Advanced Search
Volume 43 Issue 5
Oct.  2025
Turn off MathJax
Article Contents

WEN Long, HOU MingCai, LUO Bing, ZHANG XiHua, HUANG KeKe, CHEN Cong, ZHONG HanTing, CHEN Chao, PENG HanLin, SUN HaoFei, GAO ZhaoLong, NING Meng, LI TianJun, WANG Xia, LI ChangWei. Proposal and Exploration Significance of “Integrated Reservoir Potential” in Marine Carbonates: A case study of the Permian in the central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1555-1568. doi: 10.14027/j.issn.1000-0550.2025.052
Citation: WEN Long, HOU MingCai, LUO Bing, ZHANG XiHua, HUANG KeKe, CHEN Cong, ZHONG HanTing, CHEN Chao, PENG HanLin, SUN HaoFei, GAO ZhaoLong, NING Meng, LI TianJun, WANG Xia, LI ChangWei. Proposal and Exploration Significance of “Integrated Reservoir Potential” in Marine Carbonates: A case study of the Permian in the central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1555-1568. doi: 10.14027/j.issn.1000-0550.2025.052

Proposal and Exploration Significance of “Integrated Reservoir Potential” in Marine Carbonates: A case study of the Permian in the central Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2025.052
Funds:

National Science and Technology Major Project for New-type Oil and Gas Exploration and Development, No. 42272131 42272131

  • Received Date: 2025-07-31
  • Accepted Date: 2025-10-10
  • Rev Recd Date: 2025-09-24
  • Available Online: 2025-10-10
  • Publish Date: 2025-10-10
  • Objective With the continued advances in the exploration of deep to ultra-deep marine carbonate rocks, the traditional paradigm of targeting “dolostone-preferred” reservoirs is undergoing a new round of transformation. Methods Taking the Permian system in the central Sichuan Basin as an example, this study systematically investigated the formation mechanisms and favorable reservoir conditions of various types of ultra-deep marine carbonate reservoirs using a range of technical approaches, including core observation, thin-section identification, micro-area C-O isotope analysis and U-Pb isotope dating. Results It was found that the Permian Maokou and Changxing Formations in the region had developed many types of high-quality dolomite, limestone and weakly dolomitized limestone reservoirs, even at burial depths exceeding 5 900 m. The reservoir thicknesses range from 5 m to 50 m, with porosities between 2.0 and 12.0 percent. Systematic analysis revealed that such reservoirs do not exist in isolation but have co-evolved within a unified tectonic/ sedimentary/diagenetic dynamic system, forming composite reservoir clusters. The concept of an ‘Integrated Reservoir Potential’ is proposed for the marine carbonate rocks of the Permian system in the basin, suggesting that, within a unified tectonic/sedimentary/diagenetic framework, the formation, preservation and optimization of pores were jointly influenced by paleo-Permian rifts, the Dongwu paleoweathering surface, and the reactivation of multi-stage paleofaults. This promoted the synergistic development of reservoirs of limestone, weakly dolomitized rock and dolomite, and resulted in large-scale reservoir formation across all lithologies of marine carbonate rocks. Under such conditions, dolomite, limestone and weakly dolomitized limestone all form effective reservoirs in ultra-deep marine carbonates. Conclusions The ‘Integrated Reservoir Potential’ concept provides guidance for the exploration of Permian marine carbonates in the Sichuan Basin and also offers theoretical support and conceptual insights for deep to ultra-deep carbonate exploration entering the “post-dolostone era” where multiple lithologies are equally emphasized. This advance will drive the progress and discovery breakthroughs in deep carbonate exploration.
  • [1] Ahr W M. Geology of carbonate reservoirs: The identification, description, and characterization of hydrocarbon reservoirs in carbonate rocks[M]. Hoboken: John Wiley Sons, 2008: 1-295.
    [2] 匡明志,张小兵,袁海锋,等. 川中地区茅口组碳酸盐岩层序地层及沉积相特征[J]. 古地理学报,2024,26(5):1201-1220.

    Kuang Mingzhi, Zhang Xiaobing, Yuan Haifeng, et al. Sequence stratigraphy and sedimentary facies characteristics of the Maokou Formation carbonate rocks in central Sichuan Basin[J]. Journal of Palaeogeography, 2024, 26(5): 1201-1220.
    [3] 谢继容,罗冰,张玺华,等. 四川盆地川中地区龙女寺茅口组白云岩气田勘探发现及其意义[J]. 石油学报,2025,46(4):661-675,742.

    Xie Jirong, Luo Bing, Zhang Xihua, et al. Exploration and discovery of the Maokou Formation dolomite gas field in Longnüsi area of central Sichuan Basin and its significance[J]. Acta Petrolei Sinica, 2025, 46(4): 661-675, 742.
    [4] 袁海锋,张本健,匡明志,等. 四川盆地中二叠世茅口期构造-沉积分异与峨眉山地幔柱活动的耦合关系[J]. 古地理学报,2025,27(3):560-577.

    Yuan Haifeng, Zhang Benjian, Kuang Mingzhi, et al. Coupling of tectonic-sedimentary differentiation and Emei-shan mantle plume during the Middle Permian Maokouan in Sichuan Basin[J]. Journal of Palaeogeography, 2025, 27(3): 560-577.
    [5] 李蓉,李素华,石国山,等. 川西南井研地区栖霞组白云岩储层发育主控因素[J]. 断块油气田,2023,30(1):79-86.

