Advanced Search
Volume 434 Issue 4
Aug.  2025
Turn off MathJax
Article Contents

FU FangLiang, PAN SongQi, ZHANG GuoSheng, ZHAO ZhengFu, WANG Wei, SHEN YaTing, JING ZhenHua. Assemblage of Morphological Characteristics in Pyrites and Their Paleoenvironmental Significance in Black Shale: A case study from the Lower Cambrian Qiongzhusi Formation of well W207 in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1522-1534. doi: DOI:10.14027/j.issn.1000-0550.2023.123
Citation: FU FangLiang, PAN SongQi, ZHANG GuoSheng, ZHAO ZhengFu, WANG Wei, SHEN YaTing, JING ZhenHua. Assemblage of Morphological Characteristics in Pyrites and Their Paleoenvironmental Significance in Black Shale: A case study from the Lower Cambrian Qiongzhusi Formation of well W207 in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1522-1534. doi: DOI:10.14027/j.issn.1000-0550.2023.123

Assemblage of Morphological Characteristics in Pyrites and Their Paleoenvironmental Significance in Black Shale: A case study from the Lower Cambrian Qiongzhusi Formation of well W207 in the Sichuan Basin

doi: DOI:10.14027/j.issn.1000-0550.2023.123
  • Received Date: 2023-10-08
  • Accepted Date: 2023-12-12
  • Rev Recd Date: 2023-11-20
  • Available Online: 2023-12-12
  • Publish Date: 2025-08-10
  • Objective Recently, the shale gas exploration of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin experienced a significant breakthrough, which has aroused widespread attention towards the redox conditions and the organic matter enrichment mechanisms of the Qiongzhusi Formation during its deposition. Redox conditions in the water column play a pivotal role in controlling the enrichment of organic matter. The particle sizes and distribution of framboidal pyrites serve as powerful redox indicators. These proxies, when combined with relevant geochemical data, enable the reconstruction of the ancient oceanic redox environment. Furthermore, the assemblage of pyrite morphological characteristics may correspond to changes in redox conditions. However, a detailed comparison between the pyrite morphological characteristics and redox conditions revealed by other geochemical markers remains limited. Methods This study focused on the black shale of the Lower Cambrian Qiongzhusi Formation from well W207 in the Sichuan Basin. We conducted a comprehensive analysis of the particle sizes and distribution patterns of the framboidal pyrites. Using this method, combined with total organic carbon (TOC), total sulfur (TS), pyrite content, and previously published iron speciation data, we reconstructed the paleo-marine redox environment of the Qiongzhusi Formation during its deposition. On this basis, the relationship between the assemblage of pyrite morphological characteristics and redox condition changes was discussed. Results The redox environmental evolution of the Qiongzhusi Formation can be divided into three stages: strongly euxinic, intermittently euxinic, and dysoxic, from the bottom to the top. The morphology of pyrite is abundant, mainly framboidal pyrites, accompanied by a few pyrite microcrystals and euhedral pyrites. The framboidal pyrites are small in size, ranging from 2.2-18.4 μm, with an average value of 6.39±1.70 μm. More than 80% of the particle sizes range from 3-8 μm, reflecting that framboidal pyrites were formed in the water bodies during the synsedimentary period. In addition, a robust positive correlation between pyrite content and TOC and TS contents was observed. Pyrite morphology varies in different redox conditions. Specifically, in euxinic environment, the pyrite content is notably high and mainly contributed by abundant framboidal pyrites. In this setting, spherulitic microcrystals are dominant, while pyrite microcrystals and well-defined euhedral pyrites with clear edges are rare. As the redox environment gradually shifted to a more oxidized state, there was a decline in both the pyrite content and quantity of framboidal pyrites. Concurrently, the microcrystals of the framboidal pyrites evolved from octahedral to cubic forms. At this stage, the pyrite microcrystals and euhedral pyrites both increased in quantity, with the former exhibiting aggregates and the latter featuring irregular edges. Conclusions In conclusion, the observed changes in redox conditions during the sedimentation of the Qiongzhusi Formation reflect a gradual oxidation process in the inner shelf areas of South China. This aligns with the rise in atmospheric oxygen level during the Early Cambrian. Notably, sedimentary pyrite displays distinct variations in the distribution of particle sizes and the assemblage of pyrite morphological characteristics as a function of redox conditions. These differences can serve as valuable supplementary indicators for assessing redox conditions in subsequent studies.
  • [1] 王丹,凌洪飞, Ulrich S,等. 湖南会同寒武纪早期有机碳同位素地层学研究[J]. 高校地质学报,2016,22(2):274-288.

    Wang Dan, Ling Hongfei, Ulrich S, et al. Organic carbon isotope stratigraphy of the Early Cambrian Huitong section in Hunan province, Southeastern Yangtze, China[J]. Geological Journal of China Universities, 2016, 22(2): 274-288.
    [2] 高波,刘忠宝,舒志国,等. 中上扬子地区下寒武统页岩气储层特征及勘探方向[J]. 石油与天然气地质,2020,41(2):284-294.

    Gao Bo, Liu Zhongbao, Shu Zhiguo, et al. Reservoir characteristics and exploration of the Lower Cambrian shale gas in the Middle-Upper Yangtze area[J]. Oil & Gas Geology, 2020, 41(2): 284-294.
    [3] 范海经,邓虎成,伏美燕,等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报,2021,39(4):1004-1019.

    Fan Haijing, Deng Hucheng, Fu Meiyan, et al. Sedimentary characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1004-1019.
    [4] 马新华,张晓伟,熊伟,等. 中国页岩气发展前景及挑战[J]. 石油科学通报,2023,8(4):491-501.

    Ma Xinhua, Zhang Xiaowei, Xiong Wei, et al. Prospects and challenges of shale gas development in China[J]. Petroleum Science Bulletin, 2023, 8(4): 491-501
    [5] Jin C S, Li C, Algeo T J, et al. A highly redox-heterogeneous ocean in South China during the Early Cambrian (∼529-514 Ma): Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
    [6] Li C, Shi W, Cheng M, et al. The redox structure of Ediacaran and early Cambrian oceans and its controls[J]. Science Bulletin, 2020, 65(24): 2141-2149.
    [7] 朱茂炎,赵方臣,殷宗军,等. 中国的寒武纪大爆发研究:进展与展望[J]. 中国科学:地球科学,2019,49(10):1455-1490.

