹层中,而长英质纹层、富有机质黏土纹层和有机质纹层中的胶结作用并不明显(并且陆源碎屑可抑制碳酸盐成岩作用[43]),若此两类纹层频繁叠加,可有效抑制纹层状细粒岩中的胶结作用,使其纹层内大多数孔缝有效性得到良好保留[5]。经大量文献阅读和归纳,将纹层组分、连续性、序列组合作为纹层状细粒岩物性的主要控制因素。

  • 纹层内矿物成分主要包含石英、长石、方解石、白云石、黏土以及有机质,不同矿物成分的晶体结构排列、压力下裂缝展布、后期成岩作用等均可表现出不同特征。

    石英和长石等刚性矿物的抗压能力较强,在浅埋藏阶段受机械压实后,仍可残留原生粒间孔隙,是纹层状细粒岩储集空间的主要部分。当纹层内石英和长石矿物含量大于70%时,对应孔隙度可大于3%[44]。而长英质纹层本身因沉积于较强水体环境导致具有较差的TOC含量,实验样品统计当长石和石英的含量从40%减少到15%时,TOC含量从0%增加到5%[45]

    方解石、白云石等脆性矿物主要发育晶间孔、晶内孔和纹层缝、微裂缝,不同于常规碳酸盐岩储层,随着胶结作用增强,使其孔隙度、渗透率呈下降趋势[22]。部分钙质纹层因胶结作用受到抑制,使晶间孔、晶内孔等微米级孔隙得到保留。其中富有机酸不仅可抑制胶结作用,当方解石重结晶或白云石化部分占比较大时,高含量的有机酸会导致微晶方解石纹层再结晶,从而形成更大的晶间孔隙,甚至受有机酸流体改造后,使溶蚀孔比例相应增加[46]。在裂缝发育方面,碳酸盐纹层作为较脆性矿物受压可发育构造缝、微裂缝等渗流通道,其发育程度受碳酸盐和黏土物质含量的占比控制[22,28,47]

    黏土质矿物的粒径相对较小,可充填在纹层内的原生、次生孔隙以及伴生裂缝中,作为塑性矿物抗压实能力最差、易发生胶结作用。一般随着黏土或方沸石含量的增加,纹层状细粒岩孔隙度通常呈下降趋势[26]。如沧东凹陷的长英质纹层因颗粒间被黏土矿物填充,强胶结作用使粒间孔、溶蚀孔以及微裂缝均不发达,孔径以10 µm左右的绿泥石晶间孔为主[48]。而部分黏土质纹层具有差异性的优势特征:若黏土纹层富含有机质,可形成有机酸溶蚀成因的溶蚀孔和纹层间格架孔;其次,黏土纹层结构的层理“薄弱”面受压后,可发育和保留纹层间裂缝、扩展压裂缝,形成有效的连通空间;最后,也存在部分由絮凝成因的黏土纹层,黏土矿物构成“纸牌屋”微观结构孔隙,从而提高整体孔隙度[3233,37]

    有机质形成的溶蚀孔和有机质孔取决于有机质的丰度和热演化程度,前人认为倾油烃源岩仅当Ro大于1.2%时才会大量发育有机质孔,如在松辽盆地古龙较成熟页岩油处纹层状页岩有机质孔可占孔隙占比可达57.2%[26,49]。有机质纹层厚度小、密度大、TOC含量高,内部层理缝发育程度最高,通常伴生草莓状黄铁矿条带[50]。释放的CO2和有机酸也会间接影响部分成岩作用[24],如降低了孔隙水的pH值,可抑制碳酸盐胶结作用来保护碳酸盐纹层的孔隙度;有机质含量越高,可生成越多的有机酸促进重结晶作用,使结晶程度较好和晶体粒径较大,有利于白云石、方解石纹层内部晶间孔的发育[28,33]

  • 纹层连续性受沉积水动力强度、后期改造作用等因素主控[51]。较弱水动力易形成连续纹层,物性较好。随着水动力逐渐加强而形成断续纹层[16],断续纹层形成于较高速流体环境而不利于有机质的搬运和储存,仅少部分有机质和黏土细粒物以凝絮方式被保存下来[4748,5253]。如准噶尔盆地二叠系中粉砂岩的透镜状纹层中的有机质碎片分布较为分散且数量较少[30]。同样在后期改造作用成因下的断续纹层的孔隙被黏土物质填充,胶结作用明显强于连续纹层而不利于纹层的物性。