    Li Rong, Li Suhua, Shi Guoshan, et al. Main controlling factors of dolomite reservoir development of Qixia Formation in Jingyan area, southwestern Sichuan Basin[J]. Fault-Block Oil Gas Field, 2023, 30(1): 79-86.
    [6] 杨朝屹,夏青松,杨鹏,等. 川西—川北地区中二叠统白云岩成岩流体特征分析及复合成岩环境重建[J/OL]. 沉积学报. https://doi.org/10.14027/j.issn.1000-0550.2024.021. doi:  10.14027/j.issn.1000-0550.2024.021

    Yang Chaoyi, Xia Qingsong, Yang Peng, et al. Diagenetic fluid analysis and complex composite environment reconstruction of Middle Permian dolomite in western-northern Sichuan Basin[J/OL]. Acta Sedimentologica Sinica. https://doi.org/10.14027/j.issn.1000-0550.2024.021. doi:  10.14027/j.issn.1000-0550.2024.021
    [7] 杨雪,杨雨然,张景缘,等. 川北地区开江—梁平海槽二叠系海相页岩特征及优质储层形成机制[J]. 岩性油气藏,2025,37(3):108-119.

    Yang Xue, Yang Yuran, Zhang Jingyuan, et al. Characteristics and formation mechanism of Permian marine shale of Kaijiang-Liangping trough in northern Sichuan Basin[J]. Lithologic Reservoirs, 2025, 37(3): 108-119.
    [8] 朱茂,黄世伟,宋叙,等 .四川盆地潼南—合川区块中二叠统白云岩储层形成主控因素与勘探区带预测[J]. 中国石油勘探,2022,27(4):149-161.

    Zhu Mao, Huang Shiwei, Song Xu, et al. Main controlling factors of the Middle Permian dolomite reservoir and prediction of exploration zone in Tongnan-Hechuan block, Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(4): 149-161.
    [9] 张枝焕,常象春,曾溅辉. 水—岩相互作用研究及其在石油地质中的应用[J]. 地质科技情报,1998(3):70-75.

    Zhang Zhihuan, Chang Xiangchun, Zeng Jianhui. Research on waterrock interaction and its application on petroleum geology[J]. Geological Science and Technology Information, 1998(3): 70-75.
    [10] 胡海燕. 油气充注对成岩作用的影响[J]. 海相油气地质,2004,9(1/2):85-89.

    Hu Haiyan. Effects of hydrocarbon emplacement to diagenesis of reservoirs[J]. Marine Origin Petroleum Geology, 2004, 9(1/2): 85-89.
    [11] 田艳红,刘树根,赵异华,等. 四川盆地中部龙王庙组储层成岩作用[J]. 成都理工大学学报(自然科学版),2014,41(6):671-683.

    Tian Yanhong, Liu Shugen, Zhao Yihua, et al. Diagenesis of Lower Cambrian Longwangmiao Formation reservoirs in central area of Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2014, 41(6): 671-683.
    [12] 葛云锦,陈勇,周瑶琪. 不同成岩条件下油气充注对碳酸盐岩成岩作用的影响[J]. 中国石油大学学报(自然科学版),2009,33(1):18-22,27.

    Ge Yunjin, Chen Yong, Zhou Yaoqi. Effects of hydrocarbon emplacement on diagenesis of carbonatite in different conditions[J]. Journal of China University of Petroleum, 2009, 33(1): 18-22, 27.
    [13] 张学丰,石开波,刘波,等. 保持性成岩作用与深部碳酸盐岩储层孔隙的保存[J]. 地质科技情报,2014,33(2):80-85.

    Zhang Xuefeng, Shi Kaibo, Liu Bo, et al. Retention processes and porosity preservation in deep carbonate reservoirs[J]. Geological Science and Technology Information, 2014, 33(2): 80-85.
    [14] Dong Y X, Chen H D, Wang J Y, et al. Thermal convection dolomitization induced by the Emeishan large igneous province[J]. Marine and Petroleum Geology, 2020, 116: 104308.
    [15] Feng K, Xu S L, Chen A Q, et al. Middle Permian dolomites of the SW Sichuan Basin and the role of the Emeishan large igneous province in their origin[J]. Marine and Petroleum Geology, 2021, 128: 104981.
    [16] Fan W M. Ar-Ar and U-Pb geochronol-ogy of Late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt mag-Matism[J]. Chinese Science Bulletin, 2004, 49(21): 2318.
    [17] Zhu C Q, Tian Y T, Xu M, et al. The effect of Emeishan supper mantle plume on the thermal evolution of hydrocarbon source rocks in the Sichuan Basin[J]. Chinese Journal of Geophysics, 2010, 53(1): 83-91.
    [18] 刘建强,郑浩夫,刘波,等. 川中地区中二叠统茅口组白云岩特征及成因机理[J]. 石油学报,2017,38(4):386-398.

    Liu Jianqiang, Zheng Haofu, Liu Bo, et al. Characteristics and genetic mechanism of the dolomite in the Middle Permian Maokou Formation, central Sichuan area[J]. Acta Petrolei Sinica, 2017, 38(4): 386-398.
    [19] 肖钦仁,袁海锋,谌辰,等. 川中北部地区茅口组白云岩成因分析:来自岩石学、原位地球化学及年代学证据[J]. 天然气地球科学,2024,35(7):1160-1186.

    Xiao Qinren, Yuan Haifeng, Shen Chen, et al. Analysis of dolomite genesis in the Maokou Formation, northern slope area of central Sichuan, China: Petrologic, in situ geochemical, and chronological evidence[J]. Natural Gas Geoscience, 2024, 35(7): 1160-1186.
    [20] 郝毅,林良彪,周进高,等. 川西北中二叠统栖霞组豹斑灰岩特征与成因[J]. 成都理工大学学报(自然科学版),2012,39(6):651-656.