    Zhu Maoyan, Zhao Fangchen, Yin Zongjun, et al. The Cambrian explosion: Advances and perspectives from China[J]. Science China Earth Sciences, 2019, 49(10): 1455-1490.
    [8] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean[J]. Science, 2010, 328(5974): 80-83.
    [9] Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6: 7142.
    [10] Wei G Y, Planavsky N J, Tarhan L G, et al. Highly dynamic marine redox state through the Cambrian explosion highlighted by authigenic δ 238U records[J]. Earth and Planetary Science Letters, 2020, 544: 116361.
    [11] Wei W, Chen X, Ling H F, et al. Vanadium isotope evidence for widespread marine oxygenation from the Late Ediacaran to Early Cambrian[J]. Earth and Planetary Science Letters, 2023, 602: 117942.
    [12] Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193.
    [13] Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated Later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952.
    [14] Sperling E A, Wolock C J, Morgan A S, et al. Statistical analysis of iron geochemical data suggests limited Late Proterozoic oxygenation[J]. Nature, 2015, 523(7561): 451-454.
    [15] Guo Q J, Strauss H, Liu C Q, et al. Carbon isotopic evolution of the terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 140-157.
    [16] Feng L J, Li C, Huang J, et al. A sulfate control on marine mid-depth euxinia on the Early Cambrian (ca. 529-521Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133.
    [17] 金承胜. 华南寒武纪早期海洋氧化还原状态时空波动及其与早期动物的协同演化[D]. 武汉:中国地质大学,2017.

    Jin Chengsheng. Spatiotemporal variations of ocean redox conditions and its co-evolution with early animals during the Early Cambrian, South China[D]. Wuhan: China University of Geosciences, 2017.
    [18] Li C, Cheng M, Algeo T J, et al. A theoretical prediction of chemical zonation in early oceans (>520 Ma)[J]. Science China Earth Sciences, 2015, 58(11): 1901-1909.
    [19] Li Z H, Zhang M, Chen Z Q, et al. Early Cambrian oceanic oxygenation and evolution of early animals: A critical review from the South China Craton[J]. Global and Planetary Change, 2021, 204: 103561.
    [20] Wei G Y, Planavsky N J, He T C, et al. Global marine redox evolution from the Late Neoproterozoic to the Early Paleozoic constrained by the integration of Mo and U isotope records[J]. Earth-Science Reviews, 2021, 214: 103506.
    [21] Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4): 183-188.
    [22] Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G-L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440: 1-14.
    [23] 常晓琳,黄元耕,陈中强,等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报,2020,38(1):150-165.

    Chang Xiaolin, Huang Yuangeng, Chen Zhongqiang, et al. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 2020, 38(1): 150-165.
    [24] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
    [25] Muramoto J A, Honjo S, Fry B, et al. Sulfur, iron and organic carbon fluxes in the Black Sea: Sulfur isotopic evidence for origin of sulfur fluxes[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(Suppl.2): S1151-S1187.
    [26] 王东升,张金川,李振,等. 草莓状黄铁矿的形成机制探讨及其对古氧化—还原环境的反演[J]. 中国地质,2022,49(1):36-50.

    Wang Dongsheng, Zhang Jinchuan, Li Zhen, et al. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. Geology in China, 2022, 49(1): 36-50.
    [27] Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8): 1244-1263.
    [28] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
    [29] Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1399-1416.
    [30] 胡永亮,王伟,周传明. 沉积地层中的黄铁矿形态及同位素特征初探:以华南埃迪卡拉纪深水相地层为例[J]. 沉积学报,2020,38(1):138-149.

    Hu Yongliang, Wang Wei, Zhou Chuanming. Morphologic and isotopic characteristics of sedimentary pyrite: A case study from deepwater facies, Ediacaran Lantian Formation in South China[J]. Acta Sedimentologica Sinica, 2020, 38(1): 138-149.
    [31] Wilkin R T, Barnes H L. Pyrite Formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4167-4179.
    [32] Ohfuji H, Rickard D. Experimental syntheses of framboids A review[J]. Earth-Science Reviews, 2005, 71(3/4): 147-170.
    [33] Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298(7): 537-552.
    [34] Wang P K, Huang Y J, Wang C S, et al. Pyrite morphology in the First member of the Late Cretaceous Qingshankou Formation, Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 125-136.
    [35] 宋辉,邵德勇,罗欢,等. 鄂西宜昌地区下寒武统水井沱组草莓状黄铁矿SEM图像特征及古环境指示意义:以鄂阳页1井为例[J]. 地学前缘,2023,30(3):195-207.

    Song Hui, Shao Deyong, Luo Huan, et al. Study on framboidal pyrite characters with SEM images and its indicative significance of paleo-environment in the Lower Cambrian Shuijingtuo Formation of Yichang area, western Hubei province, South China: A case study of well EYY1[J]. Earth Science Frontiers, 2023, 30(3): 195-207.
    [36] 古恒,王剑,韦恒叶,等. 四川盆地城口地区下寒武统水井沱组有机质富集控制因素[J]. 沉积学报,2024,42(3):1073-1091.

    Gu Heng, Wang Jian, Wei Hengye, et al. Controlling factors of Organic Enrichment in the Shuijingtuo Formation in the Lower Cambrian of the Chengkou area, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1073-1091.
    [37] 杨丽亚,沈均均,陈孔全,等. 基于矿物岩石学和地球化学分析的页岩古环境演化与有机质富集关系:以川西地区下寒武统筇竹寺组为例[J]. 东北石油大学学报,2022,46(5):40-54.

    Yang Liya, Shen Junjun, Chen Kongquan, et al. Relationship between paleoenvironmental evolution and organic matter enrichment of shale of the Lower Cambrian Qiongzhusi Formation in western Sichuan: Evidence from mineral petrology and geochemistry[J]. Journal of Northeast Petroleum University, 2022, 46(5): 40-54.
    [38] 卢正伟,唐玄,张同伟,等. 上扬子地区下寒武统牛蹄塘组页岩中黄铁矿特征及其地质意义[J]. 石油实验地质,2021,43(4):599-610.