    纹层连续性、厚度和密度影响着纹层的力学性质和裂缝扩展规律:连续性好、单层厚度大的纹层在压实过程中会造成应力集中,抗压时表现出的各向异性会削弱岩石强度,有利于顺层缝发育,但同时存在较好连续性的纹层塑性较强,使裂缝易于再次发生闭合的情况[27,5455];当连续性好、纹层厚度差异较大、垂向颗粒分布均匀时,会使其脆性增加;当连续性好、厚度越小、纹层的密度越大且纹层种类垂向频繁变化时,可多发生碳酸盐脱水、有机质收缩等作用使其纹层内孔缝发育程度较好[56]。内部纹层缝隙和天然微裂隙在继续增压过程中会持续扩展。研究表明,纹层内的缝隙在剪切力的作用下,倾向于在10°至60°的角度范围内传播[57]。由于压实作用引起的力学差异,纹层结构的垂直抗拉强度小于平行抗拉强度。形成的高密度微裂缝不仅彼此连接,甚至可以与细粒岩中的其他常见类型孔隙和裂缝相连,进而共同构成复杂的裂缝网络,从而显著提高纹层状细粒岩的储集性能[54-55,58-59]

  • 纹层序列组合是指包含不同种类纹层以及排列方式的集合,包含“二元”“三元”“多元”结构,甚至是“一元”结构在荧光照射下也呈明暗相间的特征[28]。纹层的频繁互层直接带来的是各种孔隙和微裂缝的组合和各种矿物在成岩作用中的促进或抑制,例如“晶间孔+构造缝”是高孔渗碳酸盐纹层的孔隙组合形式;有机质热演化过程可为方解石重结晶提供能量[3233]。从粒度角度出发,纹层序列可分为砂质—泥质纹层序列和泥质—泥质纹层序列两种类型。结合物质成分,可划分为长英质纹层—黏土质纹层、钙质纹层—黏土质纹层、长英质纹层—钙质纹层—黏土质纹层、富有机质黏土纹层—黏土纹层和凝灰质纹层—黏土纹层的组合模式。

    长英质纹层—黏土质纹层的组合模式(图2a)主要发育于湖相三角洲前缘,沉积水体性质以淡水—微咸水为主,多数纹层厚度介于20~300 μm,沉积水体动力较强,导致纹层连续性相对较差、有机质含量较低。包括松辽盆地青一段、鄂尔多斯盆地延长组等地均可发现。长英质纹层内的孔径大多大于100 nm,且部分孔径可达1 000 nm,孔隙度可以达到5%,渗透率通常大于0.003×10-3 μm[44],层偶间石英、长石颗粒定向排列,使填充孔隙的碳酸盐胶结作用不明显,所形成的狭缝型、片状孔隙型可结合顺延的纹层缝,形成连通性较好、水平渗透率较高的微—毫米尺度“二元”孔缝结构[26]。因此其物性好坏取决于黏土矿物和有机质数量,黏土矿物在浅埋藏阶段的成岩作用会使原生孔快速消亡,残存的粒间孔主要出现在石英等高硬度颗粒之间;而有机质可利用热演化有效抑制有关黏土物质的成岩作用,通常有机质热演化程度与长英质纹层—黏土质纹层序列的孔隙度成正比。

    钙质纹层—黏土质纹层的组合模式(图5a)主要分为方解石/白云石纹层—黏土纹层(夹杂少量混合纹层)、方解石/白云石纹层—深色富有机质黏土纹层(夹杂少量混合纹层)共4类,在渤海湾盆地孔二段、准噶尔芦草沟组等古咸化地层均可发现。水体沉积环境处在较深湖区,多数纹层厚度在10~1 000 μm,连续性较好,内部孔径通常介于1~5 μm,孔隙度介于2%~16%,孔喉介于3~50 μm,渗透率介于(0.04~3.00)×10-3 μm[23]。当有机质含量丰富时,其中富有机质纹层与贫有机质纹层的TOC值可相差10~30倍。同时有机质生成大量CO2和烃类可形成超压环境后,可保护纹层中的孔缝,最终使碳酸盐纹层的孔隙得到较好保留[24]。当纹层内有机质含量较低时,此时组合内方解石或白云石晶体不断填充使其孔隙度和连通性均较差,则此时纹层界面可成为邻近富有机质黏土纹层的剥离或线状溶蚀突破面[60]