    Hao Yi, Lin Liangbiao, Zhou Jingao, et al. Characteristics and genesis of leopard limestone in Middle Permian Qixia Formation, northwest Sichuan, China[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2012, 39(6): 651-656.
    [21] 秦建中,孟庆强,付小东. 川东北地区海相碳酸盐岩三期成烃成藏过程[J]. 石油勘探与开发,2008,35(5):548-556.

    Qin Jianzhong, Meng Qingqiang, Fu Xiaodong. Three hydrocarbon generation and accumulation processes of marine carbonate rocks in northeastern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2008, 35(5): 548-556.
    [22] 严丽,冯明刚,张春燕. 川东北元坝地区长兴组油气藏成藏模式[J]. 长江大学学报(自然科学版),2011,8(10):19-21.

    Yan Li, Feng Minggang, Zhang Chunyan. Hydrocarbon accumulation mode of Changxing Formation in YB area of northeastern Sichuan Basin[J]. Journal of Yangtze University (Natural Science Edition), 2011, 8(10): 19-21.
    [23] 张玺华,陈聪,黄婕,等. 四川盆地中二叠世广元—巴中拉张槽的发现及其油气地质意义[J]. 中国石油勘探,2019,24(4):466-475.

    Zhang Xihua, Chen Cong, Huang Jie, et al. The discovery of Middle Permian Guangyuan-Bazhong extensional trough in the Sichuan Basin and its petroleum geological significance[J]. China Petroleum Exploration, 2019, 24(4): 466-475.
    [24] 张玺华,陈聪,张亚,等. 川西北地区茅口组海槽相地质特征及其油气地质意义[J]. 天然气勘探与开发,2018,41(3):42-50.

    Zhang Xihua, Chen Cong, Zhang Ya, et al. Geological characteristics of trough facies, Maokou Formation, northwestern Sichuan Basin: Implications for geology[J]. Natural Gas Exploration and Development, 2018, 41(3): 42-50.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)  / Tables(3)

Article Metrics

Article views(10) PDF downloads(0) Cited by()

Proportional views
Related
Publishing history
  • Received:  2025-07-31
  • Revised:  2025-09-24
  • Accepted:  2025-10-10
  • Published:  2025-10-10

Proposal and Exploration Significance of “Integrated Reservoir Potential” in Marine Carbonates: A case study of the Permian in the central Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2025.052
Funds:

National Science and Technology Major Project for New-type Oil and Gas Exploration and Development, No. 42272131 42272131

Abstract: Objective With the continued advances in the exploration of deep to ultra-deep marine carbonate rocks, the traditional paradigm of targeting “dolostone-preferred” reservoirs is undergoing a new round of transformation. Methods Taking the Permian system in the central Sichuan Basin as an example, this study systematically investigated the formation mechanisms and favorable reservoir conditions of various types of ultra-deep marine carbonate reservoirs using a range of technical approaches, including core observation, thin-section identification, micro-area C-O isotope analysis and U-Pb isotope dating. Results It was found that the Permian Maokou and Changxing Formations in the region had developed many types of high-quality dolomite, limestone and weakly dolomitized limestone reservoirs, even at burial depths exceeding 5 900 m. The reservoir thicknesses range from 5 m to 50 m, with porosities between 2.0 and 12.0 percent. Systematic analysis revealed that such reservoirs do not exist in isolation but have co-evolved within a unified tectonic/ sedimentary/diagenetic dynamic system, forming composite reservoir clusters. The concept of an ‘Integrated Reservoir Potential’ is proposed for the marine carbonate rocks of the Permian system in the basin, suggesting that, within a unified tectonic/sedimentary/diagenetic framework, the formation, preservation and optimization of pores were jointly influenced by paleo-Permian rifts, the Dongwu paleoweathering surface, and the reactivation of multi-stage paleofaults. This promoted the synergistic development of reservoirs of limestone, weakly dolomitized rock and dolomite, and resulted in large-scale reservoir formation across all lithologies of marine carbonate rocks. Under such conditions, dolomite, limestone and weakly dolomitized limestone all form effective reservoirs in ultra-deep marine carbonates. Conclusions The ‘Integrated Reservoir Potential’ concept provides guidance for the exploration of Permian marine carbonates in the Sichuan Basin and also offers theoretical support and conceptual insights for deep to ultra-deep carbonate exploration entering the “post-dolostone era” where multiple lithologies are equally emphasized. This advance will drive the progress and discovery breakthroughs in deep carbonate exploration.

WEN Long, HOU MingCai, LUO Bing, ZHANG XiHua, HUANG KeKe, CHEN Cong, ZHONG HanTing, CHEN Chao, PENG HanLin, SUN HaoFei, GAO ZhaoLong, NING Meng, LI TianJun, WANG Xia, LI ChangWei. Proposal and Exploration Significance of “Integrated Reservoir Potential” in Marine Carbonates: A case study of the Permian in the central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1555-1568. doi: 10.14027/j.issn.1000-0550.2025.052
Citation: WEN Long, HOU MingCai, LUO Bing, ZHANG XiHua, HUANG KeKe, CHEN Cong, ZHONG HanTing, CHEN Chao, PENG HanLin, SUN HaoFei, GAO ZhaoLong, NING Meng, LI TianJun, WANG Xia, LI ChangWei. Proposal and Exploration Significance of “Integrated Reservoir Potential” in Marine Carbonates: A case study of the Permian in the central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1555-1568. doi: 10.14027/j.issn.1000-0550.2025.052
  • 碳酸盐岩储层作为全球油气资源的核心载体,贡献了约50%~60%的探明储量[1],碳酸盐岩领域在全球能源格局中具有重要的战略地位。全球碳酸盐岩油气藏普遍发育于中新生代以来的地层,勘探深度在3 000 m以浅的油气藏占比较高。超深层(埋深4 500 m)油气储量占比较少且分布局限,油气最富集的盆地包括塔里木和四川盆地、滨里海盆地、扎格罗斯盆地和阿拉伯盆地,这5个盆地的油气可采储量分别占古生界深层海相碳酸盐岩油气总储量的33.9%、20.4%、16.7%、12.4%和9.2%,其他盆地的油气储量比例合计仅为7.4%。