    Lu Zhengwei, Tang Xuan, Zhang Tongwei, et al. Existence and geological significance of pyrite in the organic-rich shale of Lower Cambrian Niutitang Formation in Upper Yangtze region[J]. Petroleum Geology & Experiment, 2021, 43(4): 599-610.
    [39] Wang W, Hu Y L, Muscente A D, et al. Revisiting Ediacaran sulfur isotope chemostratigraphy with in situ nanoSIMS analysis of sedimentary pyrite[J]. Geology, 2021, 49(6): 611-616.
    [40] 邱玉超,罗冰,夏茂龙,等. 四川盆地长宁地区震旦系—寒武系裂陷槽的发现及其地质意义[J]. 天然气勘探与开发,2019,42(2):22-28.

    Qiu Yuchao, Luo Bing, Xia Maolong, et al. Discovery and geological significance of Sinian-Cambrian rift trough, Changning area, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(2): 22-28.
    [41] 周国晓,魏国齐,胡国艺,等. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学,2020,31(4):498-506.

    Zhou Guoxiao, Wei Guoqi, Hu Guoyi, et al. The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 498-506.
    [42] 段金宝,梅庆华,李毕松,等. 四川盆地震旦纪—早寒武世构造—沉积演化过程[J]. 地球科学,2019,44(3):738-755.

    Duan Jinbao, Mei Qinghua, Li Bisong, et al. Sinian-Early Cambrian Tectonic-Sedimentary evolution in Sichuan Basin[J]. Earth Science, 2019, 44(3): 738-755.
    [43] 马奎,文龙,张本健,等. 四川盆地德阳—安岳侵蚀裂陷槽分段性演化分析和油气勘探意义[J]. 石油勘探与开发,2022,49(2):274-284.

    Ma Kui, Wen Long, Zhang Benjian, et al. Segmented evolution of Deyang-Anyue rift trough in Sichuan Basin and its significance for oil and gas exploration[J]. Petroleum Exploration and Development, 2022, 49(2): 274-284.
    [44] 曹光耀,刘宇,侯明才,等. 川南威远地区早寒武世氮循环及古环境意义[J]. 沉积学报,2024,42(6):2031-2041.

    Cao Guangyao, Liu Yu, Hou Mingcai, et al. Nitrogen cycle and paleoenvironmental implications in the Weiyuan area, southern Sichuan during the Early Cambrian[J]. Acta Sedimentologica Sinica, 2024, 42(3): 2031-2041.
    [45] 梁霄,马韶光,李郭琴,等. 上斜坡区筇竹寺组沉积环境及其页岩气勘探潜力:以四川盆地威远地区威207井为例[J]. 地质科技通报,2022,41(5):68-82.

    Liang Xiao, Ma Shaoguang, Li Guoqin, et al. Sedimentary environment and shale gas exploration potential of Qiongzhusi Formation in the upslope area: A case study on well W-207, Weiyuan area, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 68-82.
    [46] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

    Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze Region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
    [47] Zhang Q Y, Liu E T, Pan S Q, et al. Multiple controls on organic matter accumulation in the intraplatform basin of the Early Cambrian Yangtze platform, South China[J]. Journal of Marine Science and Engineering, 2023, 11(10): 1907.
    [48] Liu S B, Jin S D, Liu Y, et al. Astronomical forced sequence infill of Early Cambrian Qiongzhusi organic-rich shale of Sichuan Basin, South China[J]. Sedimentary Geology, 2022, 440: 106261.
    [49] Maclean L C W, Tyliszczak T, Gilbert P U P A, et al. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm[J]. Geobiology, 2008, 6(5): 471-480.
    [50] 蒋柯,周文,邓乃尔,等. 四川盆地五峰组—龙马溪组页岩储层中黄铁矿特征及地质意义[J]. 成都理工大学学报(自然科学版),2020,47(1):50-64.

    Jiang Ke, Zhou Wen, Deng Naier, et al. Characteristics and geological significance of pyrites in Wufeng and Longmaxi Formation reservoir shale in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(1): 50-64.
    [51] Jiang S X, Mokhtari M, Borrok D, et al. Improving the total organic carbon estimation of the Eagle Ford Shale with density logs by considering the effect of pyrite[J]. Minerals, 2018, 8(4): 154.
    [52] Guan C G, Zhou C M, Wang W, et al. Fluctuation of shelf basin redox conditions in the Early Ediacaran: Evidence from Lantian Formation black shales in South China[J]. Precambrian Research, 2014, 245: 1-12.
    [53] 常华进,储雪蕾,冯连君,等. 华南老堡组硅质岩中草莓状黄铁矿:埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报,2009,25(4):1001-1007.

    Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Framboidal pyrites in cherts of the Laobao Formation, South China: Evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 2009, 25(4): 1001-1007.
    [54] 左荃文. 基于NanoSIMS的早古生代海相页岩中黄铁矿的硫同位素研究及其对沉积环境的指示意义[D]. 北京:中国地质大学(北京),2020.

    Zuo Quanwen. NanoSIMS sulfur isotope studies of pyrite from an Early Paleozoic marine shale: Implications for the sedimentary environment[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [55] Wacey D, Kilburn M R, Saunders M, et al. Uncovering framboidal pyrite biogenicity using Nano-scale CNorg mapping[J]. Geology, 2015, 43(1): 27-30.
    [56] Huang Y G, Chen Z Q, Wignall P B, et al. Latest Permian to Middle Triassic redox condition variations in ramp settings, South China: Pyrite framboid evidence[J]. GSA Bulletin, 2016, 129(1/2): 229-243.
    [57] Wang Q W, Morse J W. Pyrite Formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J]. Marine Chemistry, 1996, 52(2): 99-121.
    [58] Canfield D E. Reactive iron in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(1)

Article Metrics

Article views(22) PDF downloads(5) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-10-08
  • Revised:  2023-11-20
  • Accepted:  2023-12-12
  • Published:  2025-08-10