    Figure 5.  Laminar polarizer map in different areas (modified from references [3,50])

    长英质纹层—钙质纹层—黏土质纹层的组合模式(图2b)是物性最好的纹层序列之一,在松辽盆地嫩江组、渤海湾盆地沙三段或孔四段均可发现,为典型的季节性变化下的纹层序列组合[33]。孔隙度介于2.0%~4.5%,孔喉介于2 nm~1 μm[14]。其中长英质纹层由于长石、石英排列方式紧密,受黏土、碳酸盐胶结作用影响较弱[36]。长英质纹层的优势孔隙(溶蚀孔、粒间孔)与钙质纹层的构造缝三者发生叠置效应,使此类纹层状页岩具备较好的储集性能。由于不同矿物组分纹层的频繁改变使其力学性质发生频繁变换[17,22],此类塑性层和脆性层的组合相较于其他纹层序列,在界面处更易发生破裂和扩展,且随着组合数量的叠加进一步促进了裂缝的连续性[6163]。若上下区域为低孔渗块状长英质/灰质致密泥岩,可与该纹层序列形成近源运聚型“甜点位”[22]

    富有机质黏土纹层—黏土纹层的组合模式(图5b)的连续性最好,但此类纹层厚度通常较薄,大多介于5~30 μm,有机质易呈条带状或团块状,分布在连通性较好孔隙间内。较高有机质含量对应较发育的有机质孔、溶蚀孔和有机质收缩缝。随着有机质含量的增加,有机孔隙逐渐相互连通,使面孔率超过50%,部分有机收缩缝宽度达到5 μm[27],孔隙度介于2%~7%[42],在水平方向具有较好连通性,而泥晶孔受压实作用控制明显而小于100 nm[27]。部分在生烃过程中可能形成异常压裂缝,可与晶间孔、溶蚀孔相互连接,且与纹层缝相互交切[18,26]。如沧东凹陷孔二段的富有机质纹层型页岩基质的渗透性、有效储集空间均较好,工程改造后使人工裂缝与基质孔缝相结合,形成复杂缝网结构,而成为页岩油气勘探最佳目的层[22]

    凝灰质纹层—黏土纹层的组合模式(图5c)是较为特殊的种类,整体数量相比其他类型较少,通常单层厚度介于100~1 000 μm,在我国鄂尔多斯盆地延长组和马朗凹陷芦草沟组等地发育。凝灰质纹层主由火山灰物质组成,通常可与富有机质黏土纹层频繁互层。尽管凝灰质纹层中的有机质含量相对较低,但相邻的黏土质纹层有机物含量较高,因为火山灰物质有利于形成有机生物勃发的富营养环境,加上低能环境使此类纹层的连续性和有机质含量明显优于其他纹层序列[64]。其储集性能主要取决于火山灰的物质组分:若岩石成分以伊利石为主,则孔隙类型以黏土矿物和自生黄铁矿的晶间孔为主,孔隙大小处在纳米级,连通性较差,当上下发育砂质纹层时,此类纹层序列可作为生油气型纹层序列[6566];若岩石成分以部分火山灰蚀变形成的高岭石或以硅质岩石为主时,则可发育大量粒间孔和粒内孔,孔隙度可以达到4%,为油气提供充足的储集空间[22,64]

  • 根据国内外不同纹层状细粒岩TOC含量、热演化程度和纹层状岩相的关系[2123,26,28,44,60,67,6970]表2),发现纹层状细粒岩的TOC含量可以超过1%;镜质反射率Ro基本在0.5%以上;干酪根类型以I、II1型为主,表现出良好的生油—储油潜力。此次将从纹层状细粒岩油气富集的控制因素、机理等方面阐述因内部纹层改变岩石的接触方式、抗压能力等特性,从而利于烃类运移和富集的特点。