    随着埋深的增加,地质时代变老,尤其在超深层碳酸盐岩领域,油气藏储层类型以白云岩为主。据信息处理服务公司(Information Handling Service,IHS)统计,全球油气储量排名前十的深层海相碳酸盐岩盆地已发现油气田的主力储层均为白云岩,例如,塔里木盆地的塔河油田、滨里海盆地的Karachaganak气田、四川盆地的普光气田、扎格罗斯盆地的Helegan 2气田、阿拉伯盆地的Zakum气田和二叠盆地的Gomez气田等(表1)。

    深层盆地名称(主力储层层位)储层类型主要圈闭类型代表油气田油当量/×108t百分比埋深/m
    1塔里木盆地(O)白云岩地层—构造Tahe5.933.9%5 400~6 900
    2滨里海盆地(C/D)白云岩地层—不整合Karachaganak3.520.4%3 500~4 000
    3四川盆地(P)白云岩地层—构造Puguang2.916.7%4 800~5 800
    4扎格罗斯盆地(P)白云岩构造Helegan 22.212.4%3 000~4 000
    5阿拉伯盆地(P)白云岩构造Zakum1.69.2%2 500~4 200
    6二叠系盆地(O)白云岩构造Gomez0.73.9%5 500~6 700
    7伏尔加—乌拉尔盆地(D)生物礁地层—构造Chinarevskoye0.42.3%4 850~4 920
    8阿纳达科盆地(C)白云岩地层Berlin0.10.5%4 000~5 000
    9渤海湾盆地(O)白云岩地层Songqiao0.10.4%4 000~6 000
    10第聂伯—顿涅茨盆地(P)滩坝构造Kobzivske0.00.2%2 500~4 000

    Table 1.  Summary of attributes of the top 10 global basins with hydrocarbon reserves in deep Paleozoic marine carbonate sequences (after IHS)

    而在前期我国碳酸盐岩油气勘探中,深层—超深层弱云化岩储层和灰岩储层由于其非均质性强,成岩作用改造强烈,孔隙保存难等问题,很难单独将其评价为有效储层,故这两类储层并未得到充分重视,制约了海相碳酸盐岩勘探领域的拓展。

    近年来川中二叠系勘探成果表明弱云化岩层与深层灰岩层段也表现出良好的储集能力,甚至实现了高产。茅口组台内射洪高带蓬深12井钻遇茅二段云质灰岩储层,埋深5 900 m(图1a)。储层厚度为20 m,平均孔隙度5.1%,孔渗相关性好。取心过程中气测显示频繁,见4次气测异常,含气性较好,目前正在开展试油评价。台缘带中段八角场—南充地区部署探井30余口,埋深5 500~6 000 m,钻遇白云岩、云质灰岩、硅质云岩等多岩性储层,储层厚度介于5~50 m,平均孔隙度超5%。已提交探明地质储量超1 000亿方。长兴组浅水陆棚内蓬深10井钻遇生物礁灰岩优质储层(图1b),埋深5 400 m,储层厚55 m,储集空间以生物体腔孔、粒内溶孔、粒间溶孔为主,局部井段发育中小溶洞和裂缝,储层孔隙度多大于12%,平均孔隙度为9.21%,中值渗透率为1.240×10-3 μm2。测试获得206.36万方/天高产工业气流,无阻流量675万方/天,投入试采,目前稳定日产气量约50万方。因此,随着勘探认识的不断深化,传统基于岩性划界,如“白云岩优先”的储层评价范式逐渐显现出其局限性,不仅导致勘探目标选择过于单一,也使资源评价结果存在偏差与不完整性。为突破这一困境,有必要建立以“多岩性协同成储”为核心的理论框架,从而为深层—超深层勘探迈入“后白云岩时代”,实现多岩性并重的勘探战略提供理论支撑与研究范式转换。

    Figure 1.  Distribution of Permian sedimentary facies in the Sichuan Basin: (a) Maokou Formation; (b) Changxing Formation

  • 川中二叠系最新的勘探成果表明,不同岩性类型的储层并非孤立发育,而是在统一的构造—沉积—成岩体系中组合展布、协同演化。例如,在蓬阳1井、蓬阳3井等实钻中,除白云岩外,弱云化岩及灰岩亦展现出良好的储集能力,甚至实现了高产。基于此,本研究提出海相碳酸盐岩“全储层效应”概念:即在统一的构造—沉积大背景下,在台缘—台内滩体体系中,由白云岩、弱云化岩与灰岩共同构成空间上叠合、成因上协同、储集性能上互补的复合型储层体系。这一体系强调储层类型并非彼此独立,其是在沉积、成岩及构造多因素共同调控下系统发育,表现为演化过程的贯通性、储层类型的多元性、分布的层系继承性以及储层间的互补性,从而有效提升储层厚度与规模。更为重要的是,“全储层效应”不仅是一个学术概念,更为深层—超深层碳酸盐岩勘探突破瓶颈、走向“后白云岩时代”奠定了关键的理论基础。

  • 通过对川中地区40余口井的观察及分析,二叠系茅口组、长兴组发育白云岩、灰质云岩、硅质云岩、云质灰岩、含云灰岩和灰岩等多种储集岩性。根据岩性、储集空间类型及孔喉结构等特征,将川中二叠系储层划分为弱云化岩储层、灰岩储层及白云岩储层(表2),并对其储层特征及形成机制进行阐述。