Assemblage of Morphological Characteristics in Pyrites and Their Paleoenvironmental Significance in Black Shale: A case study from the Lower Cambrian Qiongzhusi Formation of well W207 in the Sichuan Basin

doi: DOI:10.14027/j.issn.1000-0550.2023.123

Abstract: Objective Recently, the shale gas exploration of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin experienced a significant breakthrough, which has aroused widespread attention towards the redox conditions and the organic matter enrichment mechanisms of the Qiongzhusi Formation during its deposition. Redox conditions in the water column play a pivotal role in controlling the enrichment of organic matter. The particle sizes and distribution of framboidal pyrites serve as powerful redox indicators. These proxies, when combined with relevant geochemical data, enable the reconstruction of the ancient oceanic redox environment. Furthermore, the assemblage of pyrite morphological characteristics may correspond to changes in redox conditions. However, a detailed comparison between the pyrite morphological characteristics and redox conditions revealed by other geochemical markers remains limited. Methods This study focused on the black shale of the Lower Cambrian Qiongzhusi Formation from well W207 in the Sichuan Basin. We conducted a comprehensive analysis of the particle sizes and distribution patterns of the framboidal pyrites. Using this method, combined with total organic carbon (TOC), total sulfur (TS), pyrite content, and previously published iron speciation data, we reconstructed the paleo-marine redox environment of the Qiongzhusi Formation during its deposition. On this basis, the relationship between the assemblage of pyrite morphological characteristics and redox condition changes was discussed. Results The redox environmental evolution of the Qiongzhusi Formation can be divided into three stages: strongly euxinic, intermittently euxinic, and dysoxic, from the bottom to the top. The morphology of pyrite is abundant, mainly framboidal pyrites, accompanied by a few pyrite microcrystals and euhedral pyrites. The framboidal pyrites are small in size, ranging from 2.2-18.4 μm, with an average value of 6.39±1.70 μm. More than 80% of the particle sizes range from 3-8 μm, reflecting that framboidal pyrites were formed in the water bodies during the synsedimentary period. In addition, a robust positive correlation between pyrite content and TOC and TS contents was observed. Pyrite morphology varies in different redox conditions. Specifically, in euxinic environment, the pyrite content is notably high and mainly contributed by abundant framboidal pyrites. In this setting, spherulitic microcrystals are dominant, while pyrite microcrystals and well-defined euhedral pyrites with clear edges are rare. As the redox environment gradually shifted to a more oxidized state, there was a decline in both the pyrite content and quantity of framboidal pyrites. Concurrently, the microcrystals of the framboidal pyrites evolved from octahedral to cubic forms. At this stage, the pyrite microcrystals and euhedral pyrites both increased in quantity, with the former exhibiting aggregates and the latter featuring irregular edges. Conclusions In conclusion, the observed changes in redox conditions during the sedimentation of the Qiongzhusi Formation reflect a gradual oxidation process in the inner shelf areas of South China. This aligns with the rise in atmospheric oxygen level during the Early Cambrian. Notably, sedimentary pyrite displays distinct variations in the distribution of particle sizes and the assemblage of pyrite morphological characteristics as a function of redox conditions. These differences can serve as valuable supplementary indicators for assessing redox conditions in subsequent studies.

FU FangLiang, PAN SongQi, ZHANG GuoSheng, ZHAO ZhengFu, WANG Wei, SHEN YaTing, JING ZhenHua. Assemblage of Morphological Characteristics in Pyrites and Their Paleoenvironmental Significance in Black Shale: A case study from the Lower Cambrian Qiongzhusi Formation of well W207 in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1522-1534. doi: DOI:10.14027/j.issn.1000-0550.2023.123
Citation: FU FangLiang, PAN SongQi, ZHANG GuoSheng, ZHAO ZhengFu, WANG Wei, SHEN YaTing, JING ZhenHua. Assemblage of Morphological Characteristics in Pyrites and Their Paleoenvironmental Significance in Black Shale: A case study from the Lower Cambrian Qiongzhusi Formation of well W207 in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1522-1534. doi: DOI:10.14027/j.issn.1000-0550.2023.123
  • 寒武纪早期发生了全球范围内的海侵事件,导致整个扬子地台内广泛沉积了一套巨厚的海相富有机质黑色页岩[12],这套黑色页岩地层在四川盆地及周缘被称为筇竹寺组[3]。近期,位于四川盆地德阳—安岳裂陷槽内的资201井在下寒武统筇竹寺组黑色页岩层段经压裂获高产气流(7.388×105 m3/d),证实筇竹寺组黑色页岩具有良好的页岩气勘探前景[4]

    古海洋的氧化还原条件是控制黑色页岩形成的主要因素之一,已有研究表明寒武纪早期海洋的氧化还原条件存在不均一性[56]。筇竹寺组黑色页岩沉积期正值寒武纪生命大爆发主幕前后,对应着动物门类的快速增长与阶段性的灭绝事件[7],这一生物多样性的波动被认为受控于海水的氧化还原状态变化[811]。铁组分和氧化还原敏感元素证据表明,寒武纪早期海洋深水区仍然缺氧,同期的华南扬子地台浅水台地相呈现氧化特征,而斜坡至深水盆地剖面则呈现缺氧—硫化特征[1215]。基于这种氧化还原条件的空间差异性,Feng et al.[16]认为埃迪卡拉纪海洋发育的“硫化楔”结构在寒武纪早期仍然存在,即海洋表层水体呈氧化状态、由近岸向远洋楔型展布的中等水深为硫化状态、深部水体为铁化状态[6,8,1718]。筇竹寺组沉积时期海洋的氧化还原状态不仅存在空间差异性,而且随时间呈动态演化特征。Chen et al.[9]发现黑色页岩钼含量及同位素从埃迪卡拉纪到早寒武世持续升高,并在筇竹寺阶早期(寒武纪第三期)接近现今氧化海洋的水平,显示了寒武纪早期较为氧化的海洋;Feng et al.[16]通过对华南四个剖面铁组分的分析认为寒武纪早期存在的“硫化楔”在筇竹寺组沉积晚期由于大洋氧化事件而收缩;Li et al.[19]对华南扬子地台24个下寒武统剖面铁组分汇总统计结果表明,牛蹄塘组(与筇竹寺组同期)沉积时期水体的氧化还原状态总体由缺氧转变为氧化。但是,寒武纪早期的海洋仍存在多次间歇性的缺氧和氧化变化,反映在多种对氧化还原敏感的同位素指标的频繁波动上(如C、S、U同位素等)[1320]