    地区TOC/%镜质反射率Ro/%岩相类型主要干酪根类型
    北美Fort Worth盆地Barnett页岩层[21]>2.51.30~2.10富有机质纹层状页岩Ⅱ型干酪根
    北美墨西哥湾盆地鹰滩组[67]1.8~7.90.50~1.21富有机质纹层状页岩I、II1型干酪根
    渤海湾盆地沧东凹陷孔二段泥页岩[22]>4.00.66~0.96长英质纹层状页岩I、II1型干酪根
    渤海湾盆地束鹿凹陷沙三下亚段[23]0.9~5.5富有机质纹层状泥灰岩I、II1 型干酪根
    渤海湾盆地东营凹陷沙四上亚段[60]平均值为1.60.52~0.80纹层状灰质泥岩
    鄂尔多斯盆地三叠系延长组[44]3.50.50~1.00砂质纹层状页岩I型干酪根
    松辽盆地青山口组一段[26]1.0~2.00.50~1.30富有机质纹层状页岩I、II1型干酪根
    松辽盆地嫩江组二段[6970]平均值为3.00.59~0.79富有机质纹层状页岩I、II1型干酪根为主,少量II2型干酪根
    准噶尔湖盆地马朗凹陷二叠系芦草沟组[28]8.7富有机质纹层状细粒岩I、II1型干酪根

    Table 2.  Total organic carbon (TOC) content, thermal evolution degree, and relationship between varve type and lithofacies in different basins

  • 由上文可知,不同的物质成分存在优先的耦合孔隙类型,其中孔隙大小是油气赋存类型的主控因素,且每一种矿物成分的吸附性和亲油性不尽相同。学者将页岩油气赋存形态划分为吸附态、游离态和少数溶解态、溶胀态[7172]。页岩中的孔隙会与油体表面发生相互作用,产生吸附作用,进而形成瓣膜状的吸附态油气。仅当孔隙中吸附态油气的体积超过临界容积点后,超量的油气才会以游离态溢出[73-74]。党伟等[75]实验发现以3 nm孔径为界限,孔径小于3 nm时以赋存吸附油为主;反之孔隙内以游离油为主。而游离油量与TOC、黏土矿物含量、微孔和介孔表面积比、孔隙体积等参数呈正相关性,与有机质成熟度呈先增加后降低的变化关系[7576]。因此,在砂质纹层、有机质纹层中游离态油气占比极大增加;在黏土质纹层中孔隙内较大的压强使吸附态油气占比相应提高。

    纹层中矿物成分的非均质性极强,油分子在不同矿物中的润湿接触角、相对密度分布、扩散系数、径向分布的特征均不相同,直接对油气的赋存和运移产生不同程度的影响[7778]。众多实验后得出矿物亲油性大小关系为高岭石>钠长石>方解石>石英[79];矿物的吸附能力依次为伊利石>蒙脱石>高岭石[72]。而吸附态气体因范德华力作用,被吸附在有机质、干酪根及黏土矿物的表面[68,77,80]。因此,纹层中黏土、有机质的含量和分布均会影响其页岩油气的运移状态。在实际的油气富集过程中,不同物质成分的吸附性结合物性特征可表现出较大的差异性。

  • 纹层连续性除狭义连续,还包括地层横向和垂向一定规模内的连续程度,以及部分岩体刺穿、切割、侵蚀等破坏性作用的集合。连续性较好的纹层具有较高TOC含量和有机质热演化程度,砂质纹层和泥质纹层无论是在横向还是垂向的叠加后,无异于提升了孔隙连通性、微裂缝延续性、油气的运移和储集空间、储层力学对于油气的封闭作用,有利纹层状细粒岩相对其他结构细粒岩形成页岩油气“甜点位”[81]。前人在纹层状页岩有效应力与渗透率关系的实验中发现,纹层越发育且连续性越好时,有效应力的增加会使油测渗透率快速下降,即纹层状页岩的连续性有利于初始渗透率提高,相应应力敏感性越强且对应的有机质丰度越高[8284]

  • 长英质纹层—黏土质纹层序列因长石和石英粒间孔隙发育,从而具有较好连通性,轻质组分主要赋存于长英质纹层中,含油率、油气流动性均优于相邻黏土纹层。尽管数据表明TOC通常与石英和长石呈负相关性,但长英质纹层具有原地滞留微运移富集的特征,富有机质黏土纹层中的有机质生烃后,会经微距运移至相邻叠覆的长英质纹层[26,45]

    钙质纹层—黏土质纹层序列中的脆性矿物对气体的吸附能力较弱,使得烃类流动性更好,因此以孔缝作为超压油气的释放空间[68]。泥晶碳酸盐纹层易与富有机质纹层伴生或紧邻,生成的烃类可直接进入碳酸盐纹层且沿顺层缝分布;亮晶碳酸盐纹层内部的晶间孔、残留粒间孔、粒间沥青质发育的有机质孔均可被游离油所充填[34]