    储层类型岩性埋深/m储集空间压汞曲线孔隙度岩心特征薄片特征发育优势相带主控因素
    弱云化储层云质灰岩含云灰岩6 000~6 500晶间(溶)孔2.0%~12.0%台缘带台内高带生物礁高能滩早期云化早期暴露早期烃类充注
    灰岩储层生屑灰岩礁灰岩5 400~5 900铸模孔粒间溶孔生物体腔孔4.0%~12.0%台缘礁滩棚内点礁高能滩早期暴露早期烃类充注
    白云岩储层白云岩5 900~6 100溶蚀孔洞晶间溶孔粒间孔2.0%~10.0%台缘带高能滩早期暴露多期云化
    硅质云岩5 900~6 100晶间孔3.6%~7.8%台缘带高能滩早期暴露多期云化后期成岩

    Table 2.  Typical characteristics of multiple reservoir types in the Permian system

  • 弱云化储层是指白云石化程度较低、仍以灰岩组分为主的云质灰岩或含云灰岩。传统观点认为此类岩石到深埋藏阶段原生孔隙通常难以保持,难以形成规模优质储层。近期川中二叠系勘探实践表明,部分弱云化岩层段也表现出良好的储集能力,甚至可获得工业高产。例如,蓬莱地区二叠系探井钻遇厚层优质弱云化储层,单层厚度为5~30 m,孔隙度介于2.0%~12.0%,储集空间类型以晶间孔、晶间/晶内溶孔与生物铸模孔为主(图2a~c),局部伴随构造微裂缝,孔径多分布在3.0~10.0 μm,尤其在白云岩—灰岩接触带,溶蚀缝与晶间缝充当渗流通道,显著改善渗流能力。岩心观察显示,弱云化储层具有高能滩相沉积特征,见典型造礁生物,发育粒间孔及生物体腔孔。弱云化过程中,白云石局部交代方解石,云化部分在一定程度上增强了岩石抗压能力,有助于抑制埋藏期孔隙塌陷,从而有利于粒间孔隙的保存(图2d)。此外,实测数据表明,云化部分的孔隙度与渗透率显著优于同层段未云化灰岩段,表明即使云化程度较低,白云石化作用仍能通过局部晶体重构、局部溶蚀增孔和抗压实效应对深埋环境下的储层性能起到正向提升作用。

    Figure 2.  Characteristics of weakly dolomitized reservoirs in the Second member of the Permian Maokou Formation, well Pengshen 12

  • 蓬莱地区长兴组探井钻遇浅水陆棚内点礁灰岩储层,岩性以亮晶生屑灰岩、礁灰岩以及含云生屑灰岩为主,单层厚度为5~30 m,孔隙度主要分布在4.0%~12.0%,平均9.21%;渗透率主要介于(1~10)×10-3 μm2,平均为4.51×10-3 μm2。储集空间类型以生物铸模孔、体腔孔、粒间孔和洞穴等为主(图3a,b),局部夹杂缝合线发育带,具备一定的孔喉连通性,同时在岩心上可见层状溶蚀带(图3c),表现出良好的储集性能。测井与岩心资料亦验证了其有效孔隙型储层属性,凸显了部分灰岩因成岩特殊性而具备保孔潜力的可能性。

    Figure 3.  Characteristics of limestone reservoirs in the Permian Changxing Formation, well Pengshen 10, central Sichuan province

  • 蓬莱地区茅口组、长兴组台缘礁滩带发育滩相白云岩储层,岩性主要为粉—细晶白云岩、残余生屑白云岩、灰质晶粒白云岩、含灰晶粒白云岩以及硅质白云岩[24]。储层单层厚度大,介于5~50 m,横向上较为连续。基于茅口组白云岩储层物性资料,其孔隙度介于2.0%~10.0%,多数孔隙度大于3.0%,渗透率为(0.001~1)×10-3 μm2。晶间孔、晶间溶孔、溶蚀孔洞和溶缝是茅口组白云岩储层的主要储集空间(图4)。此外,晶体自形程度越高,边界越清晰,其孔隙类型以晶间孔为主,储层连通性好。

    Figure 4.  Characteristics of dolomitized reservoirs in the Second member of the Permian Maokou Formation, central Sichuan province

  • 通过钻井岩心和岩石薄片的观察,结合大量的碳氧锶同位素、稀土元素、U-Pb同位素定年、阴极发光等实验分析,认为二叠系全类型储层发育受高能滩相、准同生期暴露溶蚀、浅埋藏阶段烃类充注以及深埋藏阶段多期溶蚀流体的溶蚀作用控制(图5)。

    Figure 5.  Genetic model of integrated reservoirs in the Permian, central Sichuan province(a) high⁃energy shoal deposition; (b) penecontemporaneous exposure dissolution; (c) hydrocarbon charging during shallow burial

  • 二叠纪时期发育北西向裂陷,分布在川北广元、开江—梁平海槽一线,向台内发育隆凹相间格局,具备发育台缘及台内高能滩的沉积背景,此时生物繁盛,生屑质的台缘滩及台内滩分布范围广、沉积厚度大,是最有利的储集岩发育带(图5a)。颗粒滩主要由生屑颗粒支撑,压实作用较弱,生屑个体较大且保存较完整,有利于原生孔隙的发育,尤其是台缘亚相具有相对高隆的地势,波浪作用强,颗粒灰岩沉积能量更高。同时,高能颗粒滩相有利于准同生期白云石化以及同期暴露淋滤作用[57]。准同生期白云石化形成以自形—半自形为主的细晶白云石,其晶间孔隙奠定了储层孔隙网络的初始框架,也为后期成岩流体活动提供了通道,并有助于增强抗压实能力及孔隙保存[8]