    除了以上的地球化学指标,沉积岩中的草莓状黄铁矿由于受后期改造作用的影响较小,其粒径大小和分布规律基本保留了原始沉积时期的状态,故而草莓状黄铁矿粒径大小和分布规律也是有效指示氧化还原条件的常用沉积矿物学指标[2123]。其中,草莓状黄铁矿外形以球形、亚球形为主,其微晶大小相似,主要有立方体、八面体、五角十二面体及球体[23]。Wilkin et al.[24]认为草莓状黄铁矿的形成主要包含四个基本过程:(1)首先形成单硫化铁(FeS)微晶晶核;(2)这些晶核继续反应形成胶黄铁矿(Fe3S4);(3)由于胶黄铁矿的磁性力作用,胶黄铁矿微晶聚集形成草莓状胶黄铁矿;(4)草莓状胶黄铁矿转变成草莓状黄铁矿。在自然条件下,单硫化铁在还原环境下形成,胶黄铁矿在弱氧化条件下形成,而胶黄铁矿向黄铁矿交代的过程则需要在还原条件下进行[2526]。因此,草莓状黄铁矿的形成环境被限定在氧化还原界面附近,离开氧化还原界面将不再生长[23,25,27]。在硫化的海洋环境下,氧化还原界面位于水体之中,草莓状黄铁矿形成后无沉积物依托,很快便沉入海底,因此草莓状黄铁矿具有较高的生长速率及较小的粒径,且粒径分布范围极窄。在水循环良好的氧化海水中,底层水体含氧量正常,氧化还原界面往往在水岩界面之下的沉积物中。此时,由于HS-和单质硫不间断地少量供给,草莓状黄铁矿在孔隙水中缓慢生长,从而更容易出现粒径较大的黄铁矿,且粒径均一性差[23,2829]。因此,草莓状黄铁矿的粒径特征可用于恢复黄铁矿沉积时期的海洋环境[27,3031]

    沉积地层中除了草莓状黄铁矿,自形晶和他形晶黄铁矿也是主要的黄铁矿类型[30]。胶黄铁矿是草莓状黄铁矿形成过程中非常重要的中间产物[32],而自形晶黄铁矿形成过程不产生胶黄铁矿,因此自形晶黄铁矿无法形成集合体形态[23]。自形晶黄铁矿粒径一般大于同视域内的草莓状黄铁矿,边缘清晰且棱角发育,一般可由黄铁矿直接析出,也可通过铁的单硫化物转化而来[23,3233]。自形晶黄铁矿主要形成于封闭的沉积物孔隙水环境中,随着Fe2+与HS-的消耗,其在孔隙水中的浓度不断降低,更易于自形晶黄铁矿的析出,所以大量自形晶黄铁矿的出现往往指示了氧化的古海洋环境[23,27]。他形晶黄铁矿边缘不规则,一般形成脉状、透镜状和团块状的混杂黄铁矿形态,主要是后期成岩作用改造或热液活动的产物[30,34]

    四川盆地下寒武统筇竹寺组黑色页岩中黄铁矿类型丰富,草莓状黄铁矿尤其发育。前人针对筇竹寺组页岩中发育的大量草莓状黄铁矿已进行了系列研究,并结合其他地化指标对该时期页岩的沉积环境开展了相关探讨。宋辉等[35]结合下寒武统水井沱组(与筇竹寺组同期)页岩中草莓状黄铁矿粒径及其微晶形态的差异,认为浅水陆棚相水井沱组页岩下部较上部更为缺氧。通过进一步结合氧化还原敏感元素指标,古恒等[36]认为水井沱组有机质富集受控于水体氧化还原条件的变化;杨丽亚等[37]和卢正伟等[38]基于矿物岩石学和地球化学分析,指出下寒武统硅质页岩更有利于黄铁矿的形成,同时发现草莓状黄铁矿含量与有机质丰度有一定正相关性。总之,草莓状黄铁矿粒径大小和分布规律被认为是恢复水体氧化还原状态的有效指标[30,39],但此类研究在寒武纪地层仍相对欠缺,特别对寒武纪早期黑色页岩中黄铁矿形态特征的观察仍不甚细致,缺乏对黄铁矿形态特征组合与氧化还原状态之间关联的研究。基于此,本文利用四川盆地威远地区深水陆棚相W207井筇竹寺组页岩岩心样品,通过扫描电子显微镜(SEM)观察不同层位中黄铁矿形态特征并进行粒径统计,结合其对应的总有机碳(TOC)、总硫(TS)、黄铁矿含量数据和前人铁组分数据(FeHR/FeT、Fepy/FeHR),恢复该套页岩沉积时期水体的氧化还原状态,并分析不同氧化还原状态对沉积型黄铁矿形态特征的影响。研究结果不仅系统恢复了寒武纪早期深水相海洋氧化还原条件的变化过程,也初步探讨了氧化还原条件与黄铁矿形态特征组合之间的关系。

  • 四川盆地是一个在上扬子克拉通板块上发展起来的叠合盆地,盆地基底为中元古代末的晋宁运动形成的褶皱基底[40]。埃迪卡拉纪晚期—寒武纪早期为Rodinia超大陆最终裂解与Gondwana大陆初步聚合的时期,扬子板块边缘发生强烈的板内拉张裂陷活动[4041]。导致同时期四川盆地处于拉张为主、弱挤压为辅的应力条件下,其北缘和西缘发生多期次裂谷活动,由此形成了一系列内陆架盆地,如德阳—安岳裂陷槽[4244]。现有研究认为下寒武统筇竹寺组沉积早期存在大规模的海侵事件[45],导致德阳—安岳裂陷槽所在的内陆架盆地和鄂西—湘黔地区成为筇竹寺组沉积早期的两个沉积中心,广泛发育了一套巨厚的深水陆棚相黑色页岩[2,4546]图1a)。在整个中上扬子地区,该套黑色页岩层系可进行区域对比,同时期沉积的地层有筇竹寺组、水井沱组、郭家坝组、牛蹄塘组、九老洞组等[3]。本文研究的W207井即位于内陆架盆地西缘上斜坡[44,47]图1b),前人通过筇竹寺组底部U-Pb定年结果526.86±0.16 Ma,建立了筇竹寺组页岩沉积时期的绝对天文年代标尺,并由此认为W207井3 130 m处对应寒武纪第三期底部(~521 Ma)[48]。筇竹寺组页岩与下部埃迪卡拉系灯影组厚层白云岩呈不整合接触,取心长度为242 m,其下部3 242 m~3 100 m主要以灰黑色—黑色页岩为主,往上3 100 m~3 000 m主要由泥岩和粉砂质泥岩组成(图1c)。

    Figure 1.  Comprehensive geological background map of the Lower Cambrian Qiongzhusi Formation in the Upper Yangtze area