    长英质纹层—钙质纹层—黏土质纹层的无机孔相对发育,但有机质含量中等。包括纹层状长英质页岩、纹层状混积质页岩的纹层密度较高。当有机质热演化程度高时,组合内部游离烃含量较高,滞留烃超越效应较为明显。包括有机质孔、晶间孔、溶蚀孔及层理缝为主的孔隙空间均可被原油和轻烃填充[83]

    富有机质黏土纹层—黏土纹层在成岩初期均以无机孔为主,随着有机质热演化程度逐渐提升,有机孔会逐渐增加且连通性变好,但微裂缝、构造缝均较不发育[27]。此时纹层序列仅横向渗透率较好,因此富有机质纹层中生成的气液态烃仅发生了极短距离的运移,富集在有机质孔和有机质收缩缝,若达到油气的临界容积点后,部分油气会填充到邻层黏土纹层微晶孔隙和微裂缝[64]

    凝灰质纹层—黏土纹层序列储集能力相对较差,原油主要赋存于砂岩薄夹层。除粒间孔以外,富有机质纹层生烃过程可使富凝灰质纹层产生超压,原油能够通过这些孔缝从富有机质页岩中排出,使其内部原油生成与充注的时间早于其他砂质纹层序列,最后油气运移至相邻砂岩薄夹层后发生聚集[65]

  • 纹层状湖盆细粒岩中的有机质主要来源于植物勃发期的水生植物(多为藻类),而植物勃发则取决于充足的营养、适合的温度、稳定的水体等条件。通常春、夏季温暖的气候和充足的营养使水生动植物大量繁殖,秋冬季包括湖内和周围的动植物发生凋亡,形成有机物质被絮状物羽状流“收割”,并与细颗粒结合成絮团后共同沉积,生成点块状或线条状有机质取决于絮团中有机质的含量和沉积方式[43],这样的沉积环境和模式有效地提高了颗粒间的有机质丰度[79]。除此之外还有一种特殊的有机质丰度控制因素,即火山灰沉降到湖泊中有利于表层水体生物的勃发数量,在一定程度上提高了湖泊总有机碳水平[45,65]。总体来说,半深湖—深湖区纹层状细粒岩因环境水动力较低,导致有机物含量相对较高;浅湖区纹层状细粒岩因环境水动力复杂,有机物质含量较低。钙质、黏土质和有机质纹层因形成于较稳定水体环境,凝絮作用更强烈,有着较高的有机质含量[70];尽管长英质纹层内有机质含量较低,却可为油气提供储集空间,其空间内游离态油气分子数量与纹层状细粒岩有机质丰度呈正比例关系[5]

  • 纹层状细粒岩的油气富集程度、生产能力与储集物性呈不完全线性关系,可以说良好储集物性是细粒沉积岩油气富集的前提条件,继而再受TOC含量、有机质热演化程度等因素的控制[21,80]。通常深湖区的富有机质黏土纹层和砂质纹层的有机质热演化程度较高[45,85]。随着TOC值的增大和热演化程度的深入,有机质孔相应增加使纹层总孔隙度呈现缓慢增大的现象。且热演化程度提高过程使干酪根分子量不断减小,对应原油黏度和密度的降低,有利于页岩油的流动性。但随着热演化程度的提高,有机孔隙逐渐变大的过程中对油气分子的吸附能力也逐渐增强。后续排出的有机酸、气液态烃溶蚀、超压作用,可通过发育和保留裂缝的形式来改善储集物性[60]。在低熟页岩加热实验中发现岩心在350 ℃~375 ℃时,有机质大量热解阶段生成的液态烃发生了吸附溶胀和膨胀热应力作用,压缩了孔裂隙空间使渗透率急剧下降,此后直到500 ℃渗透率又持续升高,渗透率对应函数局部呈不对称“U”型[71,77]。同时,某些学者也发现有机质热演化成熟度与碳酸盐结晶程度等某些后期成岩作用存在一定的相关性[33]。高含量的有机酸也可促进方解石、白云石重结晶作用而形成更大的晶间孔隙,这一过程中碳酸盐纹层还可为有机酸提供更大接触面积和空间,进入良性循环直达到平衡而获得最大孔隙空间。