  • 岩心与薄片均显示二叠系存在大量的溶蚀孔洞,主要以组构选择性溶蚀为典型特征。生物碎屑灰岩与藻黏结灰岩中,有孔虫、红藻、介壳等生物碎屑选择性溶蚀形成粒内溶孔和铸模孔,并与滩相颗粒灰岩相伴,体现了与沉积期滩体暴露或高频层序不整合面导致滩体暴露所致的大气淡水溶蚀相关的组构选择性溶解。基于茅口组、长兴组沉积背景以及海平面的变化特征,认为台地边缘、台内高地部位的滩相沉积物在高位体系域时期,并与四级或五级层序不整合面叠加时,易暴露遭受大气降水的淋滤和溶蚀改造(图5b),形成粒间溶孔、粒内溶孔、颗粒铸模孔、体腔孔及洞穴等溶蚀结构,构成早期孔隙系统。例如,蓬深10井长兴组5 455.10 m处礁灰岩中可见明显的层状溶蚀带,为早期暴露—岩溶作用在深层灰岩中的残余记录(图3c)。此外,孔隙型灰岩储层的碳氧同位素值均低于同期海水值,证实了大气降水溶蚀的影响(图6表3)。

    Figure 6.  Carbon and oxygen isotope cross⁃plot of multi⁃type reservoirs in well Pengshen 10

    岩石类型δ13CPDB/‰δ18OPDB/‰岩石类型δ13CPDB/‰δ18OPDB/‰
    泥晶灰岩3.40-5.54泥晶生屑灰岩2.80-3.59
    泥晶灰岩3.58-4.49泥晶生屑灰岩2.98-5.11
    泥晶灰岩3.24-3.31泥晶生屑灰岩3.49-7.27
    泥晶灰岩3.08-3.06泥晶生屑灰岩3.75-6.62
    泥晶灰岩3.83-2.60泥晶生屑灰岩3.92-5.01
    泥晶灰岩4.16-3.93泥晶生屑灰岩4.02-3.59
    泥晶灰岩4.45-5.01泥晶生屑灰岩3.65-3.46
    弱云化灰岩2.22-10.22孔隙型生屑灰岩1.48-8.96
    弱云化灰岩2.88-7.09孔隙型生屑灰岩1.98-9.88
    弱云化灰岩3.07-9.63孔隙型生屑灰岩2.12-8.02
    弱云化灰岩3.33-11.30孔隙型生屑灰岩2.47-9.17
    弱云化灰岩3.51-9.97孔隙型生屑灰岩2.69-8.11
    弱云化灰岩3.33-8.48孔隙型生屑灰岩2.92-6.47
    孔隙型礁灰岩1.59-10.19孔隙型生屑灰岩2.34-3.94
    孔隙型礁灰岩2.65-10.03孔隙型生屑灰岩3.21-5.60
    孔隙型礁灰岩2.22-8.86孔隙型生屑灰岩3.46-7.86
    孔隙型礁灰岩2.74-9.04孔隙型生屑灰岩3.87-5.69
    孔隙型礁灰岩2.49-6.66
    孔隙型礁灰岩3.13-7.80
    孔隙型礁灰岩3.49-8.94
    孔隙型礁灰岩3.47-6.44

    Table 3.  Carbon and oxygen isotope data for weakly dolomitized limestone and limestone in well Pengshen 10

  • 烃类充注作用对储层发育具有重要意义。川中地区茅口组多种岩石类型中均可见含量不等的沥青,主要分布在晶间(溶)孔、粒间(溶)孔以及溶蚀缝、构造缝等储集空间中(图7),表明茅口组在浅埋藏期经历了烃类充注作用。浅埋藏期的烃类充注对于二叠系优质储层的影响主要体现在三个方面:其一,烃类携带的有机酸性流体有利于储集空间的溶蚀扩大。干酪根丰富的含氧基团在原油热裂解的早期大量释放,产生多种羧酸和酚类[910],这些有机酸性流体能够加强对围岩的溶解,扩大原有的储集空间。其二,烃类充注可抑制胶结作用,油气驱替孔隙水改变了孔隙流体的性质,降低了孔隙水与碳酸盐岩矿物的水—岩反应强度,从而抑制或减缓了胶结物形成[1113]。其三,烃类充注可削弱压实作用,烃类充注作用通常伴随着高压的传递,并导致孔隙流体由单相流动转变为多相流动,从而降低流体的渗透率,使孔隙流体的排出受阻形成超压以缓冲压实抑制。综上,烃类充注作用有利于二叠系全类型储层储集空间在埋藏过程中的长期保持(图5c)。

    Figure 7.  Evidence of hydrocarbon charging in pores during shallow burial (Second member of Maokou Formation, well Pengshen 12)

  • 在晚二叠世峨眉地裂运动期间,大规模火山活动和断裂作用显著[1415],这使得热液流体沿断裂系统渗入碳酸盐岩层并发生溶蚀作用,特别是在脆性更强、张性破裂发育的白云岩层段,强烈的溶蚀作用形成大量孔洞与裂缝。当流体溶解能力被耗尽并趋于饱和后,则在缝孔洞内沉淀出鞍形白云石和方解石[1518]。若未被完全充填,残余热液溶蚀的孔缝也可作为有效储渗空间。鞍状白云石呈强亮橙红色阴极发光,指示流体中Mn2+的富集及高Mn/Fe比值。流体包裹体均一温度集中在120 ℃~150 ℃,显示高温热液沉淀特征。XRD结果表明鞍形白云石的有序度降低,碳氧稳定同位素和锶同位素组成明显偏离围岩,与深部热液特征一致,其U-Pb测年结果为中二叠世(~267 Ma),对应峨眉山大火成岩省活动期[19]。该阶段对白云岩储层的影响具有双重性:一方面,热液白云石化沿裂缝带形成高孔隙—高渗透的优势带;另一方面,过度胶结亦可堵塞储集空间。总体来看,多期次热液溶蚀作用形成的次生孔隙带与早期白云石化形成的晶间孔相互连通[20],但高温热液导致鞍形白云石和硅质充填早期孔隙,对储层具有一定的破坏作用。