  • 本文研究的91块岩心样品取自四川盆地W207井3 000 m~3 242 m深度段,井位见图1。挑选其中的38块样品进行扫描电镜观察。将切好的岩心样品粘于光学载玻片上,研磨至0.03 mm厚度的岩石薄片。为获得高清晰度的SEM图像,利用EM ACE600涡轮泵高分辨率溅射仪对薄片进行镀碳,在TESCAN MAIA 3扫描电镜背散射模式下观察黄铁矿的晶体形态,并用ImageJ软件统计草莓状黄铁矿的粒径。镀碳和扫描电镜观察均在中国科学院南京地质古生物研究所完成。

    所采集的样品进行了TOC和TS含量测试。TOC和TS含量测试需将样品粉碎并研磨至80目,加入6 wt.%盐酸煮沸以去除碳酸盐中的碳,待不再有气泡后,置于电热板上蒸干待测。TOC和TS含量在中国石油勘探开发研究院实验中心用Elementrac CS-i碳硫分析仪进行测试。

    黄铁矿提取测试利用200目的粉末样品,根据TS结果确定样品用量(200 mg~2 g),采用氯化铬还原法提取页岩中的黄铁矿,具体实验方法如下:利用锌粒在酸性条件下将CrCl3还原为CrCl2,CrCl2在加热条件下可将沉积物中的可还原性硫(主要是黄铁矿硫)转变为H2S气体,持续通入N2将其吹出;利用AgNO3-NH3H2O溶液将H2S转变为Ag2S沉淀;将提取的Ag2S沉淀过滤烘干,根据Ag2S沉淀物重量推算出黄铁矿的含量。黄铁矿提取测试在中国科学院南京地质古生物研究所完成。

  • W207井TOC、TS和黄铁矿含量测试结果显示(表1),TOC介于0.17%~5.00%,平均为1.36±1.04%;TS介于0.32%~5.05%,平均为1.48±1.1%;黄铁矿含量介于0.78%~8.88%,平均为2.73±1.54%。黄铁矿与TOC、TS含量均有较好的正相关性(图2)。根据前人对W207井筇竹寺组黑色页岩铁组分的研究[44],可将W207井筇竹寺组自下而上分为3个阶段:阶段1(3 242~3 200 m)TOC、TS和黄铁矿含量较高,均呈现下降趋势(均值分别为2.55%、3.66%、5.21%);阶段2(3 200~3 100 m)TOC先增大后减小,TS与黄铁矿含量变化幅度较小(均值分别为1.75%、1.47%、2.86%);阶段3(3 100~3 000 m)TOC、TS和黄铁矿含量均维持较低值(均值分别为0.71%、0.86%、1.83%)。

    深度/mTOC/%TS/%FeS2/%深度/mTOC/%TS/%FeS2/%深度/mTOC/%TS/%FeS2/%
    3 000.000.461.103 065.680.421.083 144.471.731.503.64
    3 003.411.142.043 069.120.350.470.693 145.501.734.19
    3 005.800.681.102.223 071.060.390.923 150.581.412.19
    3 007.400.812.623 072.420.510.450.913 152.301.240.991.80
    3 009.680.641.602.973 074.730.550.430.943 158.591.394.52
    3 012.400.791.653 077.280.440.853 160.661.362.46
    3 013.770.851.523.063 078.700.370.320.703 162.901.551.922.73
    3 013.900.224.053 081.350.500.410.793 168.000.212.18
    3 015.330.882.213 082.830.610.441.103 175.100.981.251.67
    3 019.430.622.643 085.300.660.580.963 175.745.005.48
    3 019.860.701.552.913 088.170.741.243 179.901.231.632.14
    3 023.270.952.163 089.480.680.831.483 183.421.533.00
    3 025.830.752.073 091.980.710.832.573 189.801.143.58
    3 026.430.601.573 094.601.093.143 222.783.033.80
    3 030.020.661.272.433 096.261.102.973 224.681.172.372.83
    3 031.330.832.373 098.121.341.311.743 226.133.235.053.88
    3 033.421.051.072.353 100.451.192.493 227.501.205.99
    3 035.331.031.853 103.421.093.643 229.382.394.055.22
    3 038.901.201.983 106.131.271.422.823 230.370.704.02
    3 039.341.151.152.073 109.601.332.713 232.922.336.85
    3 042.701.131.753 110.711.461.452.853 234.631.743.75
    3 045.352.492.733 112.461.451.442.633 234.681.895.44
    3 047.340.391.543 116.331.511.452.483 237.002.353.785.12
    3 049.220.170.853 117.421.762.863 237.382.986.77
    3 051.490.411.603 125.572.332.323 239.401.958.89
    3 053.730.462.053 128.042.502.063 240.133.333.314.80
    3 055.910.320.652.223 131.033.491.663.413 240.303.385.54
    3 058.600.300.471.223 132.073.442.203 242.104.615.21
    3 060.500.440.843 134.002.112.313 242.134.593.43
    3 061.960.410.521.093 135.702.542.69
    3 064.800.341.033 139.891.242.98

    Table 1.  Total organic carbon (TOC), total sulfur (TS), and pyrite content data from well W207 in the Qiongzhusi Formation

    Figure 2.  Correlation analysis of pyrites with TS and TOC contents in well W207 of the Qiongzhusi Formation

  • W207井筇竹寺组黑色页岩中黄铁矿形态类型丰富,微观尺度上SEM图像显示黄铁矿形态总体上以草莓状黄铁矿为主,并伴有黄铁矿微晶和自形半自形黄铁矿(图3);宏观尺度上岩心中出现了肉眼可见的脉状黄铁矿、团块状黄铁矿等(图4)。自下而上黄铁矿主要形态类型表现为:阶段1黄铁矿形态类型丰富,以草莓状黄铁矿为主,草莓状黄铁矿微晶以球体为主,可见少量分散的黄铁矿微晶,部分层位同时发育少量的自形晶黄铁矿,个别自形晶黄铁矿尺寸可达20 μm(图3a~c);阶段2仍以草莓状黄铁矿为主,草莓状黄铁矿微晶以球体和五角十二面体为主,少见黄铁矿微晶和自形晶黄铁矿,可见草莓状黄铁矿多期生长现象(图3d~f);阶段3草莓状黄铁矿数量较少,草莓状黄铁矿微晶以八面体和立方体为主,黄铁矿微晶数量较多且常呈现聚合体,自形半自形黄铁矿数量增加(图3g~i)。

    Figure 3.  Pyrite morphologies under scanning electron microscope (SEM) for Qiongzhusi Formation in well W207