  • 相较于气态,页岩孔隙固液作用更强,促进油分子发生边界层效应,使运移阻力更大,而纹层易发育的微裂缝可有效改善这一状态[80,82]。流体黏度增加,页岩渗流能力先是快速下降,之后缓慢下降[80]。且页岩吸附能力与孔隙含水量、液体矿化度呈反比,有机流体中水分子或水合离子会占据孔内吸附空间,进而降低吸附能力[72,82]。流体中烷烃所含碳数量越多,其氢键以及官能团之间相互作用越强,在油藏温压条件下发现甲苯比正己烷更易吸附在二氧化硅表面的现象,表明芳香烃比饱和烃更易吸附于岩石表面,从而阻碍油气运移;若CO2含量增加,使得芳香烃、饱和烃等岩石吸附程度均降低,而利于油气流动[72,86]

  • 在有机质含量充足且热演化程度较强,即油气含量充足和运移通畅的前提下,纹层序列可以视为一种源储一体型“微型圈闭”储存和保护油气,减少发生被破坏和逸散的现象[87]。因而在此提出一种纹层状细粒岩的理想纹层序列模型,用来阐述这一理念机制,例如地层中发育一组泥质纹层—砂质纹层—泥质纹层的垂向序列。由上文可知,纹层状细粒岩中砂质纹层的原生孔隙的孔径大小和连通性较好,有机物的热演化过程产生的有机酸可溶解相邻层的硅铝酸盐或钙质矿物,形成的次生孔隙与原生孔隙和微裂缝可相互通连,而生成的气液态烃增加了孔隙压力,在超过破裂压力时会形成平行于纹层的微裂缝,均可作为潜在的油气和有机酸运移通道,为后续有机酸继续溶蚀和扩大微裂缝创造条件,直至达到孔缝压力与地层压力的平衡点;而泥质纹层中因发生粒内生烃超压,原油会沿纹层间裂缝、超压缝等微裂缝注入砂岩纹层的孔缝内。随着埋深增加、有机质生烃继续提升孔隙内压力,部分原油会注入新生成的异常压力缝内[8889]。同时泥质纹层可作为一种较致密“盖层”,有效利用生烃增压,使之与地层压力相抵消,防止油气二次运移,而形成一种原地滞留、微运移的油气“圈闭”[90]。这样的“近源运聚”型富集机制在各个纹层状细粒岩储层的甜点位均广泛分布[26,91]。有机质纹层—黏土纹层、含黏土凝灰质纹层—黏土互层等属于泥质纹层—泥质纹层的组合,其成分、结构、晶形等均较稳定[92]。同砂质—泥质纹层模型机理相似,生成的油气可储存在自身泥晶孔、有机质孔、有机质收缩缝、纹层缝内,或在有限运移距离内的孔隙、纹层缝等空间内聚集[93]图6)。因其孔隙连通性不如砂岩,该模式纹层序列属于“源储共生”型富集机制,此类型属于可人工压裂的优势储层[94]。然而,实际地层中纹层状细粒岩情况相对更加复杂,盆地升降运动造成沉积环境频繁变化使其纹层的成分、连续性等特征变化频率均相应提升[26,95];其次受侵蚀流体、生物扰动等影响,纹层连续性遭到冲击进而影响油气的运移和保存[9697];最后,后期成岩作用和构造运动使纹层产生不同程度的弯曲和变形[9899]

    Figure 6.  Ideal model diagram of hydrocarbon accumulation in laminated fine⁃grained sedimentary rocks reservoir (after references [24,26,65])

  • (1) 纹层是细粒沉积岩中常见的沉积结构,其发育程度与储集能力和油气成藏有着极好的正相关性,纹层状湖盆细粒沉积岩的储集物性和油气富集的能力,明显优于不发育/弱发育纹层状湖盆细粒沉积岩。

    (2) 不同种类纹层频繁叠置加剧了纹层状湖盆细粒沉积岩的非均质性,多种类孔缝相互连通是纹层状湖盆细粒沉积岩储集物性优于其他结构细粒沉积岩的主要原因,不同纹层序列组合存在优先对应的孔隙类型和连通方式。

    (3) 纹层状湖盆细粒沉积岩内的纹层序列可以视为一种源储一体型“微型圈闭”储存和保护油气,减少发生被破坏和逸散的现象,其中砂质纹层—泥质纹层序列是“近源运聚”型富集机制,泥质纹层—泥质纹层序列是“源储共生”型富集机制。

Reference (99)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return