    在东吴期热液活动之后,深埋藏期的有机酸性流体对储层进一步改造。川中地区茅二段岩心薄片显示,东吴期岩溶缝洞方解石、早期构造裂缝方解石、粉—细—中晶自形白云石及鞍形白云石均遭受溶蚀改造,晶体边界参差不齐,形成东吴期岩溶缝洞方解石充填物内溶蚀孔隙、沿构造裂缝方解石溶蚀孔隙、白云石晶间溶孔、鞍形白云石晶间溶孔、鞍形白云石边缘溶孔等,这些溶孔常与沥青充注伴生(图8),为显著特征和识别标志。此类溶蚀作用发生在热液白云石化及热液溶蚀作用之后、液态石油充注之前。结合成藏史[2122],可推断其主要发生于晚三叠世—中侏罗世的埋藏过程。压实作用及生烃增压作用驱动二叠系内部有机酸性流体由盆地向台缘再至台内运移,进一步改善了孔隙结构,也抑制了胶结作用和交代作用,使早期形成的次生孔隙得以保存。

    Figure 8.  Burial dissolution by organic acids in the Permian, central Sichuan province

  • 四川盆地构造活动频繁,拉张隆升交替,多旋回沉降,为“全储层效应”提供关键的动力学机制。二叠纪峨眉地幔柱活动与北部被动大陆边缘的俯冲造成盆地的拉张背景,随后东吴运动的隆升为早期滩体暴露提供条件。二叠纪末特提斯洋开始闭合,扬子板块与华北板块碰撞引发印支运动,盆地进入前陆挤压—快速沉降阶段,压实作用及生烃增压为储层改造与保持提供有利条件。

  • 早二叠世晚期至晚三叠世,峨眉地幔柱活动成为控制上扬子地区构造—沉积格局分异的关键因素。茅口组时期—长兴组时期,峨眉地幔柱活动中心大致位于现今云南省东北部,其发育经历了平静期、高峰期及消亡期,并导致云贵及川南地区抬升,而四川盆地中、北部则相对沉降。受基底断裂继承性活动的控制,盆地经历持续的拉张与沉陷,塑造出“南西高、北东低”的陡缓相间变化的宽缓斜坡,并叠加局部“阶地”特征。尤其在盆地中北部,形成北西—南东向“隆凹相间”的构造地貌,不仅彻底改写了加里东期古隆控制的环状地貌格局,进而塑造了多类型储层的空间分布与组合特征。

    茅口组时期,盆地沿川北广元、开江—梁平海槽一线发育北西向裂陷,裂陷边缘(川中盐亭—西充—广安地区)形成台缘相,向台内过渡为隆凹相间格局(图9)。在该背景下,台缘带及台内高带规模发育高能滩体,滩体多沿台缘带相对高部位稳定展布[2324]。其中,台缘带沿裂陷边缘在剑阁—石柱地区稳定分布,而台内地区(射洪、盐亭一带)发育多排台内高带,为规模滩体发育提供了有利背景,成为茅口组全储层形成的物质基础。

    Figure 9.  Structural⁃sedimentary model of the Permian⁃Triassic, Sichuan Basin

    长兴组沉积期,沉积面貌总体继承了前期的格局,但是随着持续的张裂及差异升降,海侵范围进一步扩大,开江—梁平盆地相区范围显著拓展,而川西南陆源碎屑岩沉积区则明显缩小。同时,川中地区出现了范围较大、分布较稳定的台内洼地亚相区(浅水陆棚区),台缘及台内生物礁体系密集发育(图9),为生物礁—滩型储层奠定基础(图9)。

  • 早—中二叠世,受海西运动影响,四川盆地整体处于拉张环境。至晚二叠世,峨眉地幔柱抬升导致四川盆地内部发生差异隆升和拉张沉陷,伴生大量同沉积断裂带。进入龙潭组沉积早期,上扬子地台西北缘发生强烈区域拉张活动,促使深大断裂复活。这些断裂的发育为深部流体输导提供通道,建立了与深部下寒武统和下志留统烃源间的沟通,驱动早期油气沿断裂系统向上运移并快速充注孔隙,从而有效抑制胶结和压实作用,并显著增强孔隙的封存能力,为相关层系孔隙在深埋条件下的长期保存创造了有利条件。

  • 茅口组成岩早期正值峨眉地裂运动活跃期,区域热流显著升高,基底断裂系统广泛活化,为白云石化反应提供了热源与输导通道。在断裂控导下,热液纵向迁移并横向渗透,促使白云石化反应并在前缘带形成常见的具次生溶蚀改造的弱云化岩及邻近灰岩储层。进入东吴运动阶段,区域构造抬升导致碳酸盐岩台地整体隆升,使早期发育的颗粒滩体广泛暴露于海平面之上,滩体顶部遭受大气淡水淋滤作用,发生选择性溶蚀,构建了早期孔隙体系;同时,断裂复活与裂缝发育提升了流体运移效率,并触发局部白云石化和溶蚀重构。后续燕山期构造叠加导致局部形成封闭的成岩流体系统:一方面通过应力差异和流体封闭效应维持异常压力,有助于孔隙封存并减缓压实胶结;另一方面促进多期成岩流体与烃类的再次作用,延续储层改造。总体来看,古构造高部位发育的大型断裂不仅在成岩阶段充当流体通道,在成藏过程中更连接上下烃源—储层系统,形成“多层系—多输导—多次充注”的成藏格局,显著提升深层灰岩与弱云化带的成储潜力。