    Figure 4.  Geochemical parameters for the Qiongzhusi Formation in well W207 (iron speciation data are from reference [44])

  • 对38块样品的2 400余个草莓状黄铁矿统计结果表明,其粒径分布在2.2~18.4 μm,平均粒径为6.39±1.70 μm,超过80%的粒径集中在3~8 μm,反映草莓状黄铁矿主要形成于同沉积期的水体环境中。在不同阶段的草莓状黄铁矿粒径大小有些许变化,具体表现为:阶段1草莓状黄铁矿平均粒径小且分布范围窄,主要位于5.15±0.77~6.62±0.44 μm;阶段2平均粒径为5.62±1.11~7.36±1.93 μm,平均粒径较小且分布范围较窄;阶段3平均粒径为5.55±1.26~8.86±2.54 μm,平均粒径较大且分布范围较宽(图4f)。

  • W207井筇竹寺组黑色页岩的TS与黄铁矿含量具有正相关性(图2a),说明黄铁矿是全岩硫组分的重要组成部分,阶段1的水体硫化程度较高有利于黄铁矿的形成。该套页岩的TOC与黄铁矿含量亦呈现较好的正相关性(图2b),这是由于有机质作为微生物硫酸盐还原作用(Microbial Sulfate Reduction,MSR)的还原剂和硫酸盐还原菌的能量来源参与反应生成HS-,在有机质母质生物膜为草莓状黄铁矿结构生长提供必要化学环境的情况下,与水体中的Fe2+形成草莓状黄铁矿[27,49],故大部分草莓状黄铁矿的形成过程与有机碳含量存在正相关关系[5051]。W207井筇竹寺组中黄铁矿类型以草莓状黄铁矿为主,因而由TOC与黄铁矿含量呈现较好正相关性可以推测TOC含量是决定黄铁矿含量的主要因素。因此,较高的黄铁矿含量和草莓状黄铁矿的大量出现在一定程度上可以指示较高的TOC含量。

  • 草莓状黄铁矿的粒径大小与其形成时的沉积环境具有很好的相关性,可据此来恢复黄铁矿形成时的氧化还原环境[31]。草莓状黄铁矿粒径参数包括平均粒径和标准偏差,前人对现代沉积物中草莓状黄铁矿粒径数据的统计表明,硫化水体下形成的草莓状黄铁矿粒径一般小于6 μm,平均粒径为5.00±1.70 μm,且仅有不足4%的草莓状黄铁矿粒径大于10 μm;而沉积于次氧化—氧化环境下的草莓状黄铁矿平均粒径为7.70±4.10 μm,且有10%~50%的草莓状黄铁矿粒径大于10 μm [31,52]。Wilkin et al.[28]在统计了沉积在硫化和氧化海水环境中的草莓状黄铁矿粒径后,给出了草莓状黄铁矿平均粒径—标准偏差的二元图解,可以划分出硫化和次氧化—氧化环境(如图5实线所示);常华进等[53]根据前人提供的资料进一步划分了次氧化和氧化2个区域(如图5虚线所示)。综合应用黑色页岩中草莓状黄铁矿粒径统计结果与平均粒径对标准偏差的图解可以恢复黑色页岩沉积时期的氧化还原环境。

    Figure 5.  Binary diagram of mean particle size versus standard deviation of framboidal pyrites from the Qiongzhusi Formation in well W207 (modified from references [28,53])

    前人基于铁组分重建了四川盆地威远地区下寒武统筇竹寺组沉积时期的氧化还原环境,认为其沉积环境经历了从缺氧向氧化的转变过程[44],这与W207井草莓状黄铁矿粒径统计结果(图4f)与平均粒径对标准偏差的图解所表明的结论一致(图5)。阶段1较高的FeHR/FeT(0.46~0.75,平均值为0.63)和Fepy/FeHR(0.76~0.92,平均值0.85)(图4d,e)指示强烈的缺氧硫化环境,同时草莓状黄铁矿平均粒径为5.15~6.62 μm(图4f),大部分(>80%)低于6 μm,且分布范围窄,平均粒径对标准偏差的图解表明该阶段处于硫化环境(图5);阶段2的FeHR/FeT(0.30~0.53,平均值为0.40)和Fepy/FeHR(0.28~0.80,平均值为0.63)指示该阶段处于间歇性缺氧硫化的环境,草莓状黄铁矿平均粒径为5.62~7.36 μm,较阶段1大但仍处于较小的范围,平均粒径对标准偏差的图解指示了以硫化环境为主;阶段3较低的FeHR/FeT(0.27~0.39,平均值为0.32)和Fepy/FeHR(0.41~0.70,平均值为0.59)表明该阶段为可能氧化的水体环境,草莓状黄铁矿平均粒径较大,介于5.55~8.86 μm,分布范围亦较宽,统计到的草莓状黄铁矿数量也较少,同时自形晶黄铁矿数量较多,平均粒径对标准偏差的图解表明该阶段以次氧化为主。综上所述,W207井的铁组分和草莓状黄铁矿粒径分布特征共同指示筇竹寺组沉积期的氧化还原状态自底向顶呈现出从缺氧硫化过渡到次氧化的特点,体现了在寒武纪早期随着大气含氧量的不断上升,华南内陆架地区逐渐氧化的过程。

  • 草莓状黄铁矿和自形晶黄铁矿是W207井筇竹寺组黑色页岩中黄铁矿的主要形态,氧化还原条件的差异影响着黄铁矿的形成过程及其形态特征。同沉积阶段下,两种黄铁矿均可形成[31,54]。在海水氧化还原状态从缺氧转变为氧化条件的过程中,形成的沉积型黄铁矿主要形态由较小粒径的草莓状黄铁矿、较大粒径的草莓状黄铁矿逐渐转变为自形晶黄铁矿[30]。在成岩作用阶段,同沉积阶段形成的草莓状黄铁矿可再次生长形成自形晶的黄铁矿集合体[31,55],但在SEM图像中草莓状黄铁矿的次生加大边清晰可辨[56],其中心圈层的直径仍能用于草莓状黄铁矿的粒径统计,可以反映次生加大的黄铁矿形成前的原始海水信息。因此,黄铁矿形态特征可用于恢复黄铁矿沉积时的海水氧化还原条件。