  • 茅口组形成于开江—梁平海槽构造体系控制下的台地边缘—斜坡—海槽转换带,该时期台缘地貌宽缓,台内浅滩广布,为储层发育奠定了有利的物质基础与空间条件。以茅二期为代表,该阶段正处于台—槽分异的初期,受高频相对海平面波动及地貌差异共同影响,形成了具有明显分带性的储层展布模式:古地貌高部位主要发育厚层孔洞型、裂缝孔洞型及孔隙型白云岩储层,单层厚度较大,横向连续性好;而在中低部位则过渡为薄层云质灰岩、灰质云岩至灰岩储层,呈断续横向展布格局(图10)。垂向上,随着晚期滩体沉积中心北迁,不同类型储层发生叠置演化,反映了时空叠合的储层组合趋势。

    Figure 10.  Reservoir development model of “integrated reservoir potential” in the Permian Maokou Formation, central Sichuan province

    除蓬阳地区的实钻井段外,野外露头进一步揭示出茅口组二段自台缘向海槽方向的多岩性递变序列:台缘白云岩→弱云化灰岩→深水灰岩,构成完整的沉积—成岩共生体系(图11),这一空间展布模式呈现出在大尺度沉积格局控制下多类型储层协同发育的天然图景。微观上,全储层效应体现为白云岩中的晶间孔、弱云化岩中的晶间孔与微裂缝,以及灰岩中的铸模孔和溶孔等多种储集空间在横向与垂向上的共生与互补。宏观上,这些储层类型在空间中有机组合,构筑厚度较大、横向具有一定连续性的规模储集体。综上,茅口组“全储层效应”在空间上体现出明显的连续性、继承性和组合性特征,不同类型储层在分布上相互衔接,在成因上具有统一的构造—沉积—成岩演化背景,在储集性能上则互补增强,能显著提升有效储层厚度与整体储量潜力。

    Figure 11.  Field outcrop and lithofacies distribution diagram of the Maokou Formation at the Hongyan Tunnel, Guang'an

  • 目前,茅口组与长兴组中“云化—灰岩”孔隙型储层的成因机制与分布规律研究仍处于起步阶段,亟须系统开展四川盆地二叠系,尤其是深层—超深层白云岩、弱云化岩与灰岩孔隙型储层的形成机制与展布规律研究。本文提出“全储层效应”指导下的盆地二叠系储层勘探理论与实践体系,指出川中二叠系发育的白云岩储层、弱云化岩及灰岩也能形成规模优质储层,具有呈层状或似层状分布的孔洞缝储层体系,这不仅有助于研究区扩展有效储层岩性、增加有效储层厚度、优化储量方案,而且将更有利于科学、完整地提交地质储量。目前,已在茅口组、长兴组台缘带礁滩白云岩领域取得勘探发现。在“全储层效应”新认识下,认为研究区有两个规模勘探新方向。茅口组台内高带发育弱云化灰岩优质储层,沿台内高带规模发育,预计有利面积1 300 km2,预计储量规模1 000亿方;长兴组陆棚内点礁生物灰岩储层物性好,具高产稳产特征,陆棚内预计发育点礁超700个,预计有利面积超1 300 km2,资源规模超3 000亿方。

  • 传统观点认为,深层—超深层储层以白云岩为主导,而弱云化储层和灰岩储层由于非均质性强、孔隙保存条件差,长期被视为油气勘探的“禁区”。“全储层效应”理论的提出,揭示了弱云化储层和灰岩储层同样具备发育规模优质储层的条件,是潜在勘探领域,不仅为二叠系油气突破提供了理论依据,也为类似多岩性叠置碳酸盐岩区的深层勘探拓展了新思路。这一认识推动勘探策略从“聚焦优质白云岩”向“协同多类型复合储层”的战略转型,显著提升了深层碳酸盐岩的资源评价精度和勘探部署效率。

  • (1) 本文提出二叠系碳酸盐岩“全储层效应”概念,指出在统一的构造—沉积—成岩背景下,不同岩性储层类型可协同发育、互为补充,形成“孔—缝—洞”组合的复合储集体系,标志着二叠系勘探进入多岩性协同的新阶段。

    (2) 川中地区二叠系茅口组、长兴组埋深超过5 900 m仍发育滩相白云岩、弱云化灰岩、生物灰岩等多类型优质储层,储层厚度5~50 m,孔隙度2.0%~12.0%。四川盆地二叠纪台内裂陷造成台槽分异格局下发育的台缘礁滩,陆棚内点礁为多类型储层提供有利的沉积背景;高频海平面变化控制的多期暴露溶蚀,是形成早期溶蚀孔隙的关键因素;走滑断裂持续活动沟通深部烃源,浅埋藏期油气充注是孔隙持续保持的重要保障;深埋藏阶段有机酸等多期溶蚀流体持续充注改造是优质储层形成的重要条件。

    (3) “全储层效应”不仅丰富了储层类型的地质认知,也揭示了二叠系储层空间分布的继承性和组合性特征,为精准识别深层储层、优化勘探部署提供了理论支撑。该认识有助于实现从“聚焦优质白云岩”向“协同多类型复合储层”的勘探战略转型,推动四川盆地深层—超深层碳酸盐岩油气资源的持续发现与高效开发。

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return