    结合前人铁组分数据,对W207井草莓状黄铁矿粒径的统计分析还原了筇竹寺组沉积期的氧化还原状态,发现不同氧化还原条件下沉积的黄铁矿形态特征与黄铁矿含量均有所差异,表现出规律的黄铁矿形态特征组合。阶段1为强烈缺氧硫化环境,草莓状黄铁矿数量多且其微晶以球体为主(图3a),可见少量分散的黄铁矿微晶(图3b),部分层位同时发育少量的自形晶黄铁矿,其边界规则清晰,内部无空隙,无明显的后期改造现象(图3c);如图4c所示,该阶段黄铁矿含量较高,最高可达8.88%(平均值5.21%)。阶段2为间歇性缺氧硫化环境,草莓状黄铁矿数量较多且其微晶以球体和五角十二面体为主(图3d,e),黄铁矿微晶和自形晶黄铁矿数量少,同时观察到草莓状黄铁矿多期生长现象(图3f),其内部草莓状黄铁矿结构和外层次生加大边清晰可见,指示该层位可能遭受了后期成岩改造作用;该阶段的黄铁矿含量维持在较高值(平均值2.68%)(图4c)。阶段3为次氧化的环境,草莓状黄铁矿数量较少,粒径较小的草莓状黄铁矿内部以八面体微晶为主(图3h),粒径较大的草莓状黄铁矿则以立方体微晶为主(图3g),黄铁矿微晶数量较多且常呈聚合体(图3i),自形半自形晶黄铁矿数量增多,其边缘无规则(图3i);该阶段的黄铁矿含量(平均值1.83%)明显降低(图4c)。由此可见,W207井筇竹寺组页岩的黄铁矿形态特征组合上的差异与水体氧化还原条件的变化显著相关。

    为进一步探究氧化还原条件与黄铁矿形态特征组合之间的关系,对W207井筇竹寺组页岩的黄铁矿形态特征组合成因进行分析。阶段1~2整体上处于缺氧硫化的海洋环境下,此时硫酸根氧化还原界面位于水体中,草莓状黄铁矿在水体中形成后由于自身重力的原因很快降落到沉积物表面并停止生长,故阶段1~2的草莓状黄铁矿多具有较小的粒径。室温下形成的草莓状黄铁矿微晶形态与溶液中黄铁矿的过饱和度直接相关,由于立方体具有最小的表面能,初始的草莓状黄铁矿微晶形态为立方体[34]。随着过饱和度的增加,草莓状黄铁矿微晶形态的变化趋势为:立方体→八面体→五角十二面体→球体[34,57]。因此,由于硫化水体中黄铁矿过饱和度较高,形成的草莓状黄铁矿微晶以球体和五角十二面体为主。硫化水体中自形晶黄铁矿发育较少,但在HS-充足的硫化水体中,溶液对于单硫化铁不饱和而对于黄铁矿饱和,仍可直接析出并形成晶体形态清晰的自形晶黄铁矿[34],而形成于水体氧化还原界面的黄铁矿微晶也可以继续生长为自形晶黄铁矿[3233]。在硫化环境中,沉积物中活性铁的可用性是黄铁矿形成的限制性条件[58],在Fe2+不受限的情况下,可导致黄铁矿含量较高。阶段3在次氧化的海洋环境下[27,31],氧化还原界面下移到水岩交互界面附近或沉积物中,HS-供给相对有限,总体上不利于黄铁矿的形成,导致黄铁矿含量较低。在次氧化—氧化环境下,黄铁矿微晶在孔隙水中缓慢生长,形成时间相对较长,数量较少且粒径较大,更容易出现自形晶黄铁矿[27,30]。同时,在水体黄铁矿过饱和度不高的非硫化环境下,随着水体氧化程度的增强,草莓状黄铁矿微晶以立方体为主[23,57]。因此,沉积水体和沉积物孔隙水氧化还原条件的差异控制了W207井筇竹寺组页岩的黄铁矿形态特征组合。

    综上所述,对W207井筇竹寺组页岩的黄铁矿形态特征组合的研究表明:硫化环境下黄铁矿含量高,草莓状黄铁矿数量多且其微晶以球体或近球状为主,黄铁矿微晶和自形晶黄铁矿较少,存在的自形晶黄铁矿边缘规则清晰;而随着环境逐渐趋向氧化,黄铁矿含量降低,草莓状黄铁矿减少且其微晶逐渐从八面体过渡到以立方体为主,黄铁矿微晶和自形半自形黄铁矿增多,黄铁矿微晶常呈现聚合体,自形半自形黄铁矿边缘无规则。不同氧化还原条件下的沉积型黄铁矿无论是在粒径分布还是在形态特征组合上均表现出规律性的差异,黄铁矿形态组合特征可作为判别氧化还原条件的辅助指标。

  • (1) W207井筇竹寺组黑色页岩中黄铁矿形态类型丰富,以草莓状黄铁矿为主,并伴有自形半自形黄铁矿;草莓状黄铁矿粒径总体较小,粒径介于2.20~18.4 μm,平均粒径为6.39±1.70 μm,超过80%的粒径集中在3~8 μm,反映草莓状黄铁矿主要形成于同沉积期的水体环境。

    (2) 黄铁矿与TS、TOC较好的正相关性,表明黄铁矿是全岩硫组分的重要组成部分,且TOC含量主导了黄铁矿含量的变化。因此,较高的黄铁矿含量和草莓状黄铁矿的大量出现一定程度上可以指示较高的TOC。

    (3) 筇竹寺组页岩自下而上分为3个阶段,分别为强烈缺氧硫化、间歇性缺氧硫化和次氧化的环境,体现了在寒武纪早期随着大气含氧量的不断上升,华南内陆架地区逐渐氧化的过程。

    (4) 沉积水体和沉积物孔隙水氧化还原条件的差异控制了黄铁矿形态特征组合。硫化环境下,黄铁矿含量高,草莓状黄铁矿数量多且其微晶以球体或近球状为主,黄铁矿微晶和自形晶黄铁矿较少,后者边缘规则清晰;而随着环境逐渐趋向氧化,黄铁矿含量降低,草莓状黄铁矿减少且其微晶逐渐从八面体过渡到以立方体为主,黄铁矿微晶和自形半自形黄铁矿增多,前者常呈现聚合体,后者边缘无规则。不同氧化还原条件下沉积型黄铁矿表现出具有规律的形态特征组合,可作为判别氧化还原条件的辅助指标。

Reference (58)